Advertisement

pp 1-26 | Cite as

Exploring Assimilation of Crowdsourcing Observations into Flood Models

  • M. MazzoleniEmail author
  • Leonardo Alfonso
  • D. P. Solomatine
Chapter
Part of the The Handbook of Environmental Chemistry book series

Abstract

This chapter aims to describe the latest innovative approaches for integrating heterogeneous observations from static social sensors within hydrological and hydrodynamic modelling to improve flood prediction. The distinctive characteristic of such sensors, with respect to the traditional ones, is their varying lifespan and space-time coverage as well as their spatial distribution. The main part of the chapter is dedicated to the optimal assimilation of heterogeneous intermittent data within hydrological and hydraulic models. These approaches are designed to account for the intrinsic uncertainty contained into hydrological observations and model structure, states and parameters. Two case studies, the Brue and Bacchiglione catchments, are considered. Finally, the evaluation of the developed methods is provided. This study demonstrates that networks of low-cost static and dynamic social sensors can complement traditional networks of static physical sensors, for the purpose of improving flood forecasting accuracy. This can be a potential application of recent efforts to build citizen observatories of water, in which citizens not only can play an active role in information capturing, evaluation and communication but also can help improve models and increase flood resilience.

Keywords

Crowdsourced observations Data assimilation Flood forecasting Hydraulic modelling Hydrological modelling 

Notes

Acknowledgements

This research was funded in the framework of the European FP7 Project WeSenseIt: Citizen Observatory of Water, grant agreement No. 308429.

References

  1. 1.
    Hinkel J, Lincke D, Vafeidis AT, Perrette M, Nicholls RJ, Tol RSJ, Marzeion B, Fettweis X, Ionescu C, Levermann A (2014) Coastal flood damage and adaptation costs under 21st century sea-level rise. Proc Natl Acad Sci 111(9):3292–3297.  https://doi.org/10.1073/pnas.1222469111CrossRefGoogle Scholar
  2. 2.
    Jongman B, Hochrainer-Stigler S, Feyen L, Aerts JCJH, Mechler R, Botzen WJW, Bouwer LM, Pflug G, Rojas R, Ward PJ (2014) Increasing stress on disaster-risk finance due to large floods. Nat Clim Chang 4(4):264–268.  https://doi.org/10.1038/nclimate2124CrossRefGoogle Scholar
  3. 3.
    McLaughlin D (2002) An integrated approach to hydrologic data assimilation: interpolation, smoothing, and filtering. Adv Water Resour 25(8–12):1275–1286.  https://doi.org/10.1016/S0309-1708(02)00055-6CrossRefGoogle Scholar
  4. 4.
    Solomatine DP, Wagener T (2011) Hydrological modelling. In: Wilderer P (ed) Treatise on water science. Elsevier, Amsterdam, pp 435–457Google Scholar
  5. 5.
    Todini E, Alberoni P, Butts M, Collier C, Khatibi R, Samuels P, Weerts A (2005) ACTIF best practice paper–understanding and reducing uncertainty in flood forecasting. In: Balabanis P, Lumbroso D, Samuels P (eds) International conference on innovation, advances and implementation of flood forecasting technology, Troms, NorwayGoogle Scholar
  6. 6.
    Pappenberger F, Matgen P, Beven KJ, Henry J-B, Pfister L, de Fraipont P (2006) Influence of uncertain boundary conditions and model structure on flood inundation predictions. Adv Water Resour 29(10):1430–1449.  https://doi.org/10.1016/j.advwatres.2005.11.012CrossRefGoogle Scholar
  7. 7.
    Koutsoyiannis D (2010) HESS opinions “a random walk on water”. Hydrol Earth Syst Sci 14(3):585–601.  https://doi.org/10.5194/hess-14-585-2010CrossRefGoogle Scholar
  8. 8.
    Montanari A, Koutsoyiannis D (2012) A blueprint for process-based modeling of uncertain hydrological systems. Water Resour Res 48(9):W09555.  https://doi.org/10.1029/2011WR011412CrossRefGoogle Scholar
  9. 9.
    Alfonso L, Tefferi M (2015) Effects of uncertain control in transport of water in a river-wetland system of the Low Magdalena River, Colombia. Transport of water versus transport over water. Springer, Cham, pp 131–144Google Scholar
  10. 10.
    Domeneghetti A, Vorogushyn S, Castellarin A, Merz B, Brath A (2013) Probabilistic flood hazard mapping: effects of uncertain boundary conditions. Hydrol Earth Syst Sci 17(8):3127–3140.  https://doi.org/10.5194/hess-17-3127-2013CrossRefGoogle Scholar
  11. 11.
    Hall J, Solomatine D (2008) A framework for uncertainty analysis in flood risk management decisions. Int J River Basin Manag 6(2):85–98.  https://doi.org/10.1080/15715124.2008.9635339CrossRefGoogle Scholar
  12. 12.
    Merz B, Thieken AH (2005) Separating natural and epistemic uncertainty in flood frequency analysis. J Hydrol 309(1–4):114–132.  https://doi.org/10.1016/j.jhydrol.2004.11.015CrossRefGoogle Scholar
  13. 13.
    Goetzinger J, Bardossy A (2008) Generic error model for calibration and uncertainty estimation of hydrological models. Water Resour Res 44:W00B07.  https://doi.org/10.1029/2007WR006691CrossRefGoogle Scholar
  14. 14.
    Liu Y, Gupta HV (2007) Uncertainty in hydrologic modeling: toward an integrated data assimilation framework. Water Resour Res 43(7):1–18.  https://doi.org/10.1029/2006WR005756CrossRefGoogle Scholar
  15. 15.
    Quinonero-Candela J, Rasmussen CE, Sinz F, Bousquet O, Schölkopf B (2006) Evaluating predictive uncertainty challenge. Machine learning challenges. Evaluating predictive uncertainty, visual object classification, and recognising tectual entailment. Springer, New York. http://link.springer.com/10.1007%2F11736790_1. Accessed 2 Mar 2016, pp 1–27Google Scholar
  16. 16.
    Renard B, Kavetski D, Kuczera G, Thyer M, Franks SW (2010) Understanding predictive uncertainty in hydrologic modeling: the challenge of identifying input and structural errors. Water Resour Res 46(5):W05521.  https://doi.org/10.1029/2009WR008328CrossRefGoogle Scholar
  17. 17.
    Wagener T, Gupta HV (2005) Model identification for hydrological forecasting under uncertainty. Stoch Environ Res Risk Assess 19(6):378–387.  https://doi.org/10.1007/s00477-005-0006-5CrossRefGoogle Scholar
  18. 18.
    Melchers RE (1999) Structural reliability analysis and prediction, 2nd edn. Wiley, New YorkGoogle Scholar
  19. 19.
    Abebe AJ, Solomatine DP, Venneker RGW (2000) Application of adaptive fuzzy rule-based models for reconstruction of missing precipitation events. Hydrol Sci J 45(3):425–436Google Scholar
  20. 20.
    Bárdossy A, Bronstert A, Merz B (1995) 1-, 2- and 3-dimensional modeling of water movement in the unsaturated soil matrix using a fuzzy approach. Adv Water Resour 18(4):237–251Google Scholar
  21. 21.
    Hundecha Y, Bardossy A, Theisen HW (2001) Development of a fuzzy logic-based rainfall-runoff model. Hydrol Sci J 46(3):363–376Google Scholar
  22. 22.
    Plate E, Shahzad K (2015) Uncertainty analysis of multi-model flood forecasts. Water 7(12):6788–6809.  https://doi.org/10.3390/w7126654CrossRefGoogle Scholar
  23. 23.
    Xuan Y, Cluckie ID, Wang Y (2009) Uncertainty analysis of hydrological ensemble forecasts in a distributed model utilising short-range rainfall prediction. Hydrol Earth Syst Sci 13(3):293–303Google Scholar
  24. 24.
    Dogulu N, López López P, Solomatine DP, Weerts AH, Shrestha DL (2015) Estimation of predictive hydrologic uncertainty using the quantile regression and UNEEC methods and their comparison on contrasting catchments. Hydrol Earth Syst Sci 19:3181–3201.  https://doi.org/10.5194/hess-19-3181-2015CrossRefGoogle Scholar
  25. 25.
    Shrestha DL, Solomatine DP (2006) Machine learning approaches for estimation of prediction interval for the model output. Neural Netw 19:225–235.  https://doi.org/10.1016/j.neunet.2006.01.012CrossRefGoogle Scholar
  26. 26.
    Shrestha DL, Rodriguez J, Price RK, Solomatine DP (2006) Assessing model prediction limits using fuzzy clustering and machine learning. Proceedings of the 7th international conference on hydroinformatics, 4–8 September, Nice, FranceGoogle Scholar
  27. 27.
    Beven K, Binley A (2014) GLUE: 20 years on. Hydrol Process 28:5897–5918.  https://doi.org/10.1002/hyp.10082CrossRefGoogle Scholar
  28. 28.
    Beven K, Binley A (1992) The future of distributed models: model calibration and uncertainty prediction. Hydrol Process 6:279–298.  https://doi.org/10.1002/hyp.3360060305CrossRefGoogle Scholar
  29. 29.
    Shrestha DL, Kayastha N, Solomatine D (2009) A novel approach to parameter uncertainty analysis of hydrological models using neural networks. Hydrol Earth Syst Sci 13:1235–1248Google Scholar
  30. 30.
    Solomatine D, Shrestha DL (2009) A novel method to estimate total model uncertainty using machine learning techniques. Water Resour Res 45:W00B11.  https://doi.org/10.1029/2008WR006839CrossRefGoogle Scholar
  31. 31.
    Beven K, Freer J (2001) Equifinality, data assimilation, and uncertainty estimation in mechanistic modelling of complex environmental systems using the GLUE methodology. J Hydrol 249:11–29Google Scholar
  32. 32.
    Mantovan P, Todini E (2006) Hydrological forecasting uncertainty assessment: incoherence of the GLUE methodology. J Hydrol 330(1–2):368–381.  https://doi.org/10.1016/j.jhydrol.2006.04.046CrossRefGoogle Scholar
  33. 33.
    Pappenberger F, Beven KJ (2006) Ignorance is bliss: or seven reasons not to use uncertainty analysis. Water Resour Res 42(5):1–8.  https://doi.org/10.1029/2005WR004820CrossRefGoogle Scholar
  34. 34.
    Liu Y, Weerts AH, Clark M, Hendricks Franssen HJ, Kumar S, Moradkhani H, Seo DJ, Schwanenberg D, Smith P, Van Dijk AIJM, Van Velzen N, He M, Lee H, Noh SJ, Rakovec O, Restrepo P (2012) Advancing data assimilation in operational hydrologic forecasting: progresses, challenges, and emerging opportunities. Hydrol Earth Syst Sci 16(10):3863–3887.  https://doi.org/10.5194/hess-16-3863-2012CrossRefGoogle Scholar
  35. 35.
    Seo DJ, Cajina L, Corby R, Howieson T (2009) Automatic state updating for operational streamflow forecasting via variational data assimilation. J Hydrol 367(3–4):255–275.  https://doi.org/10.1016/j.jhydrol.2009.01.019CrossRefGoogle Scholar
  36. 36.
    Welles E, Sorooshian S, Carter G, Olsen B (2007) Hydrologic verification: a call for action and collaboration. Bull Am Meteorol Soc 88:503–511Google Scholar
  37. 37.
    Yarvis M, Kushalnagar N, Singh H, Rangarajan A, Liu Y, Singh S (2005) Exploiting heterogeneity in sensor networks. Proceedings IEEE INFOCOM 2005. 24th annual joint conference of the IEEE computer and communications societies, vol 2, pp 878–890Google Scholar
  38. 38.
    Bonney R, Shirk JL, Phillips TB, Wiggins A, Ballard HL, Miller-Rushing AJ, Parrish JK (2014) Next steps for citizen science. Science 343(6178):1436–1437.  https://doi.org/10.1126/science.1251554CrossRefGoogle Scholar
  39. 39.
    Buytaert W, Zulkafli Z, Grainger S, Acosta L, Alemie TC, Bastiaensen J, De BiÃvre B, Bhusal J, Clark J, Dewulf A, Foggin M, Hannah DM, Hergarten C, Isaeva A, Karpouzoglou T, Pandeya B, Paudel D, Sharma K, Steenhuis T, Tilahun S, Van Hecken G, Zhumanova M (2014) Citizen science in hydrology and water resources: opportunities for knowledge generation, ecosystem service management, and sustainable development. Front Earth Sci 2:1–21.  https://doi.org/10.3389/feart.2014.00026CrossRefGoogle Scholar
  40. 40.
    Clark MP, Rupp DE, Woods RA, Zheng X, Ibbitt RP, Slater AG, Schmidt J, Uddstrom MJ (2008) Hydrological data assimilation with the ensemble Kalman filter: use of streamflow observations to update states in a distributed hydrological model. Adv Water Resour 31(10):1309–1324.  https://doi.org/10.1016/j.advwatres.2008.06.005CrossRefGoogle Scholar
  41. 41.
    Mazzoleni M, Alfonso L, Solomatine D (2016) Influence of spatial distribution of sensors and observation accuracy on the assimilation of distributed streamflow data in hydrological modelling. Hydrol Sci J 62(3):389–407.  https://doi.org/10.1080/02626667.2016.1247211CrossRefGoogle Scholar
  42. 42.
    Mazzoleni M, Noh SJ, Lee H, Liu Y, Seo DJ, Amaranto A, Alfonso L, Solomatine DP (2018) Real-time assimilation of streamflow observations into a hydrological routing model: effects of model structures and updating methods. Hydrol Sci J 63:386–407Google Scholar
  43. 43.
    Rakovec O, Weerts AH, Hazenberg P, Torfs PJJF, Uijlenhoet R (2012) State updating of a distributed hydrological model with ensemble Kalman filtering: effects of updating frequency and observation network density on forecast accuracy. Hydrol Earth Syst Sci 16(9):3435–3449.  https://doi.org/10.5194/hess-16-3435-2012CrossRefGoogle Scholar
  44. 44.
    Alfonso L, Lobbrecht A, Price R (2010) Using mobile phones to validate models of extreme events. 9th international conference on hydroinformatics, Tianjin, China, pp 1447–1454Google Scholar
  45. 45.
    de Vos L, Leijnse H, Overeem A, Uijlenhoet R (2017) The potential of urban rainfall monitoring with crowdsourced automatic weather stations in Amsterdam. Hydrol Earth Syst Sci 21:765–777.  https://doi.org/10.5194/hess-21-765-2017CrossRefGoogle Scholar
  46. 46.
    Etter S, Strobl B, Seibert J, van Meerveld I (2018) Value of uncertain streamflow observations for hydrological modelling. Hydrol Earth Syst Sci Discuss 22(10):5243–5257.  https://doi.org/10.5194/hess-2018-355CrossRefGoogle Scholar
  47. 47.
    Fava C, Santana G, Bressiani DA, Rosa A, Horita FEA, Souza VCB, Mendiondo EM (2014) Integration of information technology systems for flood forecasting with hybrid data sources. International conference of flood management, Sao Paolo, BrazilGoogle Scholar
  48. 48.
    Fohringer J, Dransch D, Kreibich H, Schröter K (2015) Social media as an information source for rapid flood inundation mapping. Nat Hazards Earth Syst Sci 15:2725–2738.  https://doi.org/10.5194/nhess-15-2725-2015CrossRefGoogle Scholar
  49. 49.
    Gaitan S, van de Giesen NC, ten Veldhuis JAE (2016) Can urban pluvial flooding be predicted by open spatial data and weather data? Environ Model Softw 85:156–171.  https://doi.org/10.1016/j.envsoft.2016.08.007CrossRefGoogle Scholar
  50. 50.
    Giuliani M, Castelletti A, Fedorov R, Fraternali P (2016) Using crowdsourced web content for informing water systems operations in snow-dominated catchments. Hydrol Earth Syst Sci 20:5049–5062.  https://doi.org/10.5194/hess-20-5049-2016CrossRefGoogle Scholar
  51. 51.
    Rollason E, Bracken LJ, Hardy RJ, Large ARG (2018) The importance of volunteered geographic information for the validation of flood inundation models. J Hydrol 562:267–280Google Scholar
  52. 52.
    Rosser JF, Leibovici DG, Jackson MJ (2017) Rapid flood inundation mapping using social media, remote sensing and topographic data. Nat Hazards 87:103–120Google Scholar
  53. 53.
    Schneider P, Castell N, Vogt M, Dauge FR, Lahoz W, Bartonova A (2017) Mapping urban air quality in near real-time using observations from lowcost sensors and model information. Environ Int 106:234–247Google Scholar
  54. 54.
    Smith L, Liang Q, James P, Lin W (2015) Assessing the utility of social media as a data source for flood risk management using a real-time modelling framework. J Flood Risk Manag 10:370–380.  https://doi.org/10.1111/jfr3.12154CrossRefGoogle Scholar
  55. 55.
    Starkey E, Parkin G, Birkinshaw S, Large A, Quinn P, Gibson C (2017) Demonstrating the value of community-based (“citizen science”) observations for catchment modelling and characterisation. J Hydrol 548:801–817.  https://doi.org/10.1016/j.jhydrol.2017.03.019CrossRefGoogle Scholar
  56. 56.
    Yu D, Yin J, Liu M (2016) Validating city-scale surface water flood modelling using crowd-sourced data. Environ Res Lett 11:124011.  https://doi.org/10.1088/1748-9326/11/12/124011CrossRefGoogle Scholar
  57. 57.
    Le Coz J, Patalano A, Collins D, Guillén NF, García CM, Smart GM, Bind J, Chiaverinica A, Le Boursicauda R, Dramaisa G, Braud I (2016) Crowdsourced data for flood hydrology: feedback from recent citizen science projects in Argentina, France and New Zealand. J Hydrol 541:766–777Google Scholar
  58. 58.
    Assumpção TH, Popescu I, Jonoski A, Solomatine DP (2018) Citizen observations contributing to flood modelling: opportunities and challenges. Hydrol Earth Syst Sci 22:1473–1489.  https://doi.org/10.5194/hess-22-1473-2018CrossRefGoogle Scholar
  59. 59.
    Shanley L, Burns R, Bastian Z, Robson E (2013) Tweeting up a storm: the promise and perils of crisis mapping, available SSRN 2464599. https://ssrn.com/abstract=2464599. Accessed 20 Mar 2016
  60. 60.
    Mazzoleni M, Alfonso L, Chacon-Hurtado J, Solomatine D (2015) Assimilating uncertain, dynamic and intermittent streamflow observations in hydrological models. Adv Water Resour 83:323–339Google Scholar
  61. 61.
    Mazzoleni M, Cortes Arevalo VJ, Wehn U, Alfonso L, Norbiato D, Monego M, Ferri M, Solomatine DP (2018) Exploring the influence of citizen involvement on the assimilation of crowdsourced observations: a modelling study based on the 2013 flood event in the Bacchiglione catchment (Italy). Hydrol Earth Syst Sci 22:391–416.  https://doi.org/10.5194/hess-22-391-2018CrossRefGoogle Scholar
  62. 62.
    Mazzoleni M, Verlaan M, Alfonso L, Monego M, Norbiato D, Ferri M, Solomatine DP (2017) Can assimilation of crowdsourced data in hydrological modelling improve flood prediction? Hydrol Earth Syst Sci 21:839–861.  https://doi.org/10.5194/hess-21-839-2017CrossRefGoogle Scholar
  63. 63.
    Mazzoleni M (2017) Improving flood prediction assimilating uncertain crowdsourced data into hydrologic and hydraulic models. UNESCO-IHE PhD thesis series, CRC Press/Balkema, LeidenGoogle Scholar
  64. 64.
    Mazzoleni M, Amaranto A, Solomatine DP (2019) Integrating qualitative flow observations in a lumped hydrologic routing model. Water Resour Res 55.  https://doi.org/10.1029/2018WR023768Google Scholar
  65. 65.
    WeSenseIt (2016) WeSenseIt: citizen water observatories. http://wesenseit.eu/. Accessed 19 Feb 2016
  66. 66.
    Sugeno M, Yasukawa T (1993) A fuzzy-logic-based approach to qualitative modelling. IEEE Trans Fuzzy Syst 1:7–31Google Scholar
  67. 67.
    Moore RJ, Jones DA, Cox DR, Isham VS (2000) Design of the HYREX raingauge network. Hydrol Earth Syst Sci 4(4):521–530.  https://doi.org/10.5194/hess-4-521-2000CrossRefGoogle Scholar
  68. 68.
    Wood SJ, Jones DA, Moore RJ (2000) Accuracy of rainfall measurement for scales of hydrological interest. Hydrol Earth Syst Sci Discuss 4(4):531–543Google Scholar
  69. 69.
    Szilagyi J, Szollosi-Nagy A (2010) Recursive streamflow forecasting: a state space approach. CRC Press, LeidenGoogle Scholar
  70. 70.
    Cunge JA (1969) On the subject of a flood propagation computation method (Muskingum method). J Hydraul Res 7(2):205–230Google Scholar
  71. 71.
    Ferri M, Monego M, Norbiato D, Baruffi F, Toffolon C, Casarin R (2012) La piattaforma previsionale per i bacini idrografici del Nord Est Adriatico (I). Proceedings XXXIII conference of hydraulics and hydraulic engineering, Brescia, p 10Google Scholar
  72. 72.
    Huwald H, Barrenetxea G, de Jong S, Ferri M, Carvalho R, Lanfranchi V, McCarthy S, Glorioso G, Prior S, Solà E, Gil-Roldàn E, Alfonso L, Wehn de Montalvo U, Onencan A, Solomatine D, Lobbrecht A (2013) D1.11 sensor technology requirement analysis. Confidential deliverable, the WeSenseIt project (FP7/2007-2013 grant agreement no 308429)Google Scholar
  73. 73.
    Duan Q, Ajami NK, Gao X, Sorooshian S (2007) Multi-model ensemble hydrologic prediction using Bayesian model averaging. Adv Water Resour 30(5):1371–1386.  https://doi.org/10.1016/j.advwatres.2006.11.014CrossRefGoogle Scholar
  74. 74.
    Georgakakos AP, Georgakakos KP, Baltas EA (1990) A state-space model for hydrologic river routing. Water Resour Res 26:827–838Google Scholar
  75. 75.
    Refsgaard JC (1997) Validation and intercomparison of different updating procedures for real-time forecasting. Nord Hydrol 28(2):65–84.  https://doi.org/10.2166/nh.1997.005CrossRefGoogle Scholar
  76. 76.
    WMO (1992) Simulated real-time intercomparison of hydrological models. World Meteorological Organization, GenevaGoogle Scholar
  77. 77.
    Moradkhani H, Hsu KL, Gupta H, Sorooshian S (2005) Uncertainty assessment of hydrologic model states and parameters: sequential data assimilation using the particle filter. Water Resour Res 41(5):W05012.  https://doi.org/10.1029/2004WR003604CrossRefGoogle Scholar
  78. 78.
    Moradkhani H, Sorooshian S, Gupta HV, Houser PR (2005) Dual state–parameter estimation of hydrological models using ensemble Kalman filter. Adv Water Resour 28(2):135–147Google Scholar
  79. 79.
    Salamon P, Feyen L (2009) Assessing parameter, precipitation, and predictive uncertainty in a distributed hydrological model using sequential data assimilation with the particle filter. J Hydrol 376(3-4):428–442Google Scholar
  80. 80.
    Lü H, Yu Z, Zhu Y, Drake S, Hao Z, Sudicky EA (2011) Dual state-parameter estimation of root zone soil moisture by optimal parameter estimation and extended Kalman filter data assimilation. Adv Water Resour 34(3):395–406Google Scholar
  81. 81.
    Kalman RE (1960) A new approach to linear filtering and prediction problems. J Basic Eng 82(1):35–45.  https://doi.org/10.1115/1.3662552CrossRefGoogle Scholar
  82. 82.
    Heemink AW, Segers AJ (2002) Modeling and prediction of environmental data in space and time using Kalman filtering. Stoch Environ Res Risk Assess 16(3):225–240.  https://doi.org/10.1007/s00477-002-0097-1CrossRefGoogle Scholar
  83. 83.
    Reichle RH, Crow WT, Keppenne CL (2008) An adaptive ensemble Kalman filter for soil moisture data assimilation. Water Resour Res 44(3):W03423.  https://doi.org/10.1029/2007WR006357CrossRefGoogle Scholar
  84. 84.
    Robinson AR, Lermusiaux PFJ, Sloan III NQ (1998) Data assimilation. Sea 10:541–594Google Scholar
  85. 85.
    Walker JP, Houser PR (2005) Hydrologic data assimilation. Adv Water Sci Methodol 41:233.  https://doi.org/10.5772/1112CrossRefGoogle Scholar
  86. 86.
    Sun L, Seidou O, Nistor I, Liu K (2015) Review of the Kalman type hydrological data assimilation. Hydrol Sci J 61(13):2348–2366.  https://doi.org/10.1080/02626667.2015.1127376CrossRefGoogle Scholar
  87. 87.
    Evensen G (2003) The ensemble Kalman filter: theoretical formulation and practical implementation. Ocean Dyn 53:343–367Google Scholar
  88. 88.
    Heemink AW, Verlaan M, Segers AJ (2001) Variance reduced ensemble Kalman filtering. Mon Weather Rev 129(7):1718–1728Google Scholar
  89. 89.
    Reichle R, McLaughlin DB, Entekhabi D (2002) Hydrologic data assimilation with the ensemble Kalman filter. Am Meteorol Soc 130(1):103–114.  https://doi.org/10.1175/1520-0493(2002)130<0103:HDAWTE>2.0.CO;2CrossRefGoogle Scholar
  90. 90.
    Weerts AH, El Serafy GYH (2006) Particle filtering and ensemble Kalman filtering for state updating with hydrological conceptual rainfall-runoff models. Water Resour Res 42(9):1–17.  https://doi.org/10.1029/2005WR004093CrossRefGoogle Scholar
  91. 91.
    Anderson JL (2001) An ensemble adjustment kalman filter for data assimilation. Mon Weather Rev 129:2884–2903Google Scholar
  92. 92.
    Murphy JM (1988) The impact of ensemble forecasts on predictability. Q J Roy Meteorol Soc 114(480):463–493.  https://doi.org/10.1002/qj.49711448010CrossRefGoogle Scholar
  93. 93.
    Pauwels VRN, De Lannoy GJM (2009) Ensemble-based assimilation of discharge into rainfall-runoff models: a comparison of approaches to mapping observational information to state space. Water Resour Res 45(8):W08428.  https://doi.org/10.1029/2008WR007590CrossRefGoogle Scholar
  94. 94.
    De Lannoy GJM, Reichle RH, Houser PR, Pauwels VRN, Verhoest NEC (2007) Correcting for forecast bias in soil moisture assimilation with the ensemble Kalman filter. Water Resour Res 43(9):W09410.  https://doi.org/10.1029/2006WR005449CrossRefGoogle Scholar
  95. 95.
    Brouwer T, Eilander D, Van Loenen A, Booij MJ, Wijnberg KM, Verkade JS, Wagemaker J (2017) Probabilistic flood extent estimates from social media flood observations. Nat Hazards Earth Syst Sci 17(5):735Google Scholar
  96. 96.
    Cipra T, Romera R (1997) Kalman filter with outliers and missing observations. TEST 6(2):379–395.  https://doi.org/10.1007/BF02564705CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • M. Mazzoleni
    • 1
    • 2
    Email author
  • Leonardo Alfonso
    • 3
  • D. P. Solomatine
    • 3
    • 4
  1. 1.Department of Earth SciencesUppsala UniversityUppsalaSweden
  2. 2.Centre of Natural Hazards and Disaster Science (CNDS)UppsalaSweden
  3. 3.IHE Delft Institute for Water EducationDelftThe Netherlands
  4. 4.Delft University of TechnologyDelftThe Netherlands

Personalised recommendations