Sorption of Hydrophobic Organic Compounds to Plastics in the Marine Environment: Equilibrium

  • Satoshi EndoEmail author
  • Albert A. Koelmans
Part of the The Handbook of Environmental Chemistry book series (HEC, volume 78)


Marine plastics have shown to contain various environmental chemicals. For evaluating the potential of plastics to influence regional and global dynamics of these chemicals and to serve as a vector to marine biota, understanding of sorption and desorption of chemicals by plastics is important. In this chapter, the equilibrium sorption of neutral organic chemicals from water to plastics is discussed. First, the basic principles of equilibrium sorption are explained, and then, factors that influence the magnitude of the sorption coefficient, such as types of plastics and chemicals, temperature, coexisting organic and inorganic constituents in water, are overviewed. Successively, effects on the equilibrium sorption properties of field-relevant mechanisms such as degradation and biofouling as well as nano-sized plastics are discussed. It is evident that studies on sorption properties of aged plastics in field conditions are far less available than those of intact plastics in laboratory conditions.


Degradation Intermolecular interaction Marine plastic Nanoplastic Sorption coefficient 


  1. 1.
    Carpenter EJ, Anderson SJ, Harvey GR, Miklas HP, Peck BB (1972) Polystyrene spherules in coastal waters. Science 178(4062):749–750CrossRefGoogle Scholar
  2. 2.
    Gregory MR (1978) Accumulation and distribution of virgin plastic granules on New Zealand beaches. N Z J Mar Freshw Res 12(4):399–414CrossRefGoogle Scholar
  3. 3.
    Mato Y, Isobe T, Takada H, Kanehiro H, Ohtake C, Kaminuma T (2001) Plastic resin pellets as a transport medium for toxic chemicals in the marine environment. Environ Sci Technol 35(2):318–324CrossRefGoogle Scholar
  4. 4.
    Endo S, Takizawa R, Okuda K, Takada H, Chiba K, Kanehiro H, Ogi H, Yamashita R, Date T (2005) Concentration of polychlorinated biphenyls (PCBs) in beached resin pellets: variability among individual particles and regional differences. Mar Pollut Bull 50(10):1103–1114CrossRefGoogle Scholar
  5. 5.
    Karapanagioti HK, Klontza I (2008) Testing phenanthrene distribution properties of virgin plastic pellets and plastic eroded pellets found on Lesvos island beaches (Greece). Mar Environ Res 65(4):283–290CrossRefGoogle Scholar
  6. 6.
    Ogata Y, Takada H, Mizukawa K, Hirai H, Iwasa S, Endo S, Mato Y, Saha M, Okuda K, Nakashima A, Murakami M, Zurcher N, Booyatumanondo R, Zakaria MP, Dung LQ, Gordon M, Miguez C, Suzuki S, Moore C, Karapanagioti HK, Weerts S, McClurg T, Burres E, Smith W, Van Velkenburg M, Lang JS, Lang RC, Laursen D, Danner B, Stewardson N, Thompson RC (2009) International pellet watch: global monitoring of persistent organic pollutants (POPs) in coastal waters. 1. Initial phase data on PCBs, DDTs, and HCHs. Mar Pollut Bull 58(10):1437–1446CrossRefGoogle Scholar
  7. 7.
    Teuten EL, Saquing JM, Knappe DRU, Barlaz MA, Jonsson S, Björn A, Rowland SJ, Thompson RC, Galloway TS, Yamashita R, Ochi D, Watanuki Y, Moore C, Viet PH, Tana TS, Prudente M, Boonyatumanond R, Zakaria MP, Akkhavong K, Ogata Y, Hirai H, Iwasa S, Mizukawa K, Hagino Y, Imamura A, Saha M, Takada H (2009) Transport and release of chemicals from plastics to the environment and to wildlife. Philos Trans R Soc B Biol Sci 364(1526):2027–2045CrossRefGoogle Scholar
  8. 8.
    Hirai H, Takada H, Ogata Y, Yamashita R, Mizukawa K, Saha M, Kwan C, Moore C, Gray H, Laursen D, Zettler ER, Farrington JW, Reddy CM, Peacock EE, Ward MW (2011) Organic micropollutants in marine plastics debris from the open ocean and remote and urban beaches. Mar Pollut Bull 62(8):1683–1692CrossRefGoogle Scholar
  9. 9.
    Rochman CM, Hoh E, Hentschel BT, Kaye S (2013) Long-term field measurement of sorption of organic contaminants to five types of plastic pellets: implications for plastic marine debris. Environ Sci Technol 47(3):1646–1654Google Scholar
  10. 10.
    Rochman CM, Hoh E, Kurobe T, Teh SJ (2013) Ingested plastic transfers hazardous chemicals to fish and induces hepatic stress. Sci Rep 3:3263CrossRefGoogle Scholar
  11. 11.
    Velzeboer I, Kwadijk CJ, Koelmans AA (2014) Strong sorption of PCBs to nanoplastics, microplastics, carbon nanotubes, and fullerenes. Environ Sci Technol 48(9):4869–4876CrossRefGoogle Scholar
  12. 12.
    Fries E, Zarfl C (2012) Sorption of polycyclic aromatic hydrocarbons (PAHs) to low and high density polyethylene (PE). Environ Sci Pollut Res Int 19(4):1296–1304CrossRefGoogle Scholar
  13. 13.
    Bakir A, Rowland SJ, Thompson RC (2012) Competitive sorption of persistent organic pollutants onto microplastics in the marine environment. Mar Pollut Bull 64(12):2782–2789CrossRefGoogle Scholar
  14. 14.
    Zarfl C, Matthies M (2010) Are marine plastic particles transport vectors for organic pollutants to the Arctic? Mar Pollut Bull 60(10):1810–1814CrossRefGoogle Scholar
  15. 15.
    Gouin T, Roche N, Lohmann R, Hodges G (2011) A thermodynamic approach for assessing the environmental exposure of chemicals absorbed to microplastic. Environ Sci Technol 45(4):1466–1472CrossRefGoogle Scholar
  16. 16.
    Besseling E, Wegner A, Foekema EM, van den Heuvel-Greve MJ, Koelmans AA (2013) Effects of microplastic on fitness and PCB bioaccumulation by the lugworm Arenicola marina (L.). Environ Sci Technol 47(1):593–600CrossRefGoogle Scholar
  17. 17.
    Koelmans AA, Besseling E, Wegner A, Foekema EM (2013) Plastic as a carrier of POPs to aquatic organisms: a model analysis. Environ Sci Technol 47(14):7812–7820CrossRefGoogle Scholar
  18. 18.
    Koelmans AA, Bakir A, Burton GA, Janssen CR (2016) Microplastic as a vector for chemicals in the aquatic environment: critical review and model-supported reinterpretation of empirical studies. Environ Sci Technol 50(7):3315–3326. doi: 10.1021/acs.est.5b06069 CrossRefGoogle Scholar
  19. 19.
    Allen-King RM, Grathwohl P, Ball WP (2002) New modeling paradigms for the sorption of hydrophobic organic chemicals to heterogeneous carbonaceous matter in soils, sediments, and rocks. Adv Water Resour 25(8-12):985–1016CrossRefGoogle Scholar
  20. 20.
    Chiou CT (2002) Partitioning and adsorption of organic contaminants in environmental systems. Wiley, HobokenCrossRefGoogle Scholar
  21. 21.
    Adams RG, Lohmann R, Fernandez LA, MacFarlane JK, Gschwend PM (2007) Polyethylene devices: passive samplers for measuring dissolved hydrophobic organic compounds in aquatic environments. Environ Sci Technol 41(4):1317–1323CrossRefGoogle Scholar
  22. 22.
    Hale SE, Martin TJ, Goss K-U, Arp HPH, Werner D (2010) Partitioning of organochlorine pesticides from water to polyethylene passive samplers. Environ Pollut 158(7):2511–2517CrossRefGoogle Scholar
  23. 23.
    Xia G, Ball WP (1999) Adsorption-partitioning uptake of nine low-polarity organic chemicals on a natural sorbent. Environ Sci Technol 33(2):262–269CrossRefGoogle Scholar
  24. 24.
    Schwarzenbach RP, Gschwend PM, Imboden DM (2003) Environmental organic chemistry, 2nd edn. Wiley, New YorkGoogle Scholar
  25. 25.
    Goss K-U, Schwarzenbach RP (2003) Rules of thumb for assessing equilibrium partitioning of organic compounds: successes and pitfalls. J Chem Educ 80(4):450–455CrossRefGoogle Scholar
  26. 26.
    Carraher CE (2011) Carraher’s polymer chemistry, 8th edn. CRC Press/Taylor & Francis Group, Boca RatonCrossRefGoogle Scholar
  27. 27.
    Guo X, Wang X, Zhou X, Kong X, Tao S, Xing B (2012) Sorption of four hydrophobic organic compounds by three chemically distinct polymers: role of chemical and physical composition. Environ Sci Technol 46(13):7252–7259CrossRefGoogle Scholar
  28. 28.
    Suzuki H, Grebowicz J, Wunderlich B (1985) Glass transition of poly(oxymethylene). Br Polym J 17(1):1–3CrossRefGoogle Scholar
  29. 29.
    Berens AR (1978) Analysis of transport behavior in polymer powders. J Membr Sci 3(2):247–264CrossRefGoogle Scholar
  30. 30.
    Xing B, Pignatello JJ (1997) Dual-mode sorption of low-polarity compounds in glassy poly(vinyl chloride) and soil organic matter. Environ Sci Technol 31(3):792–799CrossRefGoogle Scholar
  31. 31.
    Xia G, Pignatello JJ (2001) Detailed sorption isotherms of polar and apolar compounds in a high-organic soil. Environ Sci Technol 35(1):84–94CrossRefGoogle Scholar
  32. 32.
    Sander M, Lu Y, Pignatello JJ (2006) Conditioning-annealing studies of natural organic matter solids linking irreversible sorption to irreversible structural expansion. Environ Sci Technol 40(1):170–178CrossRefGoogle Scholar
  33. 33.
    Booij K, Hofmans HE, Fischer CV, Van Weerlee EM (2003) Temperature-dependent uptake rates of nonpolar organic compounds by semipermeable membrane devices and low-density polyethylene membranes. Environ Sci Technol 37(2):361–366CrossRefGoogle Scholar
  34. 34.
    Endo S, Pfennigsdorff A, Goss K-U (2012) Salting-out effect in aqueous NaCl solutions: trends with size and polarity of solute molecules. Environ Sci Technol 46(3):1496–1503CrossRefGoogle Scholar
  35. 35.
    Xie W-H, Shiu W-Y, Mackay D (1997) A review of the effect of salts on the solubility of organic compounds in seawater. Mar Environ Res 44(4):429–444CrossRefGoogle Scholar
  36. 36.
    Jonker MTO, Muijs B (2010) Using solid phase micro extraction to determine salting-out (Setschenow) constants for hydrophobic organic chemicals. Chemosphere 80(3):223–227CrossRefGoogle Scholar
  37. 37.
    Lohmann R (2012) Critical review of low-density polyethylene’s partitioning and diffusion coefficients for trace organic contaminants and implications for its use as a passive sampler. Environ Sci Technol 46(2):606–618CrossRefGoogle Scholar
  38. 38.
    Lee H, Shim WJ, Kwon JH (2014) Sorption capacity of plastic debris for hydrophobic organic chemicals. Sci Total Environ 470–471:1545–1552CrossRefGoogle Scholar
  39. 39.
    Abraham MH, Ibrahim A, Zissimos AM (2004) Determination of sets of solute descriptors from chromatographic measurements. J Chromatogr A 1037(1–2):29–47CrossRefGoogle Scholar
  40. 40.
    Endo S, Droge STJ, Goss K-U (2011) Polyparameter linear free energy models for polyacrylate fiber-water partition coefficients to evaluate the efficiency of solid-phase microextraction. Anal Chem 83(4):1394–1400CrossRefGoogle Scholar
  41. 41.
    Endo S, Hale SE, Goss K-U, Arp HPH (2011) Equilibrium partition coefficients of diverse polar and nonpolar organic compounds to polyoxymethylene (POM) passive sampling devices. Environ Sci Technol 45(23):10124–10132CrossRefGoogle Scholar
  42. 42.
    Endo S, Goss K-U (2014) Applications of polyparameter linear free energy relationships in environmental chemistry. Environ Sci Technol 48(21):12477–12491CrossRefGoogle Scholar
  43. 43.
    Klamt A (1995) Conductor-like screening model for real solvents: a new approach to the quantitative calculation of solvation phenomena. J Phys Chem 99(7):2224–2235CrossRefGoogle Scholar
  44. 44.
    Goss K-U (2011) Predicting equilibrium sorption of neutral organic chemicals into various polymeric sorbents with COSMO-RS. Anal Chem 83(13):5304–5308CrossRefGoogle Scholar
  45. 45.
    Hilal SH, Karickhoff SW, Carreira LA (2004) Prediction of the solubility, activity coefficient and liquid/liquid partition coefficient of organic compounds. QSAR Comb Sci 23(9):709–720CrossRefGoogle Scholar
  46. 46.
    Stenzel A, Goss K-U, Endo S (2014) Prediction of partition coefficients for complex environmental contaminants: validation of COSMOtherm, ABSOLV, and SPARC. Environ Toxicol Chem 33(7):1537–1543CrossRefGoogle Scholar
  47. 47.
    Fotopoulou KN, Karapanagioti HK (2012) Surface properties of beached plastic pellets. Mar Environ Res 81:70–77CrossRefGoogle Scholar
  48. 48.
    Fotopoulou KN, Vakros J, Karapanagioti HK (2014) Surface properties of marine microplastics that affect their interaction with pollutants and microbes. CIESM Workshop Monographs 46, Marine litter in the Mediterranean and Black Seas, MonacoGoogle Scholar
  49. 49.
    Turner A, Holmes L (2011) Occurrence, distribution and characteristics of beached plastic production pellets on the island of Malta (central Mediterranean). Mar Pollut Bull 62(2):377–381CrossRefGoogle Scholar
  50. 50.
    Andrady AL (2011) Microplastics in the marine environment. Mar Pollut Bull 62(8):1596–1605CrossRefGoogle Scholar
  51. 51.
    Koelmans AA, Besseling E, Shim WJ (2015) Nanoplastics in the aquatic environment. Critical review. In: Bergmann M, Gutow L, Klages M (eds) Marine anthropogenic litter. Springer, pp 325–340. doi: 10.1007/978-3-319-16510-3_12 CrossRefGoogle Scholar
  52. 52.
    Xing B, McGill WB, Dudas MJ (1994) Sorption of α-naphthol onto organic sorbents varying in polarity and aromaticity. Chemosphere 28(1):145–153CrossRefGoogle Scholar
  53. 53.
    Xing B, McGill WB, Dudas MJ (1994) Cross-correlation of polarity curves to predict partition coefficients of nonionic organic contaminants. Environ Sci Technol 28(11):1929–1933CrossRefGoogle Scholar
  54. 54.
    Koelmans AA, Gillissen F, Makatita W, Van Den Berg M (1997) Organic carbon normalisation of PCB, PAH and pesticide concentrations in suspended solids. Water Res 31(3):461–470CrossRefGoogle Scholar
  55. 55.
    Young TM, Weber WJ (1995) A distributed reactivity model for sorption by soils and sediments. 3. Effects of diagenetic processes on sorption energetics. Environ Sci Technol 29(1):92–97CrossRefGoogle Scholar
  56. 56.
    Ye S, Andrady AL (1991) Fouling of floating plastic debris under Biscayne Bay exposure conditions. Mar Pollut Bull 22(12):608–613CrossRefGoogle Scholar
  57. 57.
    Lobelle D, Cunliffe M (2011) Early microbial biofilm formation on marine plastic debris. Mar Pollut Bull 62(1):197–200CrossRefGoogle Scholar
  58. 58.
    Kiørboe T, Tang K, Grossart HP, Ploug H (2003) Dynamics of microbial communities on marine snow aggregates: colonization, growth, detachment, and grazing mortality of attached bacteria. Appl Environ Microbiol 69(6):3036–3047CrossRefGoogle Scholar
  59. 59.
    Wigton A, Kilduff JE (2004) Modeling trichloroethylene adsorption by activated carbon preloaded with natural dissolved organic matter using a modified IAST approach. Environ Sci Technol 38(22):5825–5833CrossRefGoogle Scholar
  60. 60.
    Koelmans AA, Meulman B, Meijer T, Jonker MT (2009) Attenuation of polychlorinated biphenyl sorption to charcoal by humic acids. Environ Sci Technol 43(3):736–742CrossRefGoogle Scholar
  61. 61.
    Rakowska MI, Kupryianchyk D, Grotenhuis T, Rijnaarts HH, Koelmans AA (2013) Extraction of sediment-associated polycyclic aromatic hydrocarbons with granular activated carbon. Environ Toxicol Chem 32(2):304–311CrossRefGoogle Scholar
  62. 62.
    Endo S, Yuyama M, Takada H (2013) Desorption kinetics of hydrophobic organic contaminants from marine plastic pellets. Mar Pollut Bull 74(1):125–131CrossRefGoogle Scholar
  63. 63.
    Khairy M, Muir D, Teixeira C, Lohmann R (2014) Spatial trends, sources, and air-water exchange of organochlorine pesticides in the Great Lakes basin using low density polyethylene passive samplers. Environ Sci Technol 48(16):9315–9324CrossRefGoogle Scholar
  64. 64.
    Hale SE, Werner D (2010) Modeling the mass transfer of hydrophobic organic pollutants in briefly and continuously mixed sediment after amendment with activated carbon. Environ Sci Technol 44(9):3381–3387CrossRefGoogle Scholar
  65. 65.
    Kettler K, Veltman K, van de Meent D, van Wezel A, Hendriks AJ (2014) Cellular uptake of nanoparticles as determined by particle properties, experimental conditions, and cell type. Environ Toxicol Chem 33(3):481–492CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-NonCommercial 2.5 International License (, which permits any noncommercial use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

Authors and Affiliations

  1. 1.Urban Research Plaza & Graduate School of EngineeringOsaka City UniversityOsakaJapan
  2. 2.Department of Environmental Sciences, Aquatic Ecology and Water Quality Management GroupWageningen UniversityWageningenThe Netherlands
  3. 3.IMARES – Institute for Marine Resources & Ecosystem Studies, Wageningen URIJmuidenThe Netherlands

Personalised recommendations