Advertisement

pp 1-35 | Cite as

Biomatrices for Heart Regeneration and Cardiac Tissue Modelling In Vitro

  • I. Kulvinskiene
  • R. Aldonyte
  • R. Miksiunas
  • A. Mobasheri
  • Daiva BironaiteEmail author
Chapter
  • 12 Downloads
Part of the Advances in Experimental Medicine and Biology book series

Abstract

Cardiac muscle is the hardest working muscle in the body, pumping approximately 70 g of blood with every heartbeat, circulating 9500 l of blood daily and contracting over 3 billion times during the average human’s life. Heart failure – a heterogeneous syndrome – is a major and increasing health care problem worldwide and a leading cause of hospitalization and morbidity in elderly. Adequate heart tissue regeneration in human is lacking. Challenges to engineer heart tissue and employ it in vitro or in regenerative medicine remain to be solved. First of all, cardiac tissue bioengineering requires robust and powerful cells capable of differentiating into cardiomyogenic lineages in combination with effective, safe and highly specialized biomaterials, hydrogels and/or scaffolds for recreating the native extracellular microenvironment. Advances in stem cell and biomaterial science already provided an increasing array of cell resources, their cultivation technologies and biomatrices for efficient and safe cardiac tissue reconstruction. In order to develop new cardiac tissue mimicking technologies in vitro, it is necessary to analyze the advantages and drawbacks of already established biosystems. Therefore, in this paper, we provide a comprehensive overview of recently employed cells, 2D and 3D biomatrices for cardiac tissue engineering and review the current state-of-the-art in this field as well as future directions.

Keywords

Biomaterials Biomatrices Cardiac muscle Regenerative medicine Remodeling Tissue engineering 

Abbreviations

ADSC

adipose tissue-derived stem cells

AuNRs

albumin electrospun fibers and gold nanorods

BMP4

bone morphogenetic protein 4

CDC

cardiosphere-derived cells

CM

cardiomyocytes

CNT

carbon nanotubes

CPCs

cardiac progenitor cells

CPS

cardio progenitor spheres

CVD

cardiovascular diseases

EBs

embryonic bodies

ECM

extracellular matrix

ESCs

embryonic stem cells

GAG

glycosaminoglycan

G-CSF

granulocyte colony-stimulating factor

GSK3

glycogen synthase kinase 3

HF

heart failure

hFFs

human foreskin fibroblasts

HGF

hepatocyte growth factor

IC

intracoronary infusion

IGF-1

insulin-like growth factor

IM

intramyocardially

iPSC

induced pluripotent stem cells

LVEF

left ventricular ejection fraction

MEF

mouse embryonic fibroblast

MRI

magnetic resonance imaging

MSC

mesenchymal stem/stromal cells

Nrg

Neuregulin-1

PCL

polyɛ-caprolactone

PCL

poly-ε-caprolactone

PDGFRα

platelet-derived growth factor receptor-alpha

PFHy

polyethylene glycol-fibrinogen hydrogel

PGA

poly(glycolic acid) or poly-glycolide

pHLIP

pH low insertion peptide

PIPAAm

poly N-isopropylacrylamide

PLA

poly-lactic acid

PSC

pluripotent stem cells

RCVI

retrograde coronary venous infusion

Sca − 1

stem cell antigen-1

SDF-1

stromal-derived growth factor 1

TESI

transendocardial injection

TGF-β

transforming growth factor β

VEGF

vascular endothelial growth factor

Notes

Acknowledgements

This work was supported by the project: Studies of the regenerative potential and mechanoptosis of the human heart primary cardiospheres, (No. S-MIP-17-13).

References

  1. Abdalla S, Makhoul G, Duong M, Chiu RCJ, Cecere R (2013) Hyaluronic acid-based hydrogel induces neovascularization and improves cardiac function in a rat model of myocardial infarction. Interact Cardiovasc Thorac Surg 17(5):767–772.  https://doi.org/10.1093/icvts/ivt277CrossRefGoogle Scholar
  2. Abou-Saleh H, Zouein FA, El-Yazbi A, Sanoudou D, Raynaud C, Rao C, Pintus G, Dehaini H, Eid AH (2018) The march of pluripotent stem cells in cardiovascular regenerative medicine. Stem Cell Res Ther 9(1):201.  https://doi.org/10.1186/s13287-018-0947-5CrossRefGoogle Scholar
  3. Achilli TM, Meyer J, Morgan JR (2012) Advances in the formation, use and understanding of multi-cellular spheroids. Expert Opin Biol Ther 12(10):1347–1360.  https://doi.org/10.1517/14712598.2012.707181CrossRefGoogle Scholar
  4. Ahadian S, Yamada S, Ramon-Azcon J, Estili M, Liang X, Nakajima K, Shiku H, Khademhosseini A, Matsue T (2016) Hybrid hydrogel-aligned carbon nanotube scaffolds to enhance cardiac differentiation of embryoid bodies. Acta Biomater 31:134–143.  https://doi.org/10.1016/j.actbio.2015.11.047CrossRefGoogle Scholar
  5. Alimirzaei F, Vasheghani-Farahani E, Ghiaseddin A, Soleimani M, Pouri N-GZ (2017) pH-sensitive chitosan hydrogel with instant gelation for myocardial regeneration. J Tissue Sci Eng 8(3).  https://doi.org/10.4172/2157-7552.1000212
  6. Amand FK, Esmaeili A (2020) Investigating the properties of electrospun nanofibers made of hybride polymer containing anticoagulant drugs. Carbohydr Polym 228:UNSP 115397.  https://doi.org/10.1016/j.carbpol.2019.115397CrossRefGoogle Scholar
  7. Amini H, Rezaie J, Vosoughi A, Rahbarghazi R, Nouri M (2017) Cardiac progenitor cells application in cardiovascular disease. J Cardiovasc Thorac Res 9(3):127–132. Pmid 29118944.  https://doi.org/10.15171/Jcvtr.2017.22CrossRefGoogle Scholar
  8. Anker SD, Coats AJS, Cristian G, Dragomir D, Pusineri E, Piredda M, Bettari L, Dowling R, Volterrani M, Kirwan BA, Filippatos G, Mas JL, Danchin N, Solomon SD, Lee RJ, Ahmann F, Hinson A, Sabbah HN, Mann DL (2015) A prospective comparison of alginate-hydrogel with standard medical therapy to determine impact on functional capacity and clinical outcomes in patients with advanced heart failure (AUGMENT-HF trial). Eur Heart J 36(34):2297–2309.  https://doi.org/10.1093/eurheartj/ehv259CrossRefGoogle Scholar
  9. Archer CR, Sargeant R, Basak J, Pilling J, Barnes JR, Pointon A (2018) Characterization and validation of a human 3D cardiac microtissue for the assessment of changes in cardiac pathology. Sci Rep 8:10160.  https://doi.org/10.1038/s41598-018-28393-yCrossRefGoogle Scholar
  10. Ardila DC, Liou JJ, Maestas D, Slepian MJ, Badowski M, Wagner WR, Harris D, Vande Geest JP (2019) Surface modification of electrospun scaffolds for Endothelialization of tissue-engineered vascular grafts using human cord blood-derived endothelial cells. J Clin Med 8(2):185.  https://doi.org/10.3390/jcm8020185CrossRefGoogle Scholar
  11. Arminan A, Gandia C, Bartual M, Garcia-Verdugo JM, Lledo E, Mirabet V, Llop M, Barea J, Montero JA, Sepulveda P (2009) Cardiac differentiation is driven by NKX2.5 and GATA4 nuclear translocation in tissue-specific mesenchymal stem cells. Stem Cells Dev 18(6):907–918.  https://doi.org/10.1089/scd.2008.0292CrossRefGoogle Scholar
  12. Ashur C, Frishman WH (2018) Cardiosphere-derived cells and ischemic heart failure. Cardiol Rev 26(1):8–21.  https://doi.org/10.1097/CRD.0000000000000173CrossRefGoogle Scholar
  13. Baar K, Birla R, Boluyt MO, Borschel GH, Arruda EM, Dennis RG (2005) Self-organization of rat cardiac cells into contractile 3-D cardiac tissue. FASEB J 19(2):275–277.  https://doi.org/10.1096/fj.04-2034fjeCrossRefGoogle Scholar
  14. Bagheri-Hosseinabadi Z, Salehinejad P, Mesbah-Namin SA (2017) Differentiation of human adipose-derived stem cells into cardiomyocyte-like cells in fibrin scaffold by a histone deacetylase inhibitor. Biomed Eng Online 16:134.  https://doi.org/10.1186/s12938-017-0423-yCrossRefGoogle Scholar
  15. Bagno L, Hatzistergos KE, Balkan W, Hare JM (2018) Mesenchymal stem cell-based therapy for cardiovascular disease: Progress and challenges. Mol Ther 26(7):1610–1623.  https://doi.org/10.1016/j.ymthe.2018.05.009CrossRefGoogle Scholar
  16. Banerjee MN, Bolli R, Hare JM (2018) Clinical studies of cell therapy in cardiovascular medicine recent developments and future directions. Circ Res 123(2):266–287.  https://doi.org/10.1161/Circresaha.118.311217CrossRefGoogle Scholar
  17. Bartolucci J, Verdugo FJ, Gonzalez PL, Larrea RE, Abarzua E, Goset C, Rojo P, Palma I, Lamich R, Pedreros PA, Valdivia G, Lopez VM, Nazzal C, Alcayaga-Miranda F, Cuenca J, Brobeck MJ, Patel AN, Figueroa FE, Khoury M (2017) Safety and efficacy of the intravenous infusion of umbilical cord mesenchymal stem cells in patients with heart failure: a phase 1/2 randomized controlled trial (RIMECARD trial [Randomized clinical trial of intravenous infusion umbilical cord mesenchymal stem cells on Cardiopathy]). Circ Res 121(10):1192–1204.  https://doi.org/10.1161/CIRCRESAHA.117.310712CrossRefGoogle Scholar
  18. Bearzi C, Rota M, Hosoda T, Tillmanns J, Nascimbene A, De Angelis A, Yasuzawa-Amano S, Trofimova I, Siggins RW, Lecapitaine N, Cascapera S, Beltrami AP, D'Alessandro DA, Zias E, Quaini F, Urbanek K, Michler RE, Bolli R, Kajstura J, Leri A, Anversa P (2007) Human cardiac stem cells. Proc Natl Acad Sci U S A 104(35):14068–14073Google Scholar
  19. Behfar A, Zingman LV, Hodgson DM, Rauzier JM, Kane GC, Terzic A, Puceat M (2002) Stem cell differentiation requires a paracrine pathway in the heart. FASEB J 16(12):1558–1566.  https://doi.org/10.1096/fj.02-0072comCrossRefGoogle Scholar
  20. Beitnes JO, Oie E, Shandadfar A, Karlsen T, Muller RMB, Aakhus S, Reinholt FP, Brinchmann JE (2012) Intramyocardial injections of human mesenchymal stem cells following acute myocardial infarction modulate scar formation and improve left ventricular function. Cell Transplant 21(8):1697–1709.  https://doi.org/10.3727/096368911X627462CrossRefGoogle Scholar
  21. Beltrami AP, Urbanek K, Kajstura J, Yan SM, Finato N, Bussani R, Nadal-Ginard B, Silvestri F, Leri A, Beltrami CA, Anversa P (2001) Evidence that human cardiac myocytes divide after myocardial infarction. N Engl J Med 344(23):1750–1757.  https://doi.org/10.1056/Nejm200106073442303CrossRefGoogle Scholar
  22. Bergmann O, Bhardwaj RD, Bernard S, Zdunek S, Barnabé-Heider F, Walsh S, Zupicich J, Alkass K, Buchholz BA, Druid H, Jovinge S, Frisén J (2009 Apr 3) Evidence for cardiomyocyte renewal in humans. Science 324(5923):98–102.  https://doi.org/10.1126/science.1164680
  23. Bergmann O, Zdunek S, Felker A, Salehpour M, Alkass K, Bernard S, Sjostrom SL, Szewczykowska M, Jackowska T, Dos Remedios C, Malm T, Andra M, Jashari R, Nyengaard JR, Possnert G, Jovinge S, Druid H, Frisen J (2015) Dynamics of cell generation and turnover in the human heart. Cell 161(7):1566–1575.  https://doi.org/10.1016/j.cell.2015.05.026CrossRefGoogle Scholar
  24. Bidez PR 3rd, Li S, Macdiarmid AG, Venancio EC, Wei Y, Lelkes PI (2006) Polyaniline, an electroactive polymer, supports adhesion and proliferation of cardiac myoblasts. J Biomater Sci Polym Ed 17(1–2):199–212.  https://doi.org/10.1163/156856206774879180CrossRefGoogle Scholar
  25. Boateng SY, Lateef SS, Mosley W, Hartman TJ, Hanley L, Russell B (2005) RGD and YIGSR synthetic peptides facilitate cellular adhesion identical to that of laminin and fibronectin but alter the physiology of neonatal cardiac myocytes. Am J Phys Cell Physiol 288(1):C30–C38.  https://doi.org/10.1152/ajpcell.00199.2004CrossRefGoogle Scholar
  26. Bolli R, Chugh AR, D'Amario D, Loughran JH, Stoddard MF, Ikram S, Beache GM, Wagner SG, Leri A, Hosoda T, Sanada F, Elmore JB, Goichberg P, Cappetta D, Solankhi NK, Fahsah I, Rokosh DG, Slaughter MS, Kajstura J, Anversa P (2011) Cardiac stem cells in patients with ischaemic cardiomyopathy (SCIPIO): initial results of a randomised phase 1 trial. Lancet 378(9806):1847–1857.  https://doi.org/10.1016/S0140-6736(11)61590-0CrossRefGoogle Scholar
  27. Bonafe F, Govoni M, Giordano E, Caldarera CM, Guarnieri C, Muscari C (2014) Hyaluronan and cardiac regeneration. J Biomed Sci 21:100.  https://doi.org/10.1186/s12929-014-0100-4CrossRefGoogle Scholar
  28. Calvillo L, Latini R, Kajstura J, Leri A, Anversa P, Ghezzi P, Salio M, Cerami A, Brines M (2003) Recombinant human erythropoietin protects the myocardium from ischemia-reperfusion injury and promotes beneficial remodeling. Proc Natl Acad Sci U S A 100(8):4802–4806.  https://doi.org/10.1073/pnas.0630444100CrossRefGoogle Scholar
  29. Cao N, Liang H, Huang J, Wang J, Chen Y, Chen Z, Yang HT (2013) Highly efficient induction and long-term maintenance of multipotent cardiovascular progenitors from human pluripotent stem cells under defined conditions. Cell Res 23(9):1119–1132.  https://doi.org/10.1038/cr.2013.102CrossRefGoogle Scholar
  30. Caplan AI (2017) Mesenchymal stem cells: time to change the name! Stem Cells Transl Med 6(6):1445–1451.  https://doi.org/10.1002/sctm.17-0051CrossRefGoogle Scholar
  31. Caplan AI, Dennis JE (2006) Mesenchymal stem cells as trophic mediators. J Cell Biochem 98(5):1076–1084.  https://doi.org/10.1002/jcb.20886CrossRefGoogle Scholar
  32. Caspi O, Huber I, Kehat I, Habib M, Arbel G, Gepstein A, Yankelson L, Aronson D, Beyar R, Gepstein L (2007) Transplantation of human embryonic stem cell-derived cardiomyocytes improves myocardial performance in infarcted rat hearts. J Am Coll Cardiol 50(19):1884–1893.  https://doi.org/10.1016/j.jacc.2007.07.054CrossRefGoogle Scholar
  33. Castro L, Geertz B, Reinsch M, Aksehirlioglu B, Hansen A, Eschenhagen T, Reichenspurner H, Weinberger F, Pecha S (2019) Implantation of hiPSC-derived cardiac-muscle patches after myocardial injury in a Guinea Pig Model. J Vis Exp 145.  https://doi.org/10.3791/58810
  34. Chachques JC, Trainini JC, Lago N, Masoli OH, Barisani JL, Cortes-Morichetti M, Schussler O, Carpentier A (2007) Myocardial assistance by grafting a new bioartificial upgraded myocardium (MAGNUM clinical trial): one year follow-up. Cell Transplant 16(9):927–934.  https://doi.org/10.3727/096368907783338217CrossRefGoogle Scholar
  35. Chakravarty T, Makkar RR, Ascheim DD, Traverse JH, Schatz R, DeMaria A, Francis GS, Povsic TJ, Smith RR, Lima JA, Pogoda JM, Marban L, Henry TD (2017) ALLogeneic heart STem cells to achieve myocardial regeneration (ALLSTAR) trial: rationale and design. Cell Transplant 26(2):205–214.  https://doi.org/10.3727/096368916X692933CrossRefGoogle Scholar
  36. Chakravarty T, Henry TD, Kittleson M, Lima J, Siegel RJ, Slipczuk L, Pogoda JM, Smith RR, Malliaras K, Marban L, Ascheim DD, Marban E, Makkar RR (2019) Allogeneic Cardiosphere-derived cells for the treatment of heart failure with reduced ejection fraction: results of the dilated cardiomYopathy iNtervention with allogeneic Myocardially-regeneratIve cells (DYNAMIC) trial. EuroIntervention.  https://doi.org/10.4244/EIJ-D-19-00035
  37. Chan AT, Karakas MF, Vakrou S, Afzal J, Rittenbach A, Lin X, Wahl RL, Pomper MG, Steenbergen CJ, Tsui BMW, Elisseeff JH, Abraham MR (2015) Hyaluronic acid-serum hydrogels rapidly restore metabolism of encapsulated stem cells and promote engraftment. Biomaterials 73:1–11.  https://doi.org/10.1016/j.biomaterials.2015.09.001CrossRefGoogle Scholar
  38. Chen Y, Amende I, Hampton TG, Yang YK, Ke QG, Min JY, Xiao YF, Morgan JP (2006) Vascular endothelial growth factor promotes cardiomyocyte differentiation of embryonic stem cells. Am J Physiol Heart Circ Physiol 291(4):H1653–H1658.  https://doi.org/10.1152/ajpheart.00363.2005CrossRefGoogle Scholar
  39. Chen CH, Wang SS, Wei EIH, Chu TY, Hsieh PCH (2013) Hyaluronan enhances bone marrow cell therapy for myocardial repair after infarction. Mol Ther 21(3):670–679.  https://doi.org/10.1038/mt.2012.268CrossRefGoogle Scholar
  40. Chen CH, Chang MY, Wang SS, Hsieh PCH (2014) Injection of autologous bone marrow cells in hyaluronan hydrogel improves cardiac performance after infarction in pigs. Am J Physiol Heart Circ Physiol 306(7):H1078–H1086.  https://doi.org/10.1152/ajpheart.00801.2013CrossRefGoogle Scholar
  41. Chen VC, Ye J, Shukla P, Hua G, Chen D, Lin Z, Liu JC, Chai J, Gold J, Wu J, Hsu D, Couture LA (2015) Development of a scalable suspension culture for cardiac differentiation from human pluripotent stem cells. Stem Cell Res 15(2):365–375.  https://doi.org/10.1016/j.scr.2015.08.002CrossRefGoogle Scholar
  42. Cheng K, Blusztajn A, Shen D, Li TS, Sun B, Galang G, Zarembinski TI, Prestwich GD, Marban E, Smith RR, Marban L (2012) Functional performance of human cardiosphere-derived cells delivered in an in situ polymerizable hyaluronan-gelatin hydrogel. Biomaterials 33(21):5317–5324.  https://doi.org/10.1016/j.biomaterials.2012.04.006CrossRefGoogle Scholar
  43. Chimenti I, Smith RR, Li TS, Gerstenblith G, Messina E, Giacomello A, Marban E (2010) Relative roles of direct regeneration versus paracrine effects of human Cardiosphere-derived cells transplanted into infarcted mice. Circ Res 106(5):971–U304.  https://doi.org/10.1161/Circresaha.109.210682CrossRefGoogle Scholar
  44. Choe G, Kim SW, Park J, Park J, Kim S, Kim YS, Ahn Y, Jung DW, Williams DR, Lee JY (2019a) Anti-oxidant activity reinforced reduced graphene oxide/alginate microgels: mesenchymal stem cell encapsulation and regeneration of infarcted hearts. Biomaterials 225:119513.  https://doi.org/10.1016/j.biomaterials.2019.119513CrossRefGoogle Scholar
  45. Choe G, Park J, Jo H, Kim YS, Ahn Y, Lee JY (2019b) Studies on the effects of microencapsulated human mesenchymal stem cells in RGD-modified alginate on cardiomyocytes under oxidative stress conditions using in vitro biomimetic co-culture system. Int J Biol Macromol 123:512–520.  https://doi.org/10.1016/j.ijbiomac.2018.11.115CrossRefGoogle Scholar
  46. Choi S, Hong Y, Lee I, Huh D, Jeon TJ, Kim SM (2013) Effects of various extracellular matrix proteins the growth of HL-1 cardiomyocytes. Cells Tissues Organs 198(5):349–356.  https://doi.org/10.1159/000358755CrossRefGoogle Scholar
  47. Choi JR, Yong KW, Choi JY, Cowie AC (2019) Recent advances in photo-crosslinkable hydrogels for biomedical applications. BioTechniques 66(1):40–53.  https://doi.org/10.2144/btn-2018-0083CrossRefGoogle Scholar
  48. Chong JJ, Yang X, Don CW, Minami E, Liu YW, Weyers JJ, Mahoney WM, Van Biber B, Cook SM, Palpant NJ, Gantz JA, Fugate JA, Muskheli V, Gough GM, Vogel KW, Astley CA, Hotchkiss CE, Baldessari A, Pabon L, Reinecke H, Gill EA, Nelson V, Kiem HP, Laflamme MA, Murry CE (2014) Human embryonic-stem-cell-derived cardiomyocytes regenerate non-human primate hearts. Nature 510(7504):273–277.  https://doi.org/10.1038/nature13233CrossRefGoogle Scholar
  49. Christman KL, Vardanian AJ, Fang Q, Sievers RE, Fok HH, Lee RJ (2004) Injectable fibrin scaffold improves cell transplant survival, reduces infarct expansion, and induces neovasculature formation in ischemic myocardium. J Am Coll Cardiol 44(3):654–660.  https://doi.org/10.1016/j.jacc.2004.04.040CrossRefGoogle Scholar
  50. Christoffersson J, Meier F, Kempf H, Schwanke K, Coffee M, Beilmann M, Zweigerdt R, Mandenius CF (2018) A cardiac cell outgrowth assay for evaluating drug compounds using a cardiac spheroid-on-a-Chip device. Bioengineering (Basel) 5(2).  https://doi.org/10.3390/bioengineering5020036
  51. Cohen IS, Gaudette G (2009) Regenerating the heart: new progress in gene/cell therapy to restore normal mechanical and electrical function. Dialogues Cardiovasc Med 14:7–28Google Scholar
  52. Crowder SW, Liang Y, Rath R, Park AM, Maltais S, Pintauro PN, Hofmeister W, Lim CC, Wang XT, Sung HJ (2013) Poly(epsilon-caprolactone)-carbon nanotube composite scaffolds for enhanced cardiac differentiation of human mesenchymal stem cells. Nanomedicine 8(11):1763–1776.  https://doi.org/10.2217/nnm.12.204CrossRefGoogle Scholar
  53. Cunningham CJ, Redondo-Castro E, Allan SM (2018) The therapeutic potential of the mesenchymal stem cell secretome in ischaemic stroke. J Cereb Blood Flow Metab 38(8):1276–1292.  https://doi.org/10.1177/0271678X18776802CrossRefGoogle Scholar
  54. Cynthia W, Shital P, Rui C, Owida A, Morsi Y (2010) Biomimetic electrospun gelatin-chitosan polyurethane for heart valve leaflets. J Mech Med Biol 10(4):563–576.  https://doi.org/10.1142/S0219519410003551CrossRefGoogle Scholar
  55. Czarna A, Sanada F, Matsuda A, Kim J, Signore S, Pereira JD, Sorrentino A, Kannappan R, Cannata A, Hosoda T, Rota M, Crea F, Anversa P, Leri A (2017) Single-cell analysis of the fate of c-kit-positive bone marrow cells. Npj Regen Med 2:27.  https://doi.org/10.1038/s41536-017-0032-1CrossRefGoogle Scholar
  56. Dahlmann J, Awad G, Dolny C, Weinert S, Richter K, Fischer KD, Munsch T, Lessmann V, Volleth M, Zenker M, Chen Y, Merkl C, Schnieke A, Baraki H, Kutschka I, Kensah G (2018) Generation of functional cardiomyocytes from rat embryonic and induced pluripotent stem cells using feeder-free expansion and differentiation in suspension culture. PLoS One 13(3):e0192652.  https://doi.org/10.1371/journal.pone.0192652CrossRefGoogle Scholar
  57. Davis DR, Zhang Y, Smith RR, Cheng K, Terrovitis J, Malliaras K, Li TS, White A, Makkar R, Marban E (2009) Validation of the cardiosphere method to culture cardiac progenitor cells from myocardial tissue. PLoS One 4(9):e7195.  https://doi.org/10.1371/journal.pone.0007195CrossRefGoogle Scholar
  58. Davis DR, Smith RR, Marban E (2010) Human Cardiospheres are a source of stem cells with Cardiomyogenic potential. Stem Cells 28(5):903–904.  https://doi.org/10.1002/stem.413CrossRefGoogle Scholar
  59. de Pinho ARG, Odila I, Leferink A, van Blitterswijk C, Camarero-Espinosa S, Moroni L (2019) Hybrid polyester-hydrogel electrospun scaffolds for tissue engineering applications. Front Bioeng Biotechnol 7:231.  https://doi.org/10.3389/fbioe.2019.00231CrossRefGoogle Scholar
  60. Denu RA, Nemcek S, Bloom DD, Goodrich AD, Kim J, Mosher DF, Hematti P (2016) Fibroblasts and mesenchymal stromal/stem cells are phenotypically indistinguishable. Acta Haematol (Basel) 136(2):85–97.  https://doi.org/10.1159/000445096CrossRefGoogle Scholar
  61. Di Lullo GA, Sweeney SM, Korkko J, Ala-Kokko L, San Antonio JD (2002) Mapping the ligand-binding sites and disease-associated mutations on the most abundant protein in the human, type I collagen. J Biol Chem 277(6):4223–4231.  https://doi.org/10.1074/jbc.M110709200CrossRefGoogle Scholar
  62. Dutton LC, Dudhia J, Catchpole B, Hodgkiss-Geere H, Werling D, Connolly DJ (2018) Cardiosphere-derived cells suppress allogeneic lymphocytes by production of PGE2 acting via the EP4 receptor. Sci Rep 8(1):13351.  https://doi.org/10.1038/s41598-018-31569-1CrossRefGoogle Scholar
  63. Edalat SG, Jang Y, Kim J, Park Y (2019) Collagen type I containing hybrid hydrogel enhances cardiomyocyte maturation in a 3D cardiac model. Polymers (Basel) 11(4):687.  https://doi.org/10.3390/Polym11040687CrossRefGoogle Scholar
  64. Edmondson R, Broglie JJ, Adcock AF, Yang L (2014) Three-dimensional cell culture systems and their applications in drug discovery and cell-based biosensors. Assay Drug Dev Technol 12(4):207–218.  https://doi.org/10.1089/adt.2014.573CrossRefGoogle Scholar
  65. Ellison GM, Vicinanza C, Smith AJ, Aquila I, Leone A, Waring CD, Henning BJ, Stirparo GG, Papait R, Scarfo M, Agosti V, Viglietto G, Condorelli G, Indolfi C, Ottolenghi S, Torella D, Nadal-Ginard B (2013) Adult c-kit(pos) cardiac stem cells are necessary and sufficient for functional cardiac regeneration and repair. Cell 154(4):827–842.  https://doi.org/10.1016/j.cell.2013.07.039CrossRefGoogle Scholar
  66. Emmert MY, Wolint P, Wickboldt N, Gemayel G, Weber B, Brokopp CE, Boni A, Falk V, Bosman A, Jaconi ME, Hoerstrup SP (2013) Human stem cell-based three-dimensional microtissues for advanced cardiac cell therapies. Biomaterials 34(27):6339–6354.  https://doi.org/10.1016/j.biomaterials.2013.04.034CrossRefGoogle Scholar
  67. Engler AJ, Sen S, Sweeney HL, Discher DE (2006) Matrix elasticity directs stem cell lineage specification. Cell 126(4):677–689.  https://doi.org/10.1016/j.cell.2006.06.044CrossRefGoogle Scholar
  68. Eschenhagen T, Fink C, Remmers U, Scholz H, Wattchow J, Weil J, Zimmermann W, Dohmen HH, Schafer H, Bishopric N, Wakatsuki T, Elson EL (1997) Three-dimensional reconstitution of embryonic cardiomyocytes in a collagen matrix: a new heart muscle model system. FASEB J 11(8):683–694.  https://doi.org/10.1096/fasebj.11.8.9240969CrossRefGoogle Scholar
  69. Fang CH, Jin JY, Joe JH, Song YS, So BI, Lim SM, Cheon GJ, Woo SK, Ra JC, Lee YY, Kim KS (2012) In vivo differentiation of human amniotic epithelial cells into cardiomyocyte-like cells and cell transplantation effect on myocardial infarction in rats: comparison with cord blood and adipose tissue-derived mesenchymal stem cells. Cell Transplant 21(8):1687–1696.  https://doi.org/10.3727/096368912X653039CrossRefGoogle Scholar
  70. Fang ZH, Yin XG, Wang JZ, Tian N, Ao Q, Gu YQ, Liu Y (2016) Functional characterization of human umbilical cord-derived mesenchymal stem cells for treatment of systolic heart failure. Exp Ther Med 12(5):3328–3332.  https://doi.org/10.3892/etm.2016.3748CrossRefGoogle Scholar
  71. Feiner R, Fleischer S, Shapira A, Kalish O, Dvir T (2018) Multifunctional degradable electronic scaffolds for cardiac tissue engineering. J Control Release 281:189–195.  https://doi.org/10.1016/j.jconrel.2018.05.023CrossRefGoogle Scholar
  72. Fennema E, Rivron N, Rouwkema J, van Blitterswijk C, de Boer J (2013) Spheroid culture as a tool for creating 3D complex tissues. Trends Biotechnol 31(2):108–115.  https://doi.org/10.1016/j.tibtech.2012.12.003CrossRefGoogle Scholar
  73. Fiarresga A, Mata MF, Cavaco-Goncalves S, Selas M, Simoes IN, Oliveira E, Carrapico B, Cardim N, Cabral JM, Ferreira RC, da Silva CL (2015) Intracoronary delivery of human mesenchymal/stromal stem cells: insights from coronary microcirculation invasive assessment in a swine model. PLoS One 10(10):e0139870.  https://doi.org/10.1371/journal.pone.0139870CrossRefGoogle Scholar
  74. Fisher SA, Zhang HJ, Doree C, Mathur A, Martin-Rendon E (2015) Stem cell treatment for acute myocardial infarction. Cochrane Database Syst Rev 9:CD006536.  https://doi.org/10.1002/14651858.CD006536.pub4CrossRefGoogle Scholar
  75. Fleischer S, Feiner R, Shapira A, Ji J, Sui XM, Wagner HD, Dvir T (2013) Spring-like fibers for cardiac tissue engineering. Biomaterials 34(34):8599–8606.  https://doi.org/10.1016/j.biomaterials.2013.07.054CrossRefGoogle Scholar
  76. Fleischer S, Shapira A, Regev O, Nseir N, Zussman E, Dvir T (2014) Albumin Fiber scaffolds for engineering functional cardiac tissues. Biotechnol Bioeng 111(6):1246–1257.  https://doi.org/10.1002/bit.25185CrossRefGoogle Scholar
  77. Forte G, Pietronave S, Nardone G, Zamperone A, Magnani E, Pagliari S, Pagliari F, Giacinti C, Nicoletti C, Musaro A, Rinaldi M, Ribezzo M, Comoglio C, Traversa E, Okano T, Minieri M, Prat M, Di Nardo P (2011) Human cardiac progenitor cell grafts as unrestricted source of supernumerary cardiac cells in healthy murine hearts. Stem Cells 29(12):2051–2061.  https://doi.org/10.1002/stem.763CrossRefGoogle Scholar
  78. Foster BM, Zaidi D, Young TR, Mobley ME, Kerr BA (2018) CD117/c-kit in Cancer stem cell-mediated progression and therapeutic resistance. Biomedicine 6(1).  https://doi.org/10.3390/biomedicines6010031
  79. Frey N, Linke A, Suselbeck T, Muller-Ehmsen J, Vermeersch P, Schoors D, Rosenberg M, Bea F, Tuvia S, Leor J (2014) Intracoronary delivery of injectable bioabsorbable scaffold (IK-5001) to treat left ventricular remodeling after ST-elevation myocardial infarction a first-in-man study. Circ Cardiovasc Interv 7(6):806–812.  https://doi.org/10.1161/Circinterventions.114.001478CrossRefGoogle Scholar
  80. Freyman T, Polin G, Osman H, Crary J, Lu MM, Cheng L, Palasis M, Wilensky RL (2006) A quantitative, randomized study evaluating three methods of mesenchymal stem cell delivery following myocardial infarction. Eur Heart J 27(9):1114–1122.  https://doi.org/10.1093/eurheartj/ehi818CrossRefGoogle Scholar
  81. Gandaglia A, Huerta-Cantillo R, Comisso M, Danesin R, Ghezzo F, Naso F, Gastaldello A, Schittullo E, Buratto E, Spina M, Gerosa G, Dettin M (2012) Cardiomyocytes in vitro adhesion is actively influenced by biomimetic synthetic peptides for cardiac tissue engineering. Tissue Eng Part A 18(7–8):725–736.  https://doi.org/10.1089/ten.tea.2011.0254CrossRefGoogle Scholar
  82. Garbern JC, Minami E, Stayton PS, Murry CE (2011) Delivery of basic fibroblast growth factor with a pH-responsive, injectable hydrogel to improve angiogenesis in infarcted myocardium. Biomaterials 32(9):2407–2416.  https://doi.org/10.1016/j.biomaterials.2010.11.075CrossRefGoogle Scholar
  83. Garcia JMS, Panitch A, Calve S (2019) Functionalization of hyaluronic acid hydrogels with ECM-derived peptides to control myoblast behavior. Acta Biomater 84:169–179.  https://doi.org/10.1016/j.actbio.2018.11.030CrossRefGoogle Scholar
  84. Gasiuniene M, Zentelyte A, Wojtas B, Baronaite S, Krasovskaja N, Savickiene J, Gielniewski B, Kaminska B, Utkus A, Navakauskiene R (2019) DNA methyltransferases inhibitors effectively induce gene expression changes suggestive of cardiomyogenic differentiation of human amniotic fluid-derived mesenchymal stem cells via chromatin remodeling. J Tissue Eng Regen Med 13(3):469–481.  https://doi.org/10.1002/term.2800CrossRefGoogle Scholar
  85. Gathier WA, van Ginkel DJ, van der Naald M, van Slochteren FJ, Doevendans PA, Chamuleau SAJ (2018) Retrograde coronary venous infusion as a delivery strategy in regenerative cardiac therapy: an overview of preclinical and clinical data. J Cardiovasc Transl Res 11(3):173–181.  https://doi.org/10.1007/s12265-018-9785-1CrossRefGoogle Scholar
  86. Ge Z, Lal S, Le TYL, Dos Remedios C, Chong JJH (2015) Cardiac stem cells: translation to human studies. Biophys Rev 7(1):127–139.  https://doi.org/10.1007/s12551-014-0148-0CrossRefGoogle Scholar
  87. Gershlak JR, Hernandez S, Fontana G, Perreault LR, Hansen KJ, Larson SA, Binder BY, Dolivo DM, Yang T, Dominko T, Rolle MW, Weathers PJ, Medina-Bolivar F, Cramer CL, Murphy WL, Gaudette GR (2017) Crossing kingdoms: using decellularized plants as perfusable tissue engineering scaffolds. Biomaterials 125:13–22.  https://doi.org/10.1016/j.biomaterials.2017.02.011CrossRefGoogle Scholar
  88. Ghosh LD, Ravi V, Jain A, Panicker AG, Sundaresan NR, Chatterjee K (2019) Sirtuin 6 mediated stem cell cardiomyogenesis on protein coated nanofibrous scaffolds. Nanomedicine 19:145–155.  https://doi.org/10.1016/j.nano.2019.03.005CrossRefGoogle Scholar
  89. Gong XH, Liu H, Wang SJ, Liang SW, Wang GG (2019) Exosomes derived from SDF1-overexpressing mesenchymal stem cells inhibit ischemic myocardial cell apoptosis and promote cardiac endothelial microvascular regeneration in mice with myocardial infarction. J Cell Physiol 234(8):13878–13893.  https://doi.org/10.1002/jcp.28070CrossRefGoogle Scholar
  90. Gronthos S, Zannettino AC, Hay SJ, Shi S, Graves SE, Kortesidis A, Simmons PJ (2003) Molecular and cellular characterisation of highly purified stromal stem cells derived from human bone marrow. J Cell Sci 116(Pt 9):1827–1835.  https://doi.org/10.1242/jcs.00369CrossRefGoogle Scholar
  91. Guo B, Finne-Wistrand A, Albertsson AC (2011) Facile synthesis of degradable and electrically conductive polysaccharide hydrogels. Biomacromolecules 12(7):2601–2609.  https://doi.org/10.1021/bm200389tCrossRefGoogle Scholar
  92. Guo X, Bai Y, Zhang L, Zhang B, Zagidullin N, Carvalho K, Du Z, Cai B (2018) Cardiomyocyte differentiation of mesenchymal stem cells from bone marrow: new regulators and its implications. Stem Cell Res Ther 9(1):44.  https://doi.org/10.1186/s13287-018-0773-9CrossRefGoogle Scholar
  93. Gupte M, Umbarkar P, Singh AP, Zhang Q, Tousif S, Lal H (2020) Deletion of cardiomyocyte glycogen synthase Kinase-3 Beta (GSK-3beta) improves systemic glucose tolerance with maintained heart function in established obesity. Cells (Basel) 9(5).  https://doi.org/10.3390/cells9051120
  94. Haraguchi Y, Shimizu T, Sasagawa T, Sekine H, Sakaguchi K, Kikuchi T, Sekine W, Sekiya S, Yamato M, Umezu M, Okano T (2012) Fabrication of functional three-dimensional tissues by stacking cell sheets in vitro. Nat Protoc 7(5):850–858.  https://doi.org/10.1038/nprot.2012.027CrossRefGoogle Scholar
  95. Hata H, Bar A, Dorfman S, Vukadinovic Z, Sawa Y, Haverich A, Hilfiker A (2010) Engineering a novel three-dimensional contractile myocardial patch with cell sheets and decellularised matrix. Eur J Cardiothorac Surg 38(4):450–455.  https://doi.org/10.1016/j.ejcts.2010.02.009CrossRefGoogle Scholar
  96. Henry TD, Pepine CJ, Lambert CR, Traverse JH, Schatz R, Costa M, Povsic TJ, Anderson RD, Willerson JT, Kesten S, Perin EC (2017) The Athena trials: autologous adipose-derived regenerative cells for refractory chronic myocardial ischemia with left ventricular dysfunction. Catheter Cardiovasc Interv 89(2):169–177.  https://doi.org/10.1002/ccd.26601CrossRefGoogle Scholar
  97. Horwitz EM, Le Blanc K, Dominici M, Mueller I, Slaper-Cortenbach I, Marini FC, Deans RJ, Krause DS, Keating A, International Society for Cellular T (2005) Clarification of the nomenclature for MSC: the International Society for Cellular Therapy position statement. Cytotherapy 7(5):393–395.  https://doi.org/10.1080/14653240500319234CrossRefGoogle Scholar
  98. Hosoyama K, Ahumada M, Goel K, Ruel M, Suuronen EJ, Alarcon EI (2019) Electroconductive materials as biomimetic platforms for tissue regeneration. Biotechnol Adv 37(3):444–458.  https://doi.org/10.1016/j.biotechadv.2019.02.011CrossRefGoogle Scholar
  99. Huang Y, Harrison MR, Osorio A, Kim J, Baugh A, Duan CM, Sucov HM, Lien CL (2013) Igf signaling is required for cardiomyocyte proliferation during zebrafish heart development and regeneration. PLoS One 8(6):e67266.  https://doi.org/10.1371/journal.pone.0067266CrossRefGoogle Scholar
  100. Huang SX, Yang Y, Yang Q, Zhao Q, Ye XF (2018) Engineered circulatory scaffolds for building cardiac tissue. J Thorac Dis 10:S2312–S2328.  https://doi.org/10.21037/jtd.2017.12.92CrossRefGoogle Scholar
  101. Huebsch N, Loskill P, Deveshwar N, Spencer CI, Judge LM, Mandegar MA, Fox CB, Mohamed TMA, Ma Z, Mathur A, Sheehan AM, Truong A, Saxton M, Yoo J, Srivastava D, Desai TA, So PL, Healy KE, Conklin BR (2016) Miniaturized iPS-cell-derived cardiac muscles for physiologically relevant drug response analyses. Sci Rep 6:24726.  https://doi.org/10.1038/srep24726CrossRefGoogle Scholar
  102. Hussain A, Collins G, Yip D, Cho CH (2013) Functional 3-D cardiac co-culture model using bioactive chitosan nanofiber scaffolds. Biotechnol Bioeng 110(2):637–647.  https://doi.org/10.1002/bit.24727CrossRefGoogle Scholar
  103. Ikonen L, Kerkela E, Metselaar G, Stuart MCA, de Jong MR, Aalto-Setala K (2013) 2D and 3D self-assembling nanofiber hydrogels for cardiomyocyte culture. Biomed Res Int 2013:285678.  https://doi.org/10.1155/2013/285678CrossRefGoogle Scholar
  104. Jackson R, Mount S, Ye B, Mayfield AE, Chan V, Boodhwani M, Davies RA, Haddad H, Davis DR (2017) Isolation of human explant derived cardiac stem cells from cryopreserved heart tissue. PLoS One 12(4):e0176000.  https://doi.org/10.1371/journal.pone.0176000CrossRefGoogle Scholar
  105. Jenkins TL, Little D (2019) Synthetic scaffolds for musculoskeletal tissue engineering: cellular responses to fiber parameters. Npj Regen Med 4:UNSP 15.  https://doi.org/10.1038/s41536-019-0076-5CrossRefGoogle Scholar
  106. Johnston PV, Sasano T, Mills K, Evers R, Lee ST, Smith RR, Lardo AC, Lai S, Steenbergen C, Gerstenblith G, Lange R, Marban E (2009) Engraftment, differentiation, and functional benefits of autologous cardiosphere-derived cells in porcine ischemic cardiomyopathy. Circulation 120(12):1075–1083.  https://doi.org/10.1161/CIRCULATIONAHA.108.816058. 1077 p following 1083CrossRefGoogle Scholar
  107. Jung JP, Bache-Wiig MK, Provenzano PP, Ogle BM (2016) Heterogeneous differentiation of human mesenchymal stem cells in 3D extracellular matrix composites. Biores Open Access 5(1):37–48.  https://doi.org/10.1089/biores.2015.0044CrossRefGoogle Scholar
  108. Kai D, Prabhakaran MP, Jin GR, Ramakrishna S (2011) Guided orientation of cardiomyocytes on electrospun aligned nanofibers for cardiac tissue engineering. J Biomed Mater Res Part B 98b(2):379–386.  https://doi.org/10.1002/jbm.b.31862CrossRefGoogle Scholar
  109. Kang LH, Armstrong PA, Lee LJ, Duan B, Kang KH, Butcher JT (2017) Optimizing photo-encapsulation viability of heart valve cell types in 3D printable composite hydrogels. Ann Biomed Eng 45(2):360–377.  https://doi.org/10.1007/s10439-016-1619-1CrossRefGoogle Scholar
  110. Kapelios CJ, Nanas JN, Malliaras K (2016) Allogeneic cardiosphere-derived cells for myocardial regeneration: current progress and recent results. Futur Cardiol 12(1):87–100.  https://doi.org/10.2217/fca.15.72CrossRefGoogle Scholar
  111. Karam JP, Bonafe F, Sindji L, Muscari C, Montero-Menei CN (2015) Adipose-derived stem cell adhesion on laminin-coated microcarriers improves commitment toward the cardiomyogenic lineage. J Biomed Mater Res A 103(5):1828–1839.  https://doi.org/10.1002/jbm.a.35304CrossRefGoogle Scholar
  112. Karbassi E, Fenix A, Marchiano S, Muraoka N, Nakamura K, Yang X, Murry CE (2020) Cardiomyocyte maturation: advances in knowledge and implications for regenerative medicine. Nat Rev Cardiol.  https://doi.org/10.1038/s41569-019-0331-x
  113. Karpov AA, Puzanov MV, Ivkin DY, Krasnova MV, Anikin NA, Docshin PM, Moiseeva OM, Galagudza MM (2019) Non-inferiority of microencapsulated mesenchymal stem cells to free cells in cardiac repair after myocardial infarction: a rationale for using paracrine factor(s) instead of cells. Int J Exp Pathol 100(2):102–113.  https://doi.org/10.1111/iep.12312CrossRefGoogle Scholar
  114. Kasai-Brunswick TH, Costa AR, Barbosa RA, Farjun B, Mesquita FC, Silva Dos Santos D, Ramos IP, Suhett G, Brasil GV, Cunha ST, Brito JO, Passipieri JD, Carvalho AB, Campos de Carvalho AC (2017) Cardiosphere-derived cells do not improve cardiac function in rats with cardiac failure. Stem Cell Res Ther 8(1):36.  https://doi.org/10.1186/s13287-017-0481-xCrossRefGoogle Scholar
  115. Kattman SJ, Witty AD, Gagliardi M, Dubois NC, Niapour M, Hotta A, Ellis J, Keller G (2011) Stage-specific optimization of activin/nodal and BMP signaling promotes cardiac differentiation of mouse and human pluripotent stem cell lines. Cell Stem Cell 8(2):228–240.  https://doi.org/10.1016/j.stem.2010.12.008CrossRefGoogle Scholar
  116. Keith MCL, Bolli R (2015) “String theory” of c-kit(pos) cardiac cells a new paradigm regarding the nature of these cells that may reconcile apparently discrepant results. Circ Res 116(7):1216–1230.  https://doi.org/10.1161/Circresaha.116.305557CrossRefGoogle Scholar
  117. Kempf H, Olmer R, Kropp C, Ruckert M, Jara-Avaca M, Robles-Diaz D, Franke A, Elliott DA, Wojciechowski D, Fischer M, Roa Lara A, Kensah G, Gruh I, Haverich A, Martin U, Zweigerdt R (2014) Controlling expansion and cardiomyogenic differentiation of human pluripotent stem cells in scalable suspension culture. Stem Cell Rep 3(6):1132–1146.  https://doi.org/10.1016/j.stemcr.2014.09.017CrossRefGoogle Scholar
  118. Ketabat F, Karkhaneh A, Aghdam RM, Tafti SHA (2017) Injectable conductive collagen/alginate/polypyrrole hydrogels as a biocompatible system for biomedical applications. J Biomater Sci Polym Ed 28(8):794–805.  https://doi.org/10.1080/09205063.2017.1302314CrossRefGoogle Scholar
  119. Kharaziha M, Shin SR, Nikkhah M, Topkaya SN, Masoumi N, Annabi N, Dokmeci MR, Khademhosseini A (2014) Tough and flexible CNT-polymeric hybrid scaffolds for engineering cardiac constructs. Biomaterials 35(26):7346–7354.  https://doi.org/10.1016/j.biomaterials.2014.05.014CrossRefGoogle Scholar
  120. Kim EK, Son MY, Kang Y, Lee CH, Kim HR, Won Y, Yoon W, Kim HC, Nam KH (2011) Chemical compound 31002 stimulates cardiomyogenic differentiation of embryonic stem cells. Lab Anim Res 27(3):205–212.  https://doi.org/10.5625/lar.2011.27.3.205CrossRefGoogle Scholar
  121. Kim TY, Kofron CM, King ME, Markes AR, Okundaye AO, Qu ZL, Mende U, Choi BR (2018) Directed fusion of cardiac spheroids into larger heterocellular microtissues enables investigation of cardiac action potential propagation via cardiac fibroblasts. PLoS One 13(5):e0196714.  https://doi.org/10.1371/journal.pone.0196714CrossRefGoogle Scholar
  122. Kodama H, Inoue T, Watanabe R, Yasuoka H, Kawakami Y, Ogawa S, Ikeda Y, Mikoshiba K, Kuwana M (2005) Cardiomyogenic potential of mesenchymal progenitors derived from human circulating CD14+ monocytes. Stem Cells Dev 14(6):676–686.  https://doi.org/10.1089/scd.2005.14.676CrossRefGoogle Scholar
  123. Koivisto JT, Gering C, Karvinen J, Maria Cherian R, Belay B, Hyttinen J, Aalto-Setala K, Kellomaki M, Parraga J (2019) Mechanically biomimetic gelatin-Gellan gum hydrogels for 3D culture of beating human cardiomyocytes. ACS Appl Mater Interfaces 11(23):20589–20602.  https://doi.org/10.1021/acsami.8b22343CrossRefGoogle Scholar
  124. Kong HJ, Smith MK, Mooney DJ (2003) Designing alginate hydrogels to maintain viability of immobilized cells. Biomaterials 24(22):4023–4029.  https://doi.org/10.1016/S0142-9612(03)00295-3CrossRefGoogle Scholar
  125. Konze SA, Cajic S, Oberbeck A, Hennig R, Pich A, Rapp E, Buettner FFR (2017) Quantitative assessment of sialo-glycoproteins and NGlycans during Cardiomyogenic differentiation of human induced pluripotent stem cells. Chembiochem 18(13):1317–1331.  https://doi.org/10.1002/cbic.201700100CrossRefGoogle Scholar
  126. Laflamme MA, Chen KY, Naumova AV, Muskheli V, Fugate JA, Dupras SK, Reinecke H, Xu C, Hassanipour M, Police S, O'Sullivan C, Collins L, Chen Y, Minami E, Gill EA, Ueno S, Yuan C, Gold J, Murry CE (2007) Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nat Biotechnol 25(9):1015–1024.  https://doi.org/10.1038/nbt1327CrossRefGoogle Scholar
  127. LaNasa SM, Bryant SJ (2009) Influence of ECM proteins and their analogs on cells cultured on 2-D hydrogels for cardiac muscle tissue engineering. Acta Biomater 5(8):2929–2938.  https://doi.org/10.1016/j.actbio.2009.05.011CrossRefGoogle Scholar
  128. Lee ST, White AJ, Matsushita S, Malliaras K, Steenbergen C, Zhang Y, Li TS, Terrovitis J, Yee K, Simsir S, Makkar R, Marban E (2011) Intramyocardial injection of autologous cardiospheres or cardiosphere-derived cells preserves function and minimizes adverse ventricular remodeling in pigs with heart failure post-myocardial infarction. J Am Coll Cardiol 57(4):455–465.  https://doi.org/10.1016/j.jacc.2010.07.049CrossRefGoogle Scholar
  129. Li MY, Mondrinos MJ, Chen XS, Lelkes PI (2006) Co-electrospun poly (lactide-co-glycolide), gelatin, and elastin blends for tissue engineering scaffolds. Tissue Eng 12(4):989–989Google Scholar
  130. Li JH, Zhang N, Wang JA (2008) Improved anti-apoptotic and anti-remodeling potency of bone marrow mesenchymal stem cells by anoxic pre-conditioning in diabetic cardiomyopathy. J Endocrinol Investig 31(2):103–110.  https://doi.org/10.1007/BF03345575CrossRefGoogle Scholar
  131. Li Z, Guo X, Matsushita S, Guan J (2011) Differentiation of cardiosphere-derived cells into a mature cardiac lineage using biodegradable poly(N-isopropylacrylamide) hydrogels. Biomaterials 32(12):3220–3232.  https://doi.org/10.1016/j.biomaterials.2011.01.050CrossRefGoogle Scholar
  132. Li ZQ, Fan ZB, Xu YY, Lo WS, Wang X, Niu H, Li XF, Xie XY, Khan M, Guan JJ (2016) pH-sensitive and thermosensitive hydrogels as stem-cell carriers for cardiac therapy. ACS Appl Mater Interfaces 8(17):10752–10760.  https://doi.org/10.1021/acsami.6b01374CrossRefGoogle Scholar
  133. Li Y, Tian S, Lei I, Liu L, Ma P, Wang Z (2017) Transplantation of multipotent Isl1+ cardiac progenitor cells preserves infarcted heart function in mice. Am J Transl Res 9(3):1530–1542Google Scholar
  134. Liang Y, Zhao X, Ma PX, Guo B, Du Y, Han X (2019) pH-responsive injectable hydrogels with mucosal adhesiveness based on chitosan-grafted-dihydrocaffeic acid and oxidized pullulan for localized drug delivery. J Colloid Interface Sci 536:224–234.  https://doi.org/10.1016/j.jcis.2018.10.056CrossRefGoogle Scholar
  135. Lin CR, Ke XG, Cvetanovic I, Ranade V, Somberg J (2005) The influence of extracellular acidosis on the effect of IKr Blockers. J Cardiovasc Pharmacol Ther 10(1):67–76.  https://doi.org/10.1177/107424840501000108CrossRefGoogle Scholar
  136. Lipinski MJ, Biondi-Zoccai GGL, Abbate A, Khianey R, Sheiban I, Bartunek J, Vanderheyden M, Kim HS, Kang HJ, Strauer BE, Vetrovec GW (2007) Impact of intracoronary cell therapy on left ventricular function in the setting of acute myocardial infarction: a collaborative systematic review and meta-analysis of controlled clinical trials. J Am Coll Cardiol 50(18):1761–1767.  https://doi.org/10.1016/j.jacc.2007.07.041CrossRefGoogle Scholar
  137. Macadangdang J, Lee HJ, Carson D, Jiao A, Fugate J, Pabon L, Regnier M, Murry C, Kim DH (2014) Capillary Force lithography for cardiac tissue engineering. J Vis Exp: JoVE 88:e50039.  https://doi.org/10.3791/50039CrossRefGoogle Scholar
  138. Majidi SS, Slemrning-Adamsen P, Hanif M, Zhang ZY, Wang ZM, Chen ML (2018) Wet electrospun alginate/gelatin hydrogel nanofibers for 3D cell culture. Int J Biol Macromol 118:1648–1654.  https://doi.org/10.1016/j.ijbiomac.2018.07.005CrossRefGoogle Scholar
  139. Makkar RR, Smith RR, Cheng K, Malliaras K, Thomson LE, Berman D, Czer LS, Marban L, Mendizabal A, Johnston PV, Russell SD, Schuleri KH, Lardo AC, Gerstenblith G, Marban E (2012) Intracoronary cardiosphere-derived cells for heart regeneration after myocardial infarction (CADUCEUS): a prospective, randomised phase 1 trial. Lancet 379(9819):895–904.  https://doi.org/10.1016/S0140-6736(12)60195-0CrossRefGoogle Scholar
  140. Maleki M, Ghanbarvand F, Reza Behvarz M, Ejtemaei M, Ghadirkhomi E (2014) Comparison of mesenchymal stem cell markers in multiple human adult stem cells. Int J Stem Cells 7(2):118–126.  https://doi.org/10.15283/ijsc.2014.7.2.118CrossRefGoogle Scholar
  141. Malki M, Fleischer S, Shapira A, Dvir T (2018) Gold Nanorod-based engineered cardiac patch for suture-free engraftment by near IR. Nano Lett 18(7):4069–4073.  https://doi.org/10.1021/acs.nanolett.7b04924CrossRefGoogle Scholar
  142. Malliaras K, Smith RR, Kanazawa H, Yee K, Seinfeld J, Tseliou E, Dawkins JF, Kreke M, Cheng K, Luthringer D, Ho CS, Blusztajn A, Valle I, Chowdhury S, Makkar RR, Dharmakumar R, Li D, Marban L, Marban E (2013) Validation of contrast-enhanced magnetic resonance imaging to monitor regenerative efficacy after cell therapy in a porcine model of convalescent myocardial infarction. Circulation 128(25):2764–2775.  https://doi.org/10.1161/CIRCULATIONAHA.113.002863CrossRefGoogle Scholar
  143. Mani MP, Jaganathan SK, Faudzi AA, Sunar MS (2019) Engineered electrospun polyurethane composite patch combined with bi-functional components rendering high strength for cardiac tissue engineering. Polymers (Basel) 11(4):705.  https://doi.org/10.3390/Polym11040705CrossRefGoogle Scholar
  144. Marban E, Malliaras K, Smith RR, Makkar R, Mendizabal A (2012) Cardiosphere-derived cells for heart regeneration reply. Lancet 379(9835):2426–2427.  https://doi.org/10.1016/S0140-6736(12)61064-2CrossRefGoogle Scholar
  145. Marino F, Scalise M, Cianflone E, Mancuso T, Aquila I, Agosti V, Torella M, Paolino D, Mollace V, Nadal-Ginard B, Torella D (2019) Role of c-kit in myocardial regeneration and aging. Front Endocrinol (Lausanne) 10:371.  https://doi.org/10.3389/fendo.2019.00371CrossRefGoogle Scholar
  146. Martin GR (1981) Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci U S A 78(12):7634–7638.  https://doi.org/10.1073/pnas.78.12.7634CrossRefGoogle Scholar
  147. Marunouchi T, Yano E, Tanonaka K (2018) Effects of cardiosphere-derived cell transplantation on cardiac mitochondrial oxygen consumption after myocardial infarction in rats. Biomed Pharmacother 108:883–892.  https://doi.org/10.1016/j.biopha.2018.09.117CrossRefGoogle Scholar
  148. Masumoto H, Yamashita JK (2018) Human iPS cell-engineered three-dimensional cardiac tissues perfused by capillary networks between host and graft. Inflamm Regen 38:UNSP 26.  https://doi.org/10.1186/s41232-018-0084-7CrossRefGoogle Scholar
  149. Masumoto H, Ikuno T, Takeda M, Fukushima H, Marui A, Katayama S, Shimizu T, Ikeda T, Okano T, Sakata R, Yamashita JK (2014) Human iPS cell-engineered cardiac tissue sheets with cardiomyocytes and vascular cells for cardiac regeneration. Sci Rep 4:6716.  https://doi.org/10.1038/srep06716CrossRefGoogle Scholar
  150. Mathur A, Ma Z, Loskill P, Jeeawoody S, Healy KE (2016) In vitro cardiac tissue models: current status and future prospects. Adv Drug Deliv Rev 96:203–213.  https://doi.org/10.1016/j.addr.2015.09.011CrossRefGoogle Scholar
  151. Matsa E, Burridge PW, Wu JC (2014) Human stem cells for modeling heart disease and for drug discovery. Sci Transl Med 6(239):239ps6.  https://doi.org/10.1126/scitranslmed.3008921CrossRefGoogle Scholar
  152. Matsuda Y, Takahashi K, Kamioka H, Naruse K (2018) Human gingival fibroblast feeder cells promote maturation of induced pluripotent stem cells into cardiomyocytes. Biochem Biophys Res Commun 503(3):1798–1804.  https://doi.org/10.1016/j.bbrc.2018.07.116CrossRefGoogle Scholar
  153. Mauretti A, Neri A, Kossover O, Seliktar D, Nardo PD, Melino S (2016) Design of a novel composite H2 S-releasing hydrogel for cardiac tissue repair. Macromol Biosci 16(6):847–858.  https://doi.org/10.1002/mabi.201500430CrossRefGoogle Scholar
  154. Menasche P, Hagege AA, Scorsin M, Pouzet B, Desnos M, Duboc D, Schwartz K, Vilquin JT, Marolleau JP (2001) Myoblast transplantation for heart failure. Lancet 357(9252):279–280.  https://doi.org/10.1016/S0140-6736(00)03617-5CrossRefGoogle Scholar
  155. Menasche P, Vanneaux V, Hagege A, Bel A, Cholley B, Parouchev A, Cacciapuoti I, Al-Daccak R, Benhamouda N, Blons H, Agbulut O, Tosca L, Trouvin JH, Fabreguettes JR, Bellamy V, Charron D, Tartour E, Tachdjian G, Desnos M, Larghero J (2018) Transplantation of human embryonic stem cell-derived cardiovascular progenitors for severe ischemic left ventricular dysfunction. J Am Coll Cardiol 71(4):429–438.  https://doi.org/10.1016/j.jacc.2017.11.047CrossRefGoogle Scholar
  156. Minami I, Yamada K, Otsuji TG, Yamamoto T, Shen Y, Otsuka S, Kadota S, Morone N, Barve M, Asai Y, Tenkova-Heuser T, Heuser JE, Uesugi M, Aiba K, Nakatsuji N (2012) A small molecule that promotes cardiac differentiation of human pluripotent stem cells under defined, cytokine- and Xeno-free conditions. Cell Rep 2(5):1448–1460.  https://doi.org/10.1016/j.celrep.2012.09.015CrossRefGoogle Scholar
  157. Minatoguchi S, Takemura G, Chen XH, Wang NY, Uno Y, Koda M, Arai M, Misao Y, Lu CJ, Suzuki K, Goto K, Komada A, Takahashi T, Kosai K, Fujiwara T, Fujiwara H (2004) Acceleration of the healing process and myocardial regeneration may be important as a mechanism of improvement of cardiac function and remodeling by postinfarction granulocyte colony-stimulating factor treatment. Circulation 109(21):2572–2580.  https://doi.org/10.1161/01.Cir.0000129770.93985.3eCrossRefGoogle Scholar
  158. Mitcheson JS, Hancox JC, Levi AJ (1998) Cultured adult cardiac myocytes: future applications, culture methods, morphological and electrophysiological properties. Cardiovasc Res 39(2):280–300.  https://doi.org/10.1016/s0008-6363(98)00128-xCrossRefGoogle Scholar
  159. Moshksayan K, Kashaninejad N, Warkiani ME, Lock JG, Moghadas H, Firoozabadi B, Saidi MS, Nguyen NT (2018) Spheroids-on-a-chip: recent advances and design considerations in microfluidic platforms for spheroid formation and culture. Sensors Actuators B Chem 263:151–176.  https://doi.org/10.1016/j.snb.2018.01.223CrossRefGoogle Scholar
  160. Musaro A, Giacinti C, Borsellino G, Dobrowolny G, Pelosi L, Cairns L, Ottolenghi S, Cossu G, Bernardi G, Battistini L, Molinaro M, Rosenthal N (2004) Stem cell-mediated muscle regeneration is enhanced by local isoform of insulin-like growth factor 1. P Natl Acad Sci U S A 101(5):1206–1210.  https://doi.org/10.1073/pnas.0303792101CrossRefGoogle Scholar
  161. Niu H, Li X, Li H, Fan Z, Ma J, Guan J (2019) Thermosensitive, fast gelling, photoluminescent, highly flexible, and degradable hydrogels for stem cell delivery. Acta Biomater 83:96–108.  https://doi.org/10.1016/j.actbio.2018.10.038CrossRefGoogle Scholar
  162. Noguchi R, Nakayama K, Itoh M, Kamohara K, Furukawa K, Oyama J, Node K, Morita S (2016) Development of a three-dimensional pre-vascularized scaffold-free contractile cardiac patch for treating heart disease. J Heart Lung Transplant 35(1):137–145.  https://doi.org/10.1016/j.healun.2015.06.001CrossRefGoogle Scholar
  163. Oikonomopoulos A, Kitani T, Wu JC (2018) Pluripotent stem cell-derived cardiomyocytes as a platform for cell therapy applications: Progress and hurdles for clinical translation. Mol Ther 26(7):1624–1634.  https://doi.org/10.1016/j.ymthe.2018.02.026CrossRefGoogle Scholar
  164. Olivetti G, Capasso JM, Meggs LG, Sonnenblick EH, Anversa P (1991) Cellular basis of chronic ventricular remodeling after myocardial infarction in rats. Circ Res 68(3):856–869.  https://doi.org/10.1161/01.res.68.3.856CrossRefGoogle Scholar
  165. Ong CS, Fukunishi T, Nashed A, Blazeski A, Zhang HT, Hardy S, DiSilvestre D, Vricella L, Conte J, Tung L, Tomaselli G, Hibino N (2017) Creation of cardiac tissue exhibiting mechanical integration of spheroids using 3D bioprinting. J Vis Exp: JoVE 125:e55438.  https://doi.org/10.3791/55438CrossRefGoogle Scholar
  166. Peischard S, Piccini I, Strutz-Seebohm N, Greber B, Seebohm G (2017) From iPSC towards cardiac tissue-a road under construction. Pflugers Arch 469(10):1233–1243.  https://doi.org/10.1007/s00424-017-2003-1CrossRefGoogle Scholar
  167. Pekkanen-Mattila M, Ojala M, Kerkela E, Rajala K, Skottman H, Aalto-Setala K (2012) The effect of human and mouse fibroblast feeder cells on cardiac differentiation of human pluripotent stem cells. Stem Cells Int 2012:875059.  https://doi.org/10.1155/2012/875059CrossRefGoogle Scholar
  168. Pena B, Martinelli V, Jeong M, Bosi S, Lapasin R, Taylor MRG, Long CS, Shandas R, Park D, Mestroni L (2016) Biomimetic polymers for cardiac tissue engineering. Biomacromolecules 17(5):1593–1601.  https://doi.org/10.1021/acs.biomac.5b01734CrossRefGoogle Scholar
  169. Pinto AR, Ilinykh A, Ivey MJ, Kuwabara JT, D'Antoni ML, Debuque R, Chandran A, Wang L, Arora K, Rosenthal NA, Tallquist MD (2016) Revisiting cardiac cellular composition. Circ Res 118(3):400–409.  https://doi.org/10.1161/CIRCRESAHA.115.307778CrossRefGoogle Scholar
  170. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284(5411):143–147.  https://doi.org/10.1126/science.284.5411.143CrossRefGoogle Scholar
  171. Pok S, Vitale F, Eichmann SL, Benavides OM, Pasquali M, Jacot JG (2014) Biocompatible carbon nanotube-chitosan scaffold matching the electrical conductivity of the heart. ACS Nano 8(10):9822–9832.  https://doi.org/10.1021/nn503693hCrossRefGoogle Scholar
  172. Polonchuk L, Chabria M, Badi L, Hoflack JC, Figtree G, Davies MJ, Gentile C (2017) Cardiac spheroids as promising in vitro models to study the human heart microenvironment. Sci Rep 7:7005.  https://doi.org/10.1038/S41598-017-06385-8CrossRefGoogle Scholar
  173. Ponikowski P, Anker SD, AlHabib KF, Cowie MR, Force TL, Hu S, Jaarsma T, Krum H, Rastogi V, Rohde LE, Samal UC, Shimokawa H, Budi Siswanto B, Sliwa K, Filippatos G (2014) Heart failure: preventing disease and death worldwide. ESC Heart Fail 1(1):4–25.  https://doi.org/10.1002/ehf2.12005CrossRefGoogle Scholar
  174. Prestwich GD (2011) Hyaluronic acid-based clinical biomaterials derived for cell and molecule delivery in regenerative medicine. J Control Release 155(2):193–199.  https://doi.org/10.1016/j.jconrel.2011.04.007CrossRefGoogle Scholar
  175. Qiao Y, Dong Q, Li BC, Obaid S, Miccile C, Yin RT, Talapatra T, Lin ZX, Li SH, Li ZY, Efimov IR (2019) Multiparametric slice culture platform for the investigation of human cardiac tissue physiology. Prog Biophys Mol Biol 144:139–150.  https://doi.org/10.1016/j.pbiomolbio.2018.06.001CrossRefGoogle Scholar
  176. Ravichandran R, Venugopal JR, Sundarrajan S, Mukherjee S, Ramakrishna S (2013) Cardiogenic differentiation of mesenchymal stem cells on elastomeric poly (glycerol sebacate)/collagen core/shell fibers. World J Cardiol 5(3):28–41.  https://doi.org/10.4330/wjc.v5.i3.28CrossRefGoogle Scholar
  177. Regev O, Khalfin R, Zussman E, Cohen Y (2010) About the albumin structure in solution and related electro-spinnability issues. Int J Biol Macromol 47(2):261–265.  https://doi.org/10.1016/j.ijbiomac.2010.04.012CrossRefGoogle Scholar
  178. Reinecke H, MacDonald GH, Hauschka SD, Murry CE (2000) Electromechanical coupling between skeletal and cardiac muscle. Implications for infarct repair. J Cell Biol 149(3):731–740.  https://doi.org/10.1083/jcb.149.3.731CrossRefGoogle Scholar
  179. Roth GA, Johnson C, Abajobir A, Abd-Allah F, Abera SF, Abyu G, Ahmed M, Aksut B, Alam T, Alam K, Alla F, Alvis-Guzman N, Amrock S, Ansari H, Arnlov J, Asayesh H, Atey TM, Avila-Burgos L, Awasthi A, Banerjee A, Barac A, Barnighausen T, Barregard L, Bedi N, Ketema EB, Bennett D, Berhe G, Bhutta Z, Bitew S, Carapetis J, Carrero JJ, Malta DC, Castaneda-Orjuela CA, Castillo-Rivas J, Catala-Lopez F, Choi JY, Christensen H, Cirillo M, Cooper L, Criqui M, Cundiff D, Damasceno A, Dandona L, Dandona R, Davletov K, Dharmaratne S, Dorairaj P, Dubey M, Ehrenkranz R, Zaki ME, Faraon EJA, Esteghamati A, Farid T, Farvid M, Feigin V, Ding EL, Fowkes G, Gebrehiwot T, Gillum R, Gold A, Gona P, Gupta R, Habtewold TD, Hafezi-Nejad N, Hailu T, Hailu GB, Hankey G, Hassen HY, Abate KH, Havmoeller R, Hay SI, Horino M, Hotez PJ, Jacobsen K, James S, Javanbakht M, Jeemon P, John D, Jonas J, Kalkonde Y, Karimkhani C, Kasaeian A, Khader Y, Khan A, Khang YH, Khera S, Khoja AT, Khubchandani J, Kim D, Kolte D, Kosen S, Krohn KJ, Kumar GA, Kwan GF, Lal DK, Larsson A, Linn S, Lopez A, Lotufo PA, Abd El Razek HM, Malekzadeh R, Mazidi M, Meier T, Meles KG, Mensah G, Meretoja A, Mezgebe H, Miller T, Mirrakhimov E, Mohammed S, Moran AE, Musa KI, Narula J, Neal B, Ngalesoni F, Nguyen G, Obermeyer CM, Owolabi M, Patton G, Pedro J, Qato D, Qorbani M, Rahimi K, Rai RK, Rawaf S, Ribeiro A, Safiri S, Salomon JA, Santos I, Milicevic MS, Sartorius B, Schutte A, Sepanlou S, Shaikh MA, Shin MJ, Shishehbor M, Shore H, Silva DAS, Sobngwi E, Stranges S, Swaminathan S, Tabares-Seisdedos R, Atnafu NT, Tesfay F, Thakur JS, Thrift A, Topor-Madry R, Truelsen T, Tyrovolas S, Ukwaja KN, Uthman O, Vasankari T, Vlassov V, Vollset SE, Wakayo T, Watkins D, Weintraub R, Werdecker A, Westerman R, Wiysonge CS, Wolfe C, Workicho A, Xu GL, Yano Y, Yip P, Yonemoto N, Younis M, Yu CH, Vos T, Naghavi M, Murray C (2017) Global, regional, and National Burden of cardiovascular diseases for 10 causes, 1990 to 2015. J Am Coll Cardiol 70(1):1–25.  https://doi.org/10.1016/j.jacc.2017.04.052CrossRefGoogle Scholar
  180. Rufaihah AJ, Yasa IC, Ramanujam VS, Arularasu SC, Kofidis T, Guler MO, Tekinay AB (2017) Angiogenic peptide nanofibers repair cardiac tissue defect after myocardial infarction. Acta Biomater 58:102–112.  https://doi.org/10.1016/j.actbio.2017.06.009CrossRefGoogle Scholar
  181. Runge MB, Dadsetan M, Baltrusaitis J, Ruesink T, Lu L, Windebank AJ, Yaszemski MJ (2010) Development of electrically conductive oligo(polyethylene glycol) fumarate-polypyrrole hydrogels for nerve regeneration. Biomacromolecules 11(11):2845–2853.  https://doi.org/10.1021/bm100526aCrossRefGoogle Scholar
  182. Sachlos E, Auguste DT (2008) Embryoid body morphology influences diffusive transport of inductive biochemicals: a strategy for stem cell differentiation. Biomaterials 29(34):4471–4480.  https://doi.org/10.1016/j.biomaterials.2008.08.012CrossRefGoogle Scholar
  183. Sanganalmath SK, Bolli R (2013) Cell therapy for heart failure a comprehensive overview of experimental and clinical studies, current challenges, and future directions. Circ Res 113(6):810–834.  https://doi.org/10.1161/Circresaha.113.300219CrossRefGoogle Scholar
  184. Sasaki D, Matsuura K, Seta H, Haraguchi Y, Okano T, Shimizu T (2018) Contractile force measurement of human induced pluripotent stem cell-derived cardiac cell sheet-tissue. PLoS One 13(5):e0198026.  https://doi.org/10.1371/journal.pone.0198026CrossRefGoogle Scholar
  185. Savarese G, Lund LH (2017) Global public health burden of heart failure. Card Fail Rev 3(1):7–11.  https://doi.org/10.15420/cfr.2016:25:2CrossRefGoogle Scholar
  186. Schesny MK, Monaghan M, Bindermann AH, Freund D, Seifert M, Eble JA, Vogel S, Gawaz MP, Hinderer S, Schenke-Layland K (2014) Preserved bioactivity and tunable release of a SDF1-GPVI bi-specific protein using photo-crosslinked PEGda hydrogels. Biomaterials 35(25):7180–7187.  https://doi.org/10.1016/j.biomaterials.2014.04.116CrossRefGoogle Scholar
  187. Schwach V, Passier R (2019) Native cardiac environment and its impact on engineering cardiac tissue. Biomater Sci 7(9):3566–3580.  https://doi.org/10.1039/c8bm01348aCrossRefGoogle Scholar
  188. Sekine H, Shimizu T, Dobashi I, Matsuura K, Hagiwara N, Takahashi M, Kobayashi E, Yamato M, Okano T (2011) Cardiac cell sheet transplantation improves damaged heart function via superior cell survival in comparison with dissociated cell injection. Tissue Eng A 17(23–24):2973–2980.  https://doi.org/10.1089/ten.tea.2010.0659CrossRefGoogle Scholar
  189. Senyo SE, Steinhauser ML, Pizzimenti CL, Yang VK, Cai L, Wang M, Wu TD, Guerquin-Kern JL, Lechene CP, Lee RT (2013) Mammalian heart renewal by pre-existing cardiomyocytes. Nature 493(7432):433–436.  https://doi.org/10.1038/nature11682CrossRefGoogle Scholar
  190. Serpooshan V, Zhao MM, Metzler SA, Wei K, Shah PB, Wang A, Mahmoudi M, Malkovskiy AV, Rajadas J, Butte MJ, Bernstein D, Ruiz-Lozano P (2013) The effect of bioengineered acellular collagen patch on cardiac remodeling and ventricular function post myocardial infarction. Biomaterials 34(36):9048–9055.  https://doi.org/10.1016/j.biomaterials.2013.08.017CrossRefGoogle Scholar
  191. Seshi B, Kumar S, Sellers D (2000) Human bone marrow stromal cell: coexpression of markers specific for multiple mesenchymal cell lineages. Blood Cells Mol Dis 26(3):234–246.  https://doi.org/10.1006/bcmd.2000.0301CrossRefGoogle Scholar
  192. Shachar M, Tsur-Gang O, Dvir T, Leor J, Cohen S (2011) The effect of immobilized RGD peptide in alginate scaffolds on cardiac tissue engineering. Acta Biomater 7(1):152–162.  https://doi.org/10.1016/j.actbio.2010.07.034CrossRefGoogle Scholar
  193. Shapira-Schweitzer K, Habib M, Gepstein L, Seliktar D (2009) A photopolymerizable hydrogel for 3-D culture of human embryonic stem cell-derived cardiomyocytes and rat neonatal cardiac cells. J Mol Cell Cardiol 46(2):213–224.  https://doi.org/10.1016/j.yjmcc.2008.10.018CrossRefGoogle Scholar
  194. Shi CY, Li QG, Zhao YN, Chen W, Chen B, Xiao ZF, Lin H, Nie L, Wang DJ, Dai JW (2011) Stem-cell-capturing collagen scaffold promotes cardiac tissue regeneration. Biomaterials 32(10):2508–2515.  https://doi.org/10.1016/j.biomaterials.2010.12.026CrossRefGoogle Scholar
  195. Shibata S, Hayashi R, Kudo Y, Okubo T, Imaizumi T, Katayama T, Ishikawa Y, Kobayashi Y, Toga J, Taniguchi Y, Honma Y, Sekiguchi K, Nishida K (2020) Cell-type-specific adhesiveness and proliferation propensity on laminin isoforms enable purification of iPSC-derived corneal epithelium. Stem Cell Rep 14(4):663–676.  https://doi.org/10.1016/j.stemcr.2020.02.008CrossRefGoogle Scholar
  196. Shin SR, Jung SM, Zalabany M, Kim K, Zorlutuna P, Kim SB, Nikkhah M, Khabiry M, Azize M, Kong J, Wan KT, Palacios T, Dokmeci MR, Bae H, Tang XS, Khademhosseini A (2013) Carbon-nanotube-embedded hydrogel sheets for engineering cardiac constructs and bioactuators. ACS Nano 7(3):2369–2380.  https://doi.org/10.1021/nn305559jCrossRefGoogle Scholar
  197. Siegel G, Krause P, Wohrle S, Nowak P, Ayturan M, Kluba T, Brehm BR, Neumeister B, Kohler D, Rosenberger P, Just L, Northoff H, Schafer R (2012) Bone marrow-derived human mesenchymal stem cells express cardiomyogenic proteins but do not exhibit functional cardiomyogenic differentiation potential. Stem Cells Dev 21(13):2457–2470.  https://doi.org/10.1089/scd.2011.0626CrossRefGoogle Scholar
  198. Simon-Yarza T, Rossi A, Heffels KH, Prosper F, Groll J, Blanco-Prieto MJ (2015) Polymeric electrospun scaffolds: neuregulin encapsulation and biocompatibility studies in a model of myocardial ischemia. Tissue Eng A 21(9–10):1654–1661.  https://doi.org/10.1089/ten.TEA.2014.0523CrossRefGoogle Scholar
  199. Simpson DL, Mishra R, Sharma S, Goh SK, Deshmukh S, Kaushal S (2012) A strong regenerative ability of cardiac stem cells derived from neonatal hearts. Circulation 126(11):S46–S53.  https://doi.org/10.1161/Circulationaha.111.084699CrossRefGoogle Scholar
  200. Smith RR, Barile L, Cho HC, Leppo MK, Hare JM, Messina E, Giacomello A, Abraham MR, Marban E (2007) Regenerative potential of cardiosphere-derived cells expanded from percutaneous endomyocardial biopsy specimens. Circulation 115(7):896–908.  https://doi.org/10.1161/Circulationaha.106.655209CrossRefGoogle Scholar
  201. Soares CP, Midlej V, de Oliveira MEW, Benchimol M, Costa ML, Mermelstein C (2012) 2D and 3D-organized cardiac cells shows differences in cellular morphology, adhesion junctions, presence of myofibrils and protein expression. PLoS One 7(5):e38147.  https://doi.org/10.1371/journal.pone.0038147CrossRefGoogle Scholar
  202. Sondermeijer HP, See F, Seki T, Witkowski P, Woodland DC, Hardy MA, Itescu S (2008) Biocompatible 3-dimensional RGD-modified alginate scaffold designed to enhance cell transplantation to infarcted myocardium. Circulation 118(18):S322–S322Google Scholar
  203. Song YS, Joo HW, Park IH, Shen GY, Lee Y, Shin JH, Kim H, Kim KS (2017) Bone marrow mesenchymal stem cell-derived vascular endothelial growth factor attenuates cardiac apoptosis via regulation of cardiac miRNA-23a and miRNA-92a in a rat model of myocardial infarction. PLoS One 12(6):e0179972.  https://doi.org/10.1371/journal.pone.0179972CrossRefGoogle Scholar
  204. Soonpaa MH, Koh GY, Klug MG, Field LJ (1994) Formation of nascent intercalated disks between grafted fetal cardiomyocytes and host myocardium. Science 264(5155):98–101.  https://doi.org/10.1126/science.8140423CrossRefGoogle Scholar
  205. Sosunov EA, Anyukhovsky EP, Sosunov AA, Moshnikova A, Wijesinghe D, Engelman DM, Reshetnyak YK, Andreev OA (2013) pH (low) insertion peptide (pHLIP) targets ischemic myocardium. Proc Natl Acad Sci U S A 110(1):82–86.  https://doi.org/10.1073/pnas.1220038110CrossRefGoogle Scholar
  206. Srinivasan A, Sehgal PK (2010) Characterization of biocompatible collagen fibers--a promising candidate for cardiac patch. Tissue Eng Part C Methods 16(5):895–903.  https://doi.org/10.1089/ten.TEC.2009.0475CrossRefGoogle Scholar
  207. Su HH, Liao JM, Wang YH, Chen KM, Lin CW, Lee IH, Li YJ, Huang JY, Tsai SK, Yen JC, Huang SS (2019) Exogenous GDF11 attenuates non-canonical TGF-beta signaling to protect the heart from acute myocardial ischemia-reperfusion injury. Basic Res Cardiol 114(3):20.  https://doi.org/10.1007/s00395-019-0728-zCrossRefGoogle Scholar
  208. Sun H, Zhou J, Huang Z, Qu L, Lin N, Liang C, Dai R, Tang L, Tian F (2017) Carbon nanotube-incorporated collagen hydrogels improve cell alignment and the performance of cardiac constructs. Int J Nanomedicine 12:3109–3120.  https://doi.org/10.2147/IJN.S128030CrossRefGoogle Scholar
  209. Tachibana A, Santoso MR, Mahmoudi M, Shukla P, Wang L, Bennett M, Goldstone AB, Wang M, Fukushi M, Ebert AD, Woo YJ, Rulifson E, Yang PC (2017) Paracrine effects of the pluripotent stem cell-derived cardiac myocytes salvage the injured myocardium. Circ Res 121(6):E22-+.  https://doi.org/10.1161/Circresaha.117.310803CrossRefGoogle Scholar
  210. Tallawi M, Rosellini E, Barbani N, Cascone MG, Rai R, Saint-Pierre G, Boccaccini AR (2015) Strategies for the chemical and biological functionalization of scaffolds for cardiac tissue engineering: a review. J R Soc Interface 12(108):20150254.  https://doi.org/10.1098/rsif.2015.0254CrossRefGoogle Scholar
  211. Tang Y, Nyengaard JR, Andersen JB, Baandrup U, Gundersen HJ (2009) The application of stereological methods for estimating structural parameters in the human heart. Anat Rec 292(10):1630–1647.  https://doi.org/10.1002/ar.20952CrossRefGoogle Scholar
  212. Tian LL, Prabhakaran MP, Ding X, Kai D, Ramakrishna S (2013) Emulsion electrospun nanofibers as substrates for cardiomyogenic differentiation of mesenchymal stem cells. J Mater Sci Mater Med 24(11):2577–2587.  https://doi.org/10.1007/s10856-013-5003-5CrossRefGoogle Scholar
  213. Tijore A, Cai PQ, Nai MH, Li ZY, Yu W, Tay CY, Lim CT, Chen XD, Tan LP (2015) Role of cytoskeletal tension in the induction of Cardiomyogenic differentiation in micropatterned human mesenchymal stem cell. Adv Healthc Mater 4(9):1399–1407.  https://doi.org/10.1002/adhm.201500196CrossRefGoogle Scholar
  214. Ting S, Chen A, Reuveny S, Oh S (2014) An intermittent rocking platform for integrated expansion and differentiation of human pluripotent stem cells to cardiomyocytes in suspended microcarrier cultures. Stem Cell Res 13(2):202–213.  https://doi.org/10.1016/j.scr.2014.06.002CrossRefGoogle Scholar
  215. van den Akker F, Feyen DAM, van den Hoogen P, van Laake L, van Eeuwijk ECM, Hoefer I, Pasterkamp G, Chamuleau SAJ, Grundeman PF, Doevendans PA, Sluijter JPG (2017) Intramyocardial stem cell injection: go(ne) with the flow. Eur Heart J 38(3):184–186.  https://doi.org/10.1093/eurheartj/ehw056CrossRefGoogle Scholar
  216. van Marion MH, Bax NAM, van Turnhout MC, Mauretti A, van der Schaft DWJ, Goumans MJTH, Bouten CVC (2015) Behavior of CMPCs in unidirectional constrained and stress-free 3D hydrogels. J Mol Cell Cardiol 87:79–91.  https://doi.org/10.1016/j.yjmcc.2015.08.010CrossRefGoogle Scholar
  217. Veltman CE, Soliman OII, Geleijnse ML, Vletter WB, Smits PC, ten Cate FJ, Jordaens LJ, Balk AHHM, Serruys PW, Boersma E, van Domburg RT, van der Giessen WJ (2008) Four-year follow-up of treatment with intramyocardial skeletal myoblasts injection in patients with ischaemic cardiomyopathy. Eur Heart J 29(11):1386–1396.  https://doi.org/10.1093/eurheartj/ehn171CrossRefGoogle Scholar
  218. Vicinanza C, Aquila I, Scalise M, Cristiano F, Marino F, Cianflone E, Mancuso T, Marotta P, Sacco W, Lewis FC, Couch L, Shone V, Gritti G, Torella A, Smith AJ, Terracciano CM, Britti D, Veltri P, Indolfi C, Nadal-Ginard B, Ellison-Hughes GM, Torella D (2017) Adult cardiac stem cells are multipotent and robustly myogenic: c-kit expression is necessary but not sufficient for their identification. Cell Death Differ 24(12):2101–2116.  https://doi.org/10.1038/cdd.2017.130CrossRefGoogle Scholar
  219. Vukusic K, Jonsson M, Brantsing C, Dellgren G, Jeppsson A, Lindahl A, Asp J (2013) High density sphere culture of adult cardiac cells increases the levels of cardiac and progenitor markers and shows signs of vasculogenesis. Biomed Res Int 2013:696837.  https://doi.org/10.1155/2013/696837CrossRefGoogle Scholar
  220. Wang HB, Shi JX, Wang Y, Yin YJ, Wang LM, Liu JF, Liu ZQ, Duan CM, Zhu P, Wang CY (2014) Promotion of cardiac differentiation of brown adipose derived stem cells by chitosan hydrogel for repair after myocardial infarction. Biomaterials 35(13):3986–3998.  https://doi.org/10.1016/j.biomaterials.2014.01.021CrossRefGoogle Scholar
  221. Wang LJ, Meier EM, Tian S, Lei I, Liu L, Xian SX, Lam MT, Wang Z (2017) Transplantation of Isl1(+) cardiac progenitor cells in small intestinal submucosa improves infarcted heart function. Stem Cell Res Ther 8:230.  https://doi.org/10.1186/S13287-017-0675-2CrossRefGoogle Scholar
  222. Wang SY, Chen WD, Ma L, Zou MH, Dong WY, Yang HL, Sun L, Chen XX, Duan JZ (2019) Infant cardiosphere-derived cells exhibit non-durable heart protection in dilated cardiomyopathy rats. Cytotechnology 71(6):1043–1052.  https://doi.org/10.1007/s10616-019-00328-zCrossRefGoogle Scholar
  223. Weinberger F, Breckwoldt K, Pecha S, Kelly A, Geertz B, Starbatty J, Yorgan T, Cheng KH, Lessmann K, Stolen T, Scherrer-Crosbie M, Smith G, Reichenspurner H, Hansen A, Eschenhagen T (2016) Cardiac repair in guinea pigs with human engineered heart tissue from induced pluripotent stem cells. Sci Transl Med 8(363):363ra148.  https://doi.org/10.1126/scitranslmed.aaf8781CrossRefGoogle Scholar
  224. Williams AR, Hatzistergos KE, Addicott B, McCall F, Carvalho D, Suncion V, Morales AR, Da Silva J, Sussman MA, Heldman AW, Hare JM (2013) Enhanced effect of combining human cardiac stem cells and bone marrow mesenchymal stem cells to reduce infarct size and to restore cardiac function after myocardial infarction. Circulation 127(2):213–223.  https://doi.org/10.1161/CIRCULATIONAHA.112.131110CrossRefGoogle Scholar
  225. Wollert KC, Meyer GP, Lotz J, Ringes-Lichtenberg S, Lippolt P, Breidenbach C, Fichtner S, Korte T, Hornig B, Messinger D, Arseniev L, Hertenstein B, Ganser A, Drexler H (2004) Intracoronary autologous bone-marrow cell transfer after myocardial infarction: the BOOST randomised controlled clinical trial. Lancet 364(9429):141–148.  https://doi.org/10.1016/S0140-6736(04)16626-9CrossRefGoogle Scholar
  226. Xiong QA, Hill KL, Li QL, Suntharalingam P, Mansoor A, Wang XH, Jameel MN, Zhang PY, Swingen C, Kaufman DS, Zhang JY (2011) A fibrin patch-based enhanced delivery of human embryonic stem cell-derived vascular cell transplantation in a porcine model of Postinfarction left ventricular remodeling. Stem Cells 29(2):367–375.  https://doi.org/10.1002/stem.580CrossRefGoogle Scholar
  227. Xu C, Inokuma MS, Denham J, Golds K, Kundu P, Gold JD, Carpenter MK (2001) Feeder-free growth of undifferentiated human embryonic stem cells. Nat Biotechnol 19(10):971–974.  https://doi.org/10.1038/nbt1001-971CrossRefGoogle Scholar
  228. Xu JY, Lee YK, Ran XR, Liao SY, Yang J, Au KW, Lai WH, Esteban MA, Tse HF (2016) Generation of induced Cardiospheres via reprogramming of skin fibroblasts for myocardial regeneration. Stem Cells 34(11):2693–2706.  https://doi.org/10.1002/stem.2438CrossRefGoogle Scholar
  229. Xuan W, Khan M, Ashraf M (2020) Extracellular vesicles from Notch activated cardiac mesenchymal stem cells promote myocyte proliferation and Neovasculogenesis. Front Cell Dev Biol 8:11.  https://doi.org/10.3389/fcell.2020.00011CrossRefGoogle Scholar
  230. Yeung T, Georges PC, Flanagan LA, Marg B, Ortiz M, Funaki M, Zahir N, Ming WY, Weaver V, Janmey PA (2005) Effects of substrate stiffness on cell morphology, cytoskeletal structure, and adhesion. Cell Motil Cytoskeleton 60(1):24–34.  https://doi.org/10.1002/cm.20041CrossRefGoogle Scholar
  231. Yoshida Y, Yamanaka S (2017) Induced pluripotent stem cells 10 years later: for cardiac applications. Circ Res 120(12):1958–1968.  https://doi.org/10.1161/CIRCRESAHA.117.311080CrossRefGoogle Scholar
  232. Young JL, Engler AJ (2011) Hydrogels with time-dependent material properties enhance cardiomyocyte differentiation in vitro. Biomaterials 32(4):1002–1009.  https://doi.org/10.1016/j.biomaterials.2010.10.020CrossRefGoogle Scholar
  233. Youssef A, Aboalola D, Han VKM (2017) The roles of insulin-like growth factors in mesenchymal stem cell niche. Stem Cells Int 2017:9453108.  https://doi.org/10.1155/2017/9453108CrossRefGoogle Scholar
  234. Yu J, Gu Y, Du KT, Mihardja S, Sievers RE, Lee RJ (2009) The effect of injected RGD modified alginate on angiogenesis and left ventricular function in a chronic rat infarct model. Biomaterials 30(5):751–756.  https://doi.org/10.1016/j.biomaterials.2008.09.059CrossRefGoogle Scholar
  235. Yu JS, Du KT, Fang QZ, Gu YP, Mihardja SS, Sievers RE, Wu JC, Lee RJ (2010) The use of human mesenchymal stem cells encapsulated in RGD modified alginate microspheres in the repair of myocardial infarction in the rat. Biomaterials 31(27):7012–7020.  https://doi.org/10.1016/j.biomaterials.2010.05.078CrossRefGoogle Scholar
  236. Zhang G, Wang XH, Wang ZL, Zhang JY, Suggs L (2006) A PEGylated fibrin patch for mesenchymal stem cell delivery. Tissue Eng 12(1):9–19.  https://doi.org/10.1089/ten.2006.12.9CrossRefGoogle Scholar
  237. Zhang D, Shadrin IY, Lam J, Xian HQ, Snodgrass HR, Bursac N (2013) Tissue-engineered cardiac patch for advanced functional maturation of human ESC-derived cardiomyocytes. Biomaterials 34(23):5813–5820.  https://doi.org/10.1016/j.biomaterials.2013.04.026CrossRefGoogle Scholar
  238. Zhang JH, Wu Z, Fan ZP, Qin ZX, Wang YW, Chen JY, Wu MX, Chen YX, Wu CH, Wang JF (2018) Pericardial application as a new route for implanting stem-cell cardiospheres to treat myocardial infarction. J Physiol Lond 596(11):2037–2054.  https://doi.org/10.1113/Jp275548CrossRefGoogle Scholar
  239. Zimmermann WH, Melnychenko I, Wasmeier G, Didie M, Naito H, Nixdorff U, Hess A, Budinsky L, Brune K, Michaelis B, Dhein S, Schwoerer A, Ehmke H, Eschenhagen T (2006) Engineered heart tissue grafts improve systolic and diastolic function in infarcted rat hearts. Nat Med 12(4):452–458.  https://doi.org/10.1038/nm1394CrossRefGoogle Scholar
  240. Zong XH, Bien H, Chung CY, Yin LH, Fang DF, Hsiao BS, Chu B, Entcheva E (2005) Electrospun fine-textured scaffolds for heart tissue constructs. Biomaterials 26(26):5330–5338.  https://doi.org/10.1016/j.biomaterials.2005.01.052CrossRefGoogle Scholar
  241. Zou YZ, Takano H, Mizukami M, Akazawa H, Qin YJ, Toko H, Sakamoto M, Minamino T, Nagai T, Komuro I (2003) Leukemia inhibitory factor enhances survival of cardiomyocytes and induces regeneration of myocardium after myocardial infarction. Circulation 108(6):748–753.  https://doi.org/10.1161/01.Cir.0000081773.76337.44CrossRefGoogle Scholar
  242. Zuppinger C (2016) 3D culture for cardiac cells. BBA-Mol Cell Res 1863(7):1873–1881.  https://doi.org/10.1016/j.bbamcr.2015.11.036CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • I. Kulvinskiene
    • 1
  • R. Aldonyte
    • 1
  • R. Miksiunas
    • 1
  • A. Mobasheri
    • 1
    • 2
    • 3
  • Daiva Bironaite
    • 1
    Email author
  1. 1.Department of Regenerative MedicineState Research Institute Centre for Innovative MedicineVilniusLithuania
  2. 2.Research Unit of Medical Imaging, Physics and TechnologyFaculty of Medicine University of OuluOuluFinland
  3. 3.Department of Orthopedics and Department of Rheumatology and Clinical ImmunologyUniversity Medical Center UtrechtUtrechtThe Netherlands

Personalised recommendations