Formation of Acid Mine Drainage in Sulphide Ore Deposits

  • A. LuptákováEmail author
  • P. Andráš
Part of the The Handbook of Environmental Chemistry book series (HEC, volume 69)


Acid mine drainage (AMD) is the product of the natural oxidation of sulphide minerals. The simultaneous influence of water, oxygen and indigenous microorganisms represents the necessary conditions for AMD formation. The occurrence of AMD is associated mainly with the presence of sulphide minerals in the polymetallic, coal and lignite deposits. AMD contaminates the groundwaters and soils because it contains mainly sulphuric acid, heavy metals and metalloids. During the exploitation, and mostly after the mine closure, the produced AMD pollutes the environment. The continuance of AMD generation is difficult to halt. Self-improvement situation is not possible. It is necessary to monitor the quality of AMD and develop the methods of their treatment. Slovakia belongs to the countries with significant mining tradition, especially with regard to the exploitation of iron, copper, gold and silver. Currently, only one deposit is being exploited, namely, Au-ore deposit in Hodruša. The other deposits are mostly flooded. They present the suitable conditions for creation and intensification of chemical and biological-chemical oxidation of the sulphide minerals, i.e. formation of AMD. In Slovakia, Smolník and Pezinok deposits, as well as the Šobov dump, are typical examples of the old mining loads with production of AMD.


Acid mine drainage Acidithiobacillus ferrooxidans Sulphide minerals 


  1. 1.
    Chen LX, Huang LN, Mendez-Garcıa C, Kuang JL, Hua ZS, Liu J, Shu WS (2016) Microbial communities, processes and functions in acid mine drainage ecosystems. Curr Opin Biotechnol 38:150–158CrossRefGoogle Scholar
  2. 2.
    Kontopoulos A (1998) Acid mine drainage control. In: Castro HF, Vergara F, Sanchez MA (eds) Effluent treatment in the mining industry. University of Concepcion, Chile, pp 57–118Google Scholar
  3. 3.
    Karpenko V, Norris JA (2002) Vitriol in the history of chemistry. Chem List 96:997–1005Google Scholar
  4. 4.
    Agricola G (1556) De Re Metallica. Book I, (trans: Hoover HC, Hoover LH). Dover, New York 1950, p 8Google Scholar
  5. 5.
    Salkield LU (1987) A technical history of the Rio Tinto mines: some notes on exploitation from pre-Phoenician times to the 1950s. The Institution of Mining and Metallurgy, London. 114 ppGoogle Scholar
  6. 6.
    Lottermoser BG (2010) Mine wastes: characterization, treatment and environmental impacts.3rd edn. Springer, Berlin, Heidelberg. 400 ppCrossRefGoogle Scholar
  7. 7.
    Hallberg KB, Johnson DB (2001) Biodiversity of acidophilic prokaryotes. Adv Appl Microbiol 49:37–84CrossRefGoogle Scholar
  8. 8.
    Paikaray S, Schröder C, Peiffer S (2017) Schwertmannite stability in anoxic Fe(II)-rich aqueous solution. Geochim Cosmochim Acta 217:292–305CrossRefGoogle Scholar
  9. 9.
    White WW, Jeffers TH (1994) Chemical predictive modelling of acid-mine drainage from metallic sulphide-bearing waste rock. In: ACS symposium series, vol 550, pp 608–630Google Scholar
  10. 10.
    Karavaiko GI, Rossi G, Agate AD, Groudev SN, Avakyan ZA (1988) Biotechnology of metals - manual. Centre for International Projects GKNT, Moscow. 350 ppGoogle Scholar
  11. 11.
    Sand W, Jozsa PG, Gehrke T, Schippers A (2001) (Bio)chemistry of bacterial leaching direct vs. indirect bioleaching. Hydrometallurgy 59:159–175CrossRefGoogle Scholar
  12. 12.
    Johnson DB, Rolfe S, Hallberg KB, Iversen E (2001) Isolation and phylogenetic characterization of acidophilic microorganisms indigenous to acidic drainage waters at an abandoned Norwegian copper mine. Environ Microbiol 3:630–637CrossRefGoogle Scholar
  13. 13.
    Kuang JL, Huang LN, Chen LX, Hua ZS, Li SJ, Hu M, Li JT, Shu WS (2013) Contemporary environmental variation determines microbial diversity patterns in acid mine drainage. ISME J 201(7):1038–1050CrossRefGoogle Scholar
  14. 14.
    Kušnierová M, Fečko P (2001) Mineral biotechnology I. VŠB-TU, Ostrava. 143 ppGoogle Scholar
  15. 15.
    Singer PC, Stumm W (1970) Acidic mine drainage, the rate-determining step. Science 167:1121–1123CrossRefGoogle Scholar
  16. 16.
    Jennings SR, Neuman DR, Blicker PS (2008) Acid mine drainage and effects on fish health and ecology: a review. Reclamation Research Group, Bozeman, p 29Google Scholar
  17. 17.
    Andráš P, Dirner V, Turisová I, Vojtková H (2014) Remnants of old activity at abandoned Cu-deposits. Vodní zdroje Ekomonitor, Chrudim. 439 ppGoogle Scholar
  18. 18.
    Luptakova A, Kusnierova M, Fecko P (2002) Mineral biotechnology II. – Sulfuretum in nature and industry. Ostrava, VŠB-TU. 152 ppGoogle Scholar
  19. 19.
    Luptakova A, Prascakova M, Kotulicova I (2012) Occurrence of Acidithiobacillus ferrooxidans bacteria in sulfide mineral deposits of Slovakia. Chem Eng 28:31–36Google Scholar
  20. 20.
    Silverman MP, Lundgren DC (1959) Studies on the chemoautotrophic iron bacterium Ferrobacillus ferrooxidans I. An improved medium and a harvesting procedure for securing high cell yields. J. Bacteriol 77:642–647Google Scholar
  21. 21.
    Grecula P, Abonyi A, Abonyiová M, Antaš J, Bartalský B, Ďuďa R, Gargulák M, Gazdačko Ľ, Hudáček J, Kobulský J, Lőrinczz L, Macko J, Návesňák D, Németh Z, Novotný L, Radvanec M, Rojkovič I, Rozložník L, Rozložník O, Varček C, Zlocha J (1995) Mineral deposits of the Slovak Ore Mountains I. Geocomplex, Bratislava. 829 ppGoogle Scholar
  22. 22.
    Radvanec M, Bartalský B (1987) Geochemical zoning of stratiform sulphide ore mineralization in the Smolník – Štós – Medzev area. Mineralia Slovaca 19:443–445Google Scholar
  23. 23.
    Rojkovič I (2003) Rudné ložiská Slovenska. Univerzita Komenského, Bratislava. 180 ppGoogle Scholar
  24. 24.
    Balintova M, Petrilakova A, Singovszka E (2012) Study of metals distribution between water and sediment in the Smolnik Creek (Slovakia) contaminated by acid mine drainage. Chem Eng Trans 28:73–78Google Scholar
  25. 25.
    Balintova M, Petrilakova A (2011) Study of pH influence on selective precipitation of heavy metals from acid mine drainage. Chem Eng Trans 25:345–350Google Scholar
  26. 26.
    Luptakova A, Ubaldini S, Macingova E, Fornari P, Giuliano V (2012) Application of physical–chemical and biological–chemical methods for heavy metals removal from acid mine drainage. Process Biochem 47:1633–1639CrossRefGoogle Scholar
  27. 27.
    Balintova M, Luptakova A (2012) Treatment of acid mine drainage. TU in Košice, Faculty of Civil Engineering, Košice. 131 ppGoogle Scholar
  28. 28.
    Chovan M, Rojkovič I, Andráš P, Hanas P (1992) Ore mineralisation of the Malé Karpaty Mts. (Western Carpathians). Geol Carpath 43:275–286Google Scholar
  29. 29.
    Uher P, Michal S, Vitáloš J (2000) The Pezinok antimony mine, Malé Karpaty Mts., Slovakia. Mineral Rec 31:153–162Google Scholar
  30. 30.
    Trtíková S, Chovan M, Kušnierová M (1999) Oxidation of pyrite and arsenopyrite in the mining wastes (Pezinok - Malé Karpaty Mts). Folia Fac. Sci. Nat., Univ. Mas. Brun. Geologia 39:225–231Google Scholar
  31. 31.
    Lukianenko Ľ, Čerňanský S, Štubňa J (2008) Mine tailing site Pezinok – Kolársky vrch (Slovakia) – an example of anthropogenic contaminated landscape. Acta Environmentalistica Universitatis Comenianae Bratislava 16(1):64–68Google Scholar
  32. 32.
    Andráš P, Adam M, Chovan M, Šlesárová A (2008) Environmental hazards of the bacterial leaching of the ore minerals from waste at the Pezinok deposit (Malé Karpaty Mts., Slovakia). Carpath J Earth Environ Sci 3(1):7–22Google Scholar
  33. 33.
    Andráš P, Kušnierová M, Adam M, Chovan M, Šlesárová A (2004) Bacterial leaching of ore minerals from waste at the Pezinok deposit (Western Slovakia). Slovak Geol Mag 12(2):79–90Google Scholar
  34. 34.
    Burian J, Slavkay M, Štohl J, Tőzsér J (1985) Metalogenéza neovulkanitov Slovenska. Alfa, Bratislava. 269 ppGoogle Scholar
  35. 35.
    Križáni I, Andráš P, Ladomerský J (2007) Banícke záťaže Štiavnických vrchov. Technická univerzita vo Zvolene, Zvolen. 100 ppGoogle Scholar
  36. 36.
    Križáni I, Andráš P, Šlesárová A (2009) Percolation modeling of the dump and settling pit sediments at the Banská Štiavnica ore-field (Western Carpathians, Slovakia). Carpath J Earth Environ Sci 4(1):109–126Google Scholar
  37. 37.
    Remešicová E (2016) Analysis of problems associated with the decontamination of mine water in ore mining. PhD thesis, VŠB-TU, Ostrava, 148 ppGoogle Scholar
  38. 38.
    Hennebel T, Boon N, Maes S, Lenz M (2015) Biotechnologies for critical raw material recovery from primary and secondary sources: R&D priorities and future perspectives. New Biotechnol 32:121–127CrossRefGoogle Scholar
  39. 39.
    Ehinger S, Janneck E (2010) ProMine – nano-particle products from new mineral resources in Europe: Schwertmannite – raw material and valuable resource from mine water treatment processes. In: Freiberger Forschungsforum research conference, FreibergGoogle Scholar
  40. 40.
    Gadd GM (2000) Bioremedial potential of microbial mechanisms of metal mobilization and immobilization. Curr Opin Biotechnol 11:271–279CrossRefGoogle Scholar
  41. 41.
    Sheoran AS, Sheoran V, Choudhary RP (2010) Bioremediation of acid-rock drainage by sulphate-reducing prokaryotes: a review. Miner Eng 23:1073–1100CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Mineral BiotechnologyInstitute of Geotechnics, Slovak Academy of SciencesKošiceSlovakia
  2. 2.Department of Environmental Management, Faculty of Natural SciencesMatej Bel UniversityBanska BystricaSlovakia

Personalised recommendations