Advertisement

pp 1-27 | Cite as

Presence of Siloxanes in Sewage Biogas and Their Impact on Its Energetic Valorization

  • N. de ArespacochagaEmail author
  • J. Raich-Montiu
  • M. Crest
  • J. L. Cortina
Chapter
Part of the The Handbook of Environmental Chemistry book series

Abstract

Biogas produced in wastewater treatment plants (WWTPs) by microorganisms during the anaerobic degradation process of organic compounds is commonly used in energy production. Due to the increasing interest in renewable fuels, biogas has become a notable alternative to conventional fuels in the production of electricity and heat. Biomethane, upgraded from biogas, has also become an interesting alternative for vehicle fuel. Biogas contains mainly methane (from 40 to 60%) and carbon dioxide (40 to 55%), but it also contains trace compounds, such as hydrogen sulphide, halogenated compounds and volatile methyl siloxanes (VMS), which pose a risk on its energetic valorization.

It is reported that the concentrations of siloxanes in biogas are increasing in the recent years due to an increase in the use of silicon-containing compounds in personal care products, silicone oils and production of food, among others. This chapter reviews the presence of VMS in sewage biogas, depicting their concentrations and their speciation between linear and cyclic compounds depending on the wastewater treatment processes and operating conditions.

WWTP operators face therefore a choice between installing a gas purification equipment and controlling the problem with more frequent maintenance. Available technologies for siloxane removal are studied, and their impact on the performance of Energy Conversion Systems (ECS) is reported. The performance of adsorption systems using activated carbon, silica gel and zeolites is reviewed as it is a well-known and widespread used technology for siloxane abatement both at the scientific and industrial studies.

Keywords

Biogas valorization Siloxanes benchmarking Siloxanes removal Wastewater treatment plants 

References

  1. 1.
    Eklund B, Anderson EP, Walker BL, Burrows DB (1998) Characterization of landfill gas composition at the fresh kills municipal solid-waste landfill. Environ Sci Technol 32:2233–2237Google Scholar
  2. 2.
    Ohannessian A, Desjardin V, Chatain V, Germain P (2008) Volatile organic silicon compounds: the most undesirable contaminants in biogases. Water Sci Technol 58:1775–1781Google Scholar
  3. 3.
    VDI (2008) In: K.d.L.i.V.u.D.-N. KRdL (eds) Measurement of landfill gases – measurements in the gas collection system. Beuth Verlag, BerlinGoogle Scholar
  4. 4.
    de Arespacochaga N, Valderrama C, Raich-Montiu J, Crest M, Mehta S, Cortina JL (2015) Understanding the effects of the origin, occurrence, monitoring, control, fate and removal of siloxanes on the energetic valorization of sewage biogas – a review. Renew Sust Energ Rev 52:366–381Google Scholar
  5. 5.
    Lassen C, Hansen CL, Mikkelsen SH, Maag J (2005) Siloxanes-consumption, toxicity and alternatives. Environmental Project No. 1031, Danish Environmental Protection Agency, Environmental Protection Agency. http://www.miljoestyrelsen.dk/udgiv/publications/2005/87-7614-756-8/pdf/87-7614-757-6.pdf. Accessed 17 Oct 2014
  6. 6.
    Tran TM, Abualnaja KO, Asimakopoulos AG, Covaci A, Gevao B, Johnson-Restrepo B et al (2015) A survey of cyclic and linear siloxanes in indoor dust and their implications for human exposures in twelve countries. Environ Int 78:39–44Google Scholar
  7. 7.
    Chemical Economics Handbook (2010) In: Will RK, Fink U, Kishi A (eds) Chemical economics handbook marketing research report silicones. IHS Publication, DenverGoogle Scholar
  8. 8.
    Mojsiewicz-Pieńkowska K, Jamrógiewicz M, Szymkowska K, Krenczkowska D (2016) Direct human contact with siloxanes (silicones) – safety or risk part 1. Characteristics of siloxanes (silicones). Front Pharmacol 7:132Google Scholar
  9. 9.
    Chemical Economics Handbook (2017) Chemical economics handbook marketing research report silicones. IHS Publication, DenverGoogle Scholar
  10. 10.
    Graiver D, Farminer KW, Narayan R (2003) A review of the fate and effects of silicones in the environment. J Polym Environ 11:129–136Google Scholar
  11. 11.
    Urban W, Lohmann H, Salazar Gómez JI (2009) Catalytically upgraded landfill gas as a cost-effective alternative for fuel cells. J Power Sources 193:359–366Google Scholar
  12. 12.
    Finocchio E, Montanari T, Garuti G, Pistarino C, Federici F, Cugino M, Busca G (2009) Purification of biogases from siloxanes by adsorption: on the regenerability of activated carbon sorbents. Energy Fuel 23:4156–4159Google Scholar
  13. 13.
    Haga K, Adachi S, Shiratori Y, Itoh K, Sasaki K (2008) Poisoning of SOFC anodes by various fuel impurities. Solid State Ionics 179:1427–1431Google Scholar
  14. 14.
    McBean EA (2008) Siloxanes in biogases from landfills and wastewater digesters. Can J Civ Eng 35:431–436Google Scholar
  15. 15.
    Appels L, Baeyens J, Degreve J, Dewil R (2008) Principles and potential of the anaerobic digestion of waste-activated sludge. Prog Energy Combust Sci 34:755–781Google Scholar
  16. 16.
    EEG (2009) In: N.C.a.N.S. Federal Ministry for the Environment (eds) Act revising the legislation on renewable energy sources in the electricity sector and amending related provisions – Renewable Energy Sources Act – EEGGoogle Scholar
  17. 17.
    Dewil R, Appels L, Baeyens J (2006) Energy use of biogas hampered by the presence of siloxanes. Energy Convers Manag 47:1711–1722Google Scholar
  18. 18.
    Capela D, Ratola N, Alves A, Homem V (2017) Volatile methylsiloxanes through wastewater treatment plants – a review of levels and implications. Environ Int 102:9–29Google Scholar
  19. 19.
    Oshita K, Omori K, Takaoka M, Mizuno T (2014) Removal of siloxanes in sewage sludge by thermal treatment with gas stripping. Energy Convers Manag 81:290–297Google Scholar
  20. 20.
    Raich-Montiu J, Ribas-Font C, de Arespacochaga N, Roig-Torres E, Broto-Puig F, Crest M, Bouchy L, Cortina JL (2014) Analytical methodology for sampling and analysing eight siloxanes and trimethylsilanol in biogas from different wastewater treatment plants in Europe. Anal Chim Acta 812:83–91Google Scholar
  21. 21.
    Rasi S, Läntelä J, Veijanen A, Rintala J (2008) Landfill gas upgrading with countercurrent water wash. Waste Manag 28:1528–1534Google Scholar
  22. 22.
    Schweigkofler M, Niessner R (1999) Determination of siloxanes and VOC in landfill gas and sewage gas by canister sampling and GC-MS/AES analysis. Environ Sci Technol 33:3680–3685Google Scholar
  23. 23.
    Tansel B, Surita SC (2014) Differences in volatile methyl siloxane (VMS) profiles in biogas from landfills and anaerobic digesters and energetics of VMS transformations. Waste Manag 34:2271–2277Google Scholar
  24. 24.
    Paolini V, Petracchini F, Carnevale M, Gallucci F, Perilli M, Esposito G, Segreto M, Galanti L, Scaglione D, Ianniello A, Frattoni M (2018) Characterisation and cleaning of biogas from sewage sludge for biomethane production. J Environ Manag 217:288–296Google Scholar
  25. 25.
    García M, Prats D, Trapote A (2015) Presence of siloxanes in the biogas of a wastewater treatment plant separation in condensates and influence of the dose of iron chloride on its elimination. Int J Waste Resour 6:1Google Scholar
  26. 26.
    Wang DG, Aggarwal M, Tait T, Brimble S, Pacepavicius G, Kinsman L, Theocharides M, Smyth SA, Alaee M (2015) Fate of anthropogenic cyclic volatile methylsiloxanes in a wastewater treatment plant. Water Res 72:209–217Google Scholar
  27. 27.
    Rasi S, Lehtinen J, Rintala J (2010) Determination of organic silicon compounds in biogas from wastewater treatments plants, landfills, and co-digestion plants. Renew Energy 35:2666–2673Google Scholar
  28. 28.
    Bensaid S, Russo N, Fino D (2010) Power and hydrogen co-generation from biogas. Energy Fuel 24:4743–4747Google Scholar
  29. 29.
    Björklund J, Geber U, Rydberg T (2001) Energy analysis of municipal wastewater treatment and generation of electricity by digestion of sewage sludge. Resour Conserv Recycl 31:293–316Google Scholar
  30. 30.
    Pöschl M, Ward S, Owende P (2010) Evaluation of energy efficiency of various biogas production and utilization pathways. Appl Energy 87:3305–3321Google Scholar
  31. 31.
    Mokhov AV (2011) Silica formation from siloxanes in biogas: novelty or nuisance. In: International Gas Union research conference, October19–21, Seoul, KoreaGoogle Scholar
  32. 32.
    Schweigkofler M, Niessner R (2011) Removal of siloxanes in biogases. J Hazard Mater 83(3):183–196Google Scholar
  33. 33.
    Badjagbo K, Heroux M, Alaee M, Moore S, Sauve S (2010) Quantitative analysis of volatile methylsiloxanes in waste-to-energy landfill biogases using direct APCI-MS/MS. Environ Sci Technol 44:600–605Google Scholar
  34. 34.
    Libanati C, Ullenius DA, Pereira CJ (1998) Silica deactivation of bead VOC catalyst. Appl Catal B Environ 43:21–28Google Scholar
  35. 35.
    Pirnie M (2003) Retrofit digester gas engine with fuel gas cleanup and exhaust emission control technology – pilot testing of emission control system plant 1 engine 1. Orange County Sanitation District, IrvineGoogle Scholar
  36. 36.
    Alvarez-Florez J, Egusquiza E (2015) Analysis of damage caused by siloxanes in stationary reciprocating internal combustion engines operating with landfill gas. Eng Fail Anal 50:29–38Google Scholar
  37. 37.
    Sevimoglu O, Tansel B (2013) Composition and source identification of deposits forming in landfill gas (LFG) engines and effect of activated carbon treatment on deposit composition. J Environ Manag 128:300–305Google Scholar
  38. 38.
    Nair N, Zhang X, Gutierrez J, Chen J, Egolfopoulos F, Tsotsis T (2012) Impact of siloxane impurities on the performance on an engine operating on renewable natural gas. Ind Eng Chem Res 51:15786–15795Google Scholar
  39. 39.
    Bruno JC, Ortega-López V, Coronas A (2009) Integration of absorption cooling systems into micro gas turbine trigeneration systems using biogas: case study of a sewage treatment plant. Appl Energy 86:837–847Google Scholar
  40. 40.
    Somehsaraei HN, Majoumerd MM, Breuhaus P, Assadi M (2014) Performance analysis of a biogas-fueled micro gas turbine using a validated thermodynamic model. Appl Therm Eng 66:181–190Google Scholar
  41. 41.
    Iyer S (2011) Gas treatment systems. Nrgtek, Orange http://nrgtekusa.com/technology/gas_separation_membranesGoogle Scholar
  42. 42.
    Madi H, Lanzini A, Diethelm S, Papurello D, van Herle J, Lualdi M, Larsen JG, Santarelli M (2015a) Solid oxide fuel cell anode degradation by the effect of siloxanes. J Power Sources 279:460–471Google Scholar
  43. 43.
    Madi H, Diethelm S, Poitel S, Ludwig C, van Herle J (2015b) Damage of siloxanes on Ni-YSZ anode supported SOFC operated on hydrogen and bio-syngas. Fuel Cells 15:718–727Google Scholar
  44. 44.
    Papurello D, Chiodo V, Maisano S, Lanzini A, Santarelli M (2018) Catalytic stability of a Ni-catalyst towards biogas reforming in the presence of deactivating trace compounds. Renew Energy 127:481–494Google Scholar
  45. 45.
    Papurello D, Lanzini A (2018) SOFC single cells fed by biogas: experimental tests with trace contaminants. Waste Manag 72:306–312Google Scholar
  46. 46.
    Sasaki K, Haga K, Yoshizumi T, Minematsu D, Yuki E, Liu RR, Uryu C, Oshima T, Ogura T, Shiratori Y, Ito K, Koyama M, Yokomoto K (2011) Chemical durability of Solid Oxide Fuel Cells: influence of impurities on long-term performance. J Power Sources 196:9130–9140Google Scholar
  47. 47.
    Erekson EJ, Bartholomrw CH (1983) Sulfur poisoning of nickel methanation catalysts. II. Effects of H2S concentration, CO and H2O partial pressures and temperature on reactivation rates. Appl Catal 5:323–336Google Scholar
  48. 48.
    Papurello D, Lanzini A, Drago D, Leone P, Santarelli M (2016) Limiting factors for planar solid oxide fuel cells under different trace compound concentrations. Energy 95:67–78Google Scholar
  49. 49.
    Aschmann V, Kissel R, Gronauer A (2007) Untersuchungen zum Leistungs- und Emissionsverhalten biogasbetriebener Blockheizkraftwerke an Praxisbiogas-anlagen, 8th Conference Bau, Technik und Umwelt in der landwirtschaftlichen NutztierhaltungGoogle Scholar
  50. 50.
    Thomas B, Bekker M, Kelm T, Oechsner H, Wyndorps A (2009) Gekoppelte Produktion von Kraft und Wärme aus Bio-, Klär- und Deponiegas in kleinen, dezentralen Stirling-Motor-Blockheizkraftwerken. Final report, BWPLUS Projekt No. 25008-25010, 2009. http://www.fachdokumente.lubw.baden-wuerttemberg.de
  51. 51.
    Petersson A, Wellinger A (2009) Biogas upgrading technologies-developments and innovations. IEA Bioenergy 20:1–19Google Scholar
  52. 52.
    Bekkering J, Broekhuis AA, van Gemert WJT (2010) Optimisation of a green gas supply chain: a review. Bioresour Technol 101:450–456Google Scholar
  53. 53.
    Starr K, Talens Peiro L, Lombardi L, Gabarrell X, Villalba G (2014) Optimization of environmental benefits of carbon mineralization technologies for biogas upgrading. J Clean Prod 76:32–41Google Scholar
  54. 54.
    van Essen M, Visser P, Gersen S, Levinsky H, Vainchtein D, Dutka M, Mokhov A (2013) Regarding specifications for siloxanes in biomethane for domestic equipment. Fifth Research Day of the Energy Delta Gas Research, NunspeetGoogle Scholar
  55. 55.
    Nair N, Vas A, Zhu T, Sun W, Gutierrez J, Chen J, Egolfopoulos F, Tsotsis T (2013) Effect of siloxanes contained in natural gas on the operation of a residential furnace. Ind Eng Chem Res 52:6253–6261Google Scholar
  56. 56.
    SEPA (2004) Guidance on gas treatment technologies for landfill gas engines. Environment Agency, BristolGoogle Scholar
  57. 57.
    Wheless E, Pierce J (2004) Siloxanes in landfill and digester gas update. http://www.scsengineers.com/Papers/Pierce_2004Siloxanes_Update_Paper.pdf. Accessed 17 Oct 2014
  58. 58.
    Ajhar M, Travesset M, Yuce S, Melin T (2010) Siloxane removal from landfill and digester gas – a technology overview. Bioresour Technol 101:2913–2923Google Scholar
  59. 59.
    Shen M, Zhang Y, Hu D, Fan J, Zeng G (2018) A review on removal of siloxanes from biogas: with a special focus on volatile methylsiloxanes. Environ Sci Pollut Res.  https://doi.org/10.1007/s11356-018-3000-4Google Scholar
  60. 60.
    de Arespacochaga N, Valderrama C, Mesa C, Bouchy L, Cortina JL (2014) Biogas deep clean-up based on adsorption technologies for Solid Oxide Fuel Cell applications. Chem Eng J 255:593–603Google Scholar
  61. 61.
    Kuhn JN, Elwell AC, Elsayed NH, Joseph B (2017) Requirements, techniques, and costs for contaminant removal from landfill gas. Waste Manag 63:246–256Google Scholar
  62. 62.
    Cabrera-Codony A, Montes-Moran MA, Sanchez-Polo M, Martín MJ, Gonzalez-Olmos R (2014) Biogas upgrading: optimal activated carbon properties for siloxane removal. Environ Sci Technol 48:7187–7195Google Scholar
  63. 63.
    Rossol D, Schmelz KG, Hohmann R (2003) Siloxane im Faulgas. Abwasser Abfall 8:8Google Scholar
  64. 64.
    Sigot L, Ducom G, Benadda B, Labouré C (2014) Adsorption of octamethylcyclotetrasiloxane on silica gel for biogas purification. Fuel 135:205–209Google Scholar
  65. 65.
    Jafari T, Jiang T, Zhong W, Khakpash N, Deljoo B, Aindow M, Singh P, Suib SL (2016) Modified mesoporous silica for efficient siloxane capture. Langmuir 32:2369–2377Google Scholar
  66. 66.
    Sigot L, Ducom G, Germain P (2015) Adsorption of octamethylcyclotetrasiloxane (D4) on silica gel (SG): retention mechanism. Microporous Mesoporous Mater 213:118–124Google Scholar
  67. 67.
    Kajolinna T, Aakko-Saksa P, Roine J, Kåll L (2015) Efficiency testing of three biogas siloxane removal systems in the presence of D5, D6, limonene and toluene. Fuel Process Technol 139:242–247Google Scholar
  68. 68.
    Cabrera-Codony A, Georgi A, Gonzalez-Olmos R, Valdés H, Martín MJ (2017) Zeolites as recyclable adsorbents/catalysts for biogas upgrading: removal of octamethylcyclotetrasiloxane. Chem Eng J 307:820–827Google Scholar
  69. 69.
    Jiang S, Qiu T, Li X (2010) Kinetic study on the ring-opening polymerization of octamethylcyclotetrasiloxane (D4) in miniemulsion. Polymer 51(18):4087–4094Google Scholar
  70. 70.
    Oshita K, Ishihara Y, Takaoka M, Takeda N, Matsumoto T, Morisawa S, Kitayama A (2010) Behaviour and adsorptive removal of siloxanes in sewage sludge biogas. Water Sci Technol 61:2003Google Scholar
  71. 71.
    Ricaurte Ortega D, Subrenat A (2009) Siloxane treatment by adsorption into porous materials. Environ Technol 30:1073–1083Google Scholar
  72. 72.
    Nam S, Namkoong W, Kang JH, Park JK, Lee N (2013) Adsorption characteristics of siloxanes in landfill gas by the adsorption equilibrium test. Waste Manag 33:2091–2098Google Scholar
  73. 73.
    Matsui T, Imamura S (2010) Removal of siloxane from digestion gas of sewage sludge. Bioresour Technol 101:S29–S32Google Scholar
  74. 74.
    Yu M, Gong H, Chen Z, Zhang M (2013) Adsorption characteristics of activated carbon for siloxanes. J Environ Chem Eng 1:1182–1187Google Scholar
  75. 75.
    Hamelink JL, Simon PB, Silberhorn EM (1996) Henry’s law constant volatilization rate, and aquatic half-life of octamethylcyclotetrasiloxane. Environ Sci Technol 30(6):1946–1952Google Scholar
  76. 76.
    Yashiro T, Kricheldorf HR, Schwarz G (2010) Polymerization of cyclosiloxanes by means of triflic acid and metal triflates. Macromol Chem Phys 211(12):1311–1321Google Scholar
  77. 77.
    Cabrera-Codony A, Santos-Clotas E, Ania CO, Martín MJ (2018) Competitive siloxane adsorption in multicomponent gas streams for biogas upgrading. Chem Eng J 344:565–573Google Scholar
  78. 78.
    Gislon P, Galli S, Monteleone G (2013) Siloxanes removal from biogas by high surface area adsorbents. Waste Manag 33(12):2687–2693Google Scholar
  79. 79.
    Boulinguiez B, Le Cloirec P (2009) Biogas pre-upgrading by adsorption of trace compounds onto granular activated carbons and an activated carbon fibercloth. Water Sci Technol 59:935–944Google Scholar
  80. 80.
    Cabrera-Codony A, Gonzalez-Olmosa R, Martin MJ (2015) Regeneration of siloxane-exhausted activated carbon by advanced oxidation processes. J Hazard Mater 285:501–508Google Scholar
  81. 81.
    Soreanu G, Beland M, Falletta P, Edmonson K, Svoboda L, Al-Jamal M, Seto P (2011) Approaches concerning siloxane removal from biogas, a review. Can Biosyst Eng 53:8–18Google Scholar
  82. 82.
    Läntelä J, Rasi S, Lehtinen J, Rintala J (2012) Landfill gas upgrading with pilot-scale water scrubber: performance assessment with absorption water recycling. Appl Energy 92:307–314Google Scholar
  83. 83.
    Abatzoglou N, Boivin S (2009) A review of biogas purification processes. Biofuels Bioproducts Biorefining 3:42–71Google Scholar
  84. 84.
    Ajhar M, Melin T (2006) Siloxane removal with gas permeation membranes. In: Conference of the European-Membrane-Society (EUROMEMBRANE 2006) Giardini Naxos, Italy, 24-28 September 2006. Elsevier Science Bv, Amsterdam, pp 234–235Google Scholar
  85. 85.
    Meinema HA, Dirrix RWJ, Terpstra RA, Jekerle J, Kösters PH (2005) Ceramic membranes for gas separation-recent developments and state of the art. Interceram 54:8691Google Scholar
  86. 86.
    Pandey P, Chauhan RS (2001) Membranes for gas separation. Prog Polym Sci 26:853–893Google Scholar
  87. 87.
    Strathman H, Bell CM, Kimmerle K (1986) Development of synthetic membranes for gas and vapor separation. Pure Appl Chem 58:1663–1668Google Scholar
  88. 88.
    Gabriel D, Deshusses MA (2003) Retrofitting existing chemical scrubbers to biotrick-ling filters for H2S emission control. Proc Natl Acad Sci U S A 100:6308–6312Google Scholar
  89. 89.
    Li Y, Zhang W, Xu J (2014) Siloxanes removal from biogas by a lab-scale biotrickling filter inoculated with Pseudomonas aeruginosa S240. J Hazard Mater 275:175–184Google Scholar
  90. 90.
    Popat SC, Deshusses MA (2008) Biological removal of siloxanes from landfill and digester gases: opportunities and challenges. Environ Sci Technol 42:8510–8515Google Scholar
  91. 91.
    Soreanu G, Beland M, Falletta P, Edmonson K, Seto P (2008) Laboratory pilot scale study for H2S removal from biogas in an anoxic biotrickling filter. Water Sci Technol 57:201–207Google Scholar
  92. 92.
    Soreanu G (2016) Insights into siloxane removal from biogas in biotrickling filters via process mapping-based analysis. Chemosphere 146:539–546Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • N. de Arespacochaga
    • 1
    Email author
  • J. Raich-Montiu
    • 1
  • M. Crest
    • 2
  • J. L. Cortina
    • 1
    • 3
  1. 1.CETaquaBarcelonaSpain
  2. 2.CIRSEE, Suez-EnvironnementLe PecqFrance
  3. 3.Department of Chemical EngineeringUniversitat Politècnica de Catalunya-Barcelona Tech (UPC)BarcelonaSpain

Personalised recommendations