Advertisement

Fish-Based Indices in Catalan Rivers: Intercalibration and Comparison of Approaches

  • Emili García-BerthouEmail author
  • Mi-Jung Bae
  • Lluís Benejam
  • Carles Alcaraz
  • Frederic Casals
  • Adolf de Sostoa
  • Carolina Solà
  • Antoni Munné
Chapter
Part of the The Handbook of Environmental Chemistry book series (HEC, volume 42)

Abstract

Freshwater ecosystems are among the most affected by anthropogenic disturbances, and fish have several advantages for monitoring them, such as the response at larger temporal and spatial scales and its visibility to the society. This chapter summarizes our experience in developing fish-based indices in Catalonia. We describe some differences observed among crews in electrofishing captures and habitat assessments. We also analyzed the suitability of a single pass for conventional monitoring in the region and differences in capturability among sites and species by comparison with multiple passes and block nets. Furthermore, we summarize the results of two contrasting approaches, a site- and a type-specific one (IBICAT2a and IBICAT 2b) applied to Catalan rivers. The site-specific was not successful and further data are needed for its improvement. A protocol for the computation of a type-specific, multimetric index (IBICAT2b) is given. The IBICAT2b fish index uses 4–8 metrics depending on river type and has been validated with environmental pressures both throughout Catalonia and the whole Ebro River basin. An Excel file is also given as an online supplementary material for the computation of this fish index.

Keywords

Biotic integrity Catalonia Ecosystem health Fish biotic index Rivers Spain Water Framework Directive 

Notes

Acknowledgments

We gratefully thank everybody who helped in the fieldwork. This study was funded by the Catalan Water Agency. Additional financial support was provided by the Spanish Ministry of Economy and Competitiveness (projects CGL2009-12877-C02-01 and CGL2013-43822-R), the University of Girona (project SING12/09), the Sant Celoni town council (“Observatori de la Tordera” project, led by Dr. M. Boada), and the Government of Catalonia (ref. 2014 SGR 484). MJB benefited from a postdoctoral grant from the European Commission (Erasmus Mundus Partnership “NESSIE”, 372353-1-2012-1-FR-ERA MUNDUS-EMA22).

References

  1. 1.
    Hellawell JM (1986) Biological indicators of freshwater pollution and environmental management. Elsevier Applied Science, LondonCrossRefGoogle Scholar
  2. 2.
    Rosenberg DM, Resh VH (1993) Introduction to freshwater biomonitoring and benthic macroinvertebrates. In: Rosenberg DM, Resh VH (eds) Freshwater biomonitoring and benthic macroinvertebrates. Chapman and Hall, New York, pp 1–9Google Scholar
  3. 3.
    Hering D, Johnson RK, Kramm S et al (2006) Assessment of European streams with diatoms, macrophytes, macroinvertebrates and fish: a comparative metric‐based analysis of organism response to stress. Freshw Biol 51:1757–1785CrossRefGoogle Scholar
  4. 4.
    Benejam L et al (2015) Fish as ecological indicators in Mediterranean streams: the Catalan experience. In: Munné A, Ginebreda A, Prat N (eds) Experiences from surface water quality monitoring. The EU Water Framework Directive Implementation in the Catalan River Basin District (part I). Springer, BerlinGoogle Scholar
  5. 5.
    Bain MB, Finn JT, Booke HE (1988) Streamflow regulation and fish community structure. Ecology 69:382–392CrossRefGoogle Scholar
  6. 6.
    Morita K, Yamamoto S (2002) Effects of habitat fragmentation by damming on the persistence of stream‐dwelling charr populations. Conserv Biol 16:1318–1323CrossRefGoogle Scholar
  7. 7.
    Belpaire C, Smolders R, Auweele IV et al (2000) An Index of Biotic Integrity characterizing fish populations and the ecological quality of Flandrian water bodies. Hydrobiologia 434:17–33CrossRefGoogle Scholar
  8. 8.
    Snyder CD, Young JA, Villella R et al (2003) Influences of upland and riparian land use patterns on stream biotic integrity. Landsc Ecol 18:647–664CrossRefGoogle Scholar
  9. 9.
    Benejam L, Aparicio E, Vargas MJ et al (2008) Assessing fish metrics and biotic indices in a Mediterranean stream: effects of uncertain native status of fish. Hydrobiologia 603:197–210CrossRefGoogle Scholar
  10. 10.
    Sandøy S, Langåker RM (2001) Atlantic salmon and acidification in southern Norway: a disaster in the 20th century, but a hope for the future? Water Air Soil Pollut 130:1343–1348CrossRefGoogle Scholar
  11. 11.
    Peterson JT, Thurow RF, Guzevich JW (2004) An evaluation of multipass electrofishing for estimating abundance of stream-dwelling salmonids. Trans Am Fish Soc 133:462–475CrossRefGoogle Scholar
  12. 12.
    Rosenberger AE, Dunham JB (2005) Validation of abundance estimates from mark-recapture and removal techniques for rainbow trout captured by electrofishing in small streams. N Am J Fish Manag 25:1395–1410CrossRefGoogle Scholar
  13. 13.
    Hickey MA, Closs GP (2006) Evaluating the potential of night spotlighting as a method for assessing species composition and brown trout abundance: a comparison with electrofishing in small streams. J Fish Biol 69:1513–1523CrossRefGoogle Scholar
  14. 14.
    Dolan C, Miranda L (2003) Immobilization thresholds of electrofishing relative to fish size. Trans Am Fish Soc 132:69–976CrossRefGoogle Scholar
  15. 15.
    Mäntyniemi S, Romakkaniemi A, Arjas E (2005) Bayesian removal estimation of a population size under unequal catchability. Can J Fish Aquat Sci 62:291–300CrossRefGoogle Scholar
  16. 16.
    Plafkin JL, Barbour MT, Gross SK et al (1989) Rapid bioassessment protocols for use in streams and rivers: benthic macroinvertebrates and fish, EPA 444/4-89-001. U.S. Environmental Protection Agency, Washington, DC, 171 ppGoogle Scholar
  17. 17.
    MacDonald LH, Smart AW, Wissmar RC (1991) Monitoring guidelines to evaluate effects of forestry activities on streams in the Pacific northwest and Alaska. EPA 910/9-91-001. U.S. Environmental Protection Agency, Seattle, 166 ppGoogle Scholar
  18. 18.
    Ralph SC, Cardoso T, Poole CG et al (1992) Status and trends of instream habitat in forested lands of Washington: the Timber, Fish, and Wildlife ambient monitoring project-1989–1991. Biennial progress report, University of Washington, Center for Streamside Studies Report to the Washington Department of Natural Resources, Olympia WashingtonGoogle Scholar
  19. 19.
    Roper BB, Scarnecchia DL (1995) Observer variability in classifying habitat types in stream surveys. N Am J Fish Manag 15:49–53CrossRefGoogle Scholar
  20. 20.
    Wang L, Simonson TD, Lyons J (1996) Accuracy and precision of selected stream habitat estimates. N Am J Fish Manag 16:340–347CrossRefGoogle Scholar
  21. 21.
    Roper BB, Kershner JL, Archer E et al (2002) An evaluation of physical stream habitat attributes used to monitor streams. J Am Water Resour Assoc 38:1637–1646CrossRefGoogle Scholar
  22. 22.
    Whitacre HW, Roper BB, Kershner JL (2007) A comparison of protocols and observer precision for measuring physical. Stream attributes. J Am Water Resour Assoc 43:923–937CrossRefGoogle Scholar
  23. 23.
    Sostoa A, Caiola N, Casals F et al (2010) Adjustment of the index of biotic integrity (IBICAT) based on the use of fish as indicators of the environmental quality of the rivers of Catalonia (in Catalan) Agència Catalana de l’Aigua, Departament de Medi Ambient i Habitatge, Generalitat de Catalunya, Barcelona (in Catalan) 187 pp, http://doi.org/10.13140/2.1.1551.6964. Accessed 24 Mar 2015Google Scholar
  24. 24.
    Benejam L, Alcaraz C, Benito J et al (2012) Fish catchability and comparison of four electrofishing crews in Mediterranean streams. Fish Res 123:9–15CrossRefGoogle Scholar
  25. 25.
    Penczak T (1985) Influence of site area on the estimation of the density of fish populations in a small river. Aquac Res 16:273–285CrossRefGoogle Scholar
  26. 26.
    Meador MR, McIntyre JP, Pollock KH (2003) Assessing the efficacy of single-pass backpack electrofishing to characterize fish community structure. Trans Am Fish Soc 132:39–46CrossRefGoogle Scholar
  27. 27.
    Penczak T, Głowacki Ł (2008) Evaluation of electrofishing efficiency in a stream under natural and regulated conditions. Aquat Living Resour 21:329–337CrossRefGoogle Scholar
  28. 28.
    Sályl P, Erős T, Takács P et al (2009) Assemblage level monitoring of stream fishes: the relative efficiency of single-pass vs. double-pass electrofishing. Fish Res 99:226–233CrossRefGoogle Scholar
  29. 29.
    Vehanen T, Sutela T, Jounela P et al (2013) Assessing electric fishing sampling effort to estimate stream fish assemblage attributes. Fish Manag Ecol 20:10–20CrossRefGoogle Scholar
  30. 30.
    Pritt JJ, Frimpong EA (2014) The effect of sampling intensity on patterns of rarity and community assessment metrics in stream fish samples. Ecol Indic 39:169–178CrossRefGoogle Scholar
  31. 31.
    Specziár A, Takács P, Czeglédi I et al (2012) The role of the electrofishing equipment type and the operator in assessing fish assemblages in a non-wadeable lowland river. Fish Res 125:99–107CrossRefGoogle Scholar
  32. 32.
    Lyons J (1992) The length of stream to sample with a towed electrofishing unit when fish species richness is estimated. N Am J Fish Manag 12:198–203CrossRefGoogle Scholar
  33. 33.
    Hughes RM, Kaufmann PR, Herlihy AT et al (2002) Electrofishing distance needed to estimate fish species richness in raftable Oregon rivers. N Am J Fish Manag 22:1229–1240CrossRefGoogle Scholar
  34. 34.
    Meador MR (2005) Single-pass versus two-pass boat electrofishing for characterizing river fish assemblages: species richness estimates and sampling distance. Trans Am Fish Soc 134:59–67CrossRefGoogle Scholar
  35. 35.
    Hughes RM, Herlihy AT (2007) Electrofishing distance needed to estimate consistent index of biotic integrity (IBI) scores in raftable Oregon rivers. Trans Am Fish Soc 136:135–141CrossRefGoogle Scholar
  36. 36.
    Maret TR, Ott DS, Herlihy AT (2007) Electrofishing effort required to estimate biotic condition in southern Idaho rivers. N Am J Fish Manag 27:1041–1052CrossRefGoogle Scholar
  37. 37.
    Fisher JR, Paukert CP (2009) Effects of sampling effort, assemblage similarity, and habitat heterogeneity on estimates of species richness and relative abundance of stream fishes. Can J Fish Aquat Sci 66:277–290CrossRefGoogle Scholar
  38. 38.
    Palmer MW (1991) Estimating species richness: the second-order jackknife reconsidered. Ecology 72:1512–1513CrossRefGoogle Scholar
  39. 39.
    Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach. Springer, New YorkGoogle Scholar
  40. 40.
    Barbour MT, Stribling JB, Gerritsen J, Karr JR (1996) Biological criteria: technical guidance for streams and small rivers–revised edition. EPA 822-B-96-001. U. S. Environmental Protection Agency, Washington, DCGoogle Scholar
  41. 41.
    Karr JR, Fausch KD, Angermeier PL et al (1986) Assessing biological integrity in running waters. A method and its rationale. Illinois Natural History Survey, Champaign, Special Publication, 5Google Scholar
  42. 42.
    Ball J (1982) Stream classification guidelines for Wisconsin. Wisconsin Department of Natural Resources Technical Bulletin. Wisconsin Department of Natural Resources, Madison, WisconsinGoogle Scholar
  43. 43.
    OHIO EPA (1987) Biological criteria for the protection of aquatic life: volumes I-III. Ohio EPA, Division of Water Quality Monitoring and Assessment, Surface Water Section, Columbus, OhioGoogle Scholar
  44. 44.
    Resh VH, Norris RH, Barbour MT (1995) Design and implementation of rapid assessment approaches for water resource monitoring using benthic macroinvertebrates. Aust J Ecol 20:108–121CrossRefGoogle Scholar
  45. 45.
    Hannaford MJ, Barbour MT, Resh VH (1997) Training reduces observer variability in visual-based assessments of stream habitat. J N Am Benthol Soc 16:853–860CrossRefGoogle Scholar
  46. 46.
    Barbour MT, Gerritsen J, Snyder BD et al (1999) Rapid bioassessment protocols for use in streams and wadeable rivers: periphyton, benthic macroinvertebrates and fish, 2nd edn. EPA 841-B-99-002. U.S. Environmental Protection Agency, Office of Water, Washington, DCGoogle Scholar
  47. 47.
    Murphy CA, Casals F, Solà C et al (2013) Efficacy of population size structure as a bioassessment tool in freshwaters. Ecol Indic 34:571–579CrossRefGoogle Scholar
  48. 48.
    Oberdorff T, Pont D, Hugueny B et al (2001) A probabilistic model characterizing riverine fish communities of French rivers: a framework for environmental assessment. Freshw Biol 46:399–415CrossRefGoogle Scholar
  49. 49.
    Roset N, Grenouillet G, Goffaux D et al (2007) A review of existing fish assemblage indicators and methodologies. Fish Manag Ecol 14:393–405CrossRefGoogle Scholar
  50. 50.
    Logez M, Pont D (2013) Global warming and potential shift in reference conditions: the case of functional fish-based metrics. Hydrobiologia 704:417–436CrossRefGoogle Scholar
  51. 51.
    Karr JR, Chu EW (1998) Restoring life in running waters: better biological monitoring. Island Press, Washington, DCGoogle Scholar
  52. 52.
    Oberdorff T, Pont D, Hugueny B et al (2002) Development and validation of a fish-based index for the assessment of “river health” in France. Freshw Biol 47:1720–1734CrossRefGoogle Scholar
  53. 53.
    Pont D, Hugueny B, Beier B et al (2006) Assessing river biotic condition at a continental scale: a European approach using functional metrics and fish assemblages. J Appl Ecol 43:70–80CrossRefGoogle Scholar
  54. 54.
    Pont D, Hugueny B, Rogers C (2007) Development of a fish‐based index for the assessment of river health in Europe: the European Fish Index. Fish Manag Ecol 14:427–439CrossRefGoogle Scholar
  55. 55.
    Logez M, Pont D (2011) Development of metrics based on fish body size and species traits to assess European coldwater streams. Ecol Indic 11:1204–1215CrossRefGoogle Scholar
  56. 56.
    Hoeinghaus DJ, Winemiller KO, Birnbaum JS (2007) Local and regional determinants of stream fish assemblage structure: inferences based on taxonomic vs. functional groups. J Biogeogr 34:324–338CrossRefGoogle Scholar
  57. 57.
    Lamouroux N, Poff NL, Angermeier PL (2002) Intercontinental convergence of stream fish community traits along geomorphic and hydraulic gradients. Ecology 83:1792–1807CrossRefGoogle Scholar
  58. 58.
    Goldstein RM, Meador MR (2004) Comparisons of fish species traits from small streams to large rivers. Trans Am Fish Soc 133:971–983CrossRefGoogle Scholar
  59. 59.
    Statzner B, Dolédec S, Hugueny B (2004) Biological trait composition of European stream invertebrate communities: assessing the effects of various trait filter types. Ecography 27:470–488CrossRefGoogle Scholar
  60. 60.
    Bonada N, Doledec S, Statzner B (2007) Taxonomic and biological trait differences of stream macroinvertebrate communities between Mediterranean and temperate regions: implications for future climatic scenarios. Glob Chang Biol 13:1658–1671CrossRefGoogle Scholar
  61. 61.
    Logez M, Pont D, Ferreira MT (2010) Do Iberian and European fish faunas exhibit convergent functional structure along environmental gradients? J N Am Benthol Soc 29:1310–1323CrossRefGoogle Scholar
  62. 62.
    Wright JF (1995) Development and use of a system for predicting the macroinvertebrate fauna in flowing waters. Aust J Ecol 20:181–197CrossRefGoogle Scholar
  63. 63.
    Hawkins CP, Olson JR, Hill RA (2010) The reference condition: predicting benchmarks for ecological and water-quality assessments. J N Am Benthol Soc 29:312–358CrossRefGoogle Scholar
  64. 64.
    Osenberg CW, Schmitt RJ, Holbrook SJ et al (1994) Detection of environmental impacts: natural variability, effect Size, and power analysis. Ecol Appl 4:16–30CrossRefGoogle Scholar
  65. 65.
    García-Charton JA, Pérez-Ruzafa Á (2001) Spatial pattern and the habitat structure of a Mediterranean rocky reef fish local assemblage. Mar Biol 138:917–934CrossRefGoogle Scholar
  66. 66.
    Karr JR (1981) Assessment of biotic integrity using fish communities. Fisheries 6:21–27CrossRefGoogle Scholar
  67. 67.
    ACA (Agència Catalana de l’Aigua) (2005) Caracterització de masses d’aigua i anàlisi del risc d’incompliment dels objectius de la directiva marc de l’aigua (2000/60/CE) a Catalunya (conques intra i intercomunitàries) en compliment als articles 5, 6 i 7 de la directiva, http://aca-web.gencat.cat/aca/appmanager/aca/aca?nfpb=true& pageLabel=P1206154461208200586461. Accessed 30 May 2013Google Scholar
  68. 68.
    Pont D, Hugueny B, Roset N, Rogers C (2004) Development, evaluation & implementation of a standardised fish-based assessment method for the ecological status of European rivers - a contribution to the Water Framework Directive (FAME). Final report, WP6-8, 59 sGoogle Scholar
  69. 69.
    Degerman E, Beier U, Breine J et al (2007) Classification and assessment of degradation in European running waters. Fish Manag Ecol 14:417–426CrossRefGoogle Scholar
  70. 70.
    Grenouillet G, Roset N, Goffaux D et al (2007) Fish assemblages in European Western Highlands and Western Plains: a type‐specific approach to assess ecological quality of running waters. Fish Manag Ecol 14:509–517CrossRefGoogle Scholar
  71. 71.
    EFI+ Consortium (2009) Manual for the application of the new European Fish Index – EFI+. A fish-based method to assess the ecological status of European running waters in support of the Water Framework Directive. June 2009. BOKU, Vienna, 45 pp. http://efi-plus.boku.ac.at
  72. 72.
    Trautwein C, Schinegger R, Schmutz S (2013) Divergent reaction of fish metrics to human pressures in fish assemblage types in Europe. Hydrobiologia 718:207–220CrossRefGoogle Scholar
  73. 73.
    Munné A, Prat N (2004) Defining river types in a Mediterranean area. A methodology for the implementation of the EU Water Framework Directive. Environ Manag 34(5):711–729CrossRefGoogle Scholar
  74. 74.
    Munné A, Prat N (2011) Effects of Mediterranean climate annual variability on stream biological quality assessment using macroinvertebrate communities. Ecol Indic 11:651–662CrossRefGoogle Scholar
  75. 75.
    Munné A. Prat N (1998) Delimitación de regiones ecológicas en la cuenca del Ebro. Asisténcia técnica 1998-PH-08-I. Confederación Hidrográfica del Ebro. Zaragoza. 153 pp (in Spanish)Google Scholar
  76. 76.
    MMA (Ministerio de Medio Ambiente) (2005) Caracterización de los tipos de ríos y lagos. Versión 4.0. Ministerio de Medio Ambiente, Madrid. 251 pGoogle Scholar
  77. 77.
    MARM (Ministerio de Medio Ambiente, y Medio Rural y Marino) (2008) Orden ARM/2656/2008, de 10 de septiembre, por la que se aprueba la instrucción de planificación hidrológica. BOE 229:38472–38582Google Scholar
  78. 78.
    Benejam L, Angermeier PL, Munné A, García-Berthou E (2010) Assessing effects of water abstraction on fish assemblages in Mediterranean streams. Freshw Biol 55:628–642CrossRefGoogle Scholar
  79. 79.
    Segurado P, Caiola N, Pont D, Oliveira JM, Delaigue O, Ferreira MT (2014) Comparability of fish-based ecological quality assessments for geographically distinct Iberian regions. Sci Total Environ 476:785–794CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Emili García-Berthou
    • 1
    Email author
  • Mi-Jung Bae
    • 1
  • Lluís Benejam
    • 2
  • Carles Alcaraz
    • 3
  • Frederic Casals
    • 4
  • Adolf de Sostoa
    • 5
  • Carolina Solà
    • 6
  • Antoni Munné
    • 6
  1. 1.Institute of Aquatic EcologyUniversity of GironaGironaSpain
  2. 2.BETA Technology Centre, Aquatic Ecology GroupUniversity of Vic - Central University of CataloniaVicSpain
  3. 3.IRTA Aquatic EcosystemsSant Carles de la RàpitaSpain
  4. 4.Department of Animal ProductionUniversity of LleidaLleidaSpain
  5. 5.Department of Animal Biology (Vertebrates)University of BarcelonaBarcelonaSpain
  6. 6.Catalan Water Agency (ACA)BarcelonaSpain

Personalised recommendations