Advertisement

pp 1-23 | Cite as

Stem Cell Therapy for Hepatocellular Carcinoma: Future Perspectives

  • Hoda Elkhenany
  • Ahmed Shekshek
  • Mohamed Abdel-Daim
  • Nagwa El-BadriEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series

Abstract

Hepatocellular carcinoma (HCC) is one of the most common types of cancer and results in a high mortality rate worldwide. Unfortunately, most cases of HCC are diagnosed in an advanced stage, resulting in a poor prognosis and ineffective treatment. HCC is often resistant to both radiotherapy and chemotherapy, resulting in a high recurrence rate. Although the use of stem cells is evolving into a potentially effective approach for the treatment of cancer, few studies on stem cell therapy in HCC have been published. The administration of stem cells from bone marrow, adipose tissue, the amnion, and the umbilical cord to experimental animal models of HCC has not yielded consistent responses. However, it is possible to induce the apoptosis of cancer cells, repress angiogenesis, and cause tumor regression by administration of genetically modified stem cells. New alternative approaches to cancer therapy, such as the use of stem cell derivatives, exosomes or stem cell extracts, have been proposed. In this review, we highlight these experimental approaches for the use of stem cells as a vehicle for local drug delivery.

Keywords

Conditioned media Engineered MSCs Exosomes HCC Stem cells 

Abbreviations

ABCG2

ATP-binding cassette sub-family G member 2

ADC

Apparent diffusion coefficient

ADSCs

Adipose-derived stem cells

AFP

Alpha-fetoprotein

AM

Amniotic membrane

BM-MSCs

Bone marrow-derived mesenchymal stem cells

CAF

Cancer-associated fibroblasts

CA-MSCs

Cancer-associated MSCs

CDKN2B

Cyclin-dependent kinase inhibitor 2B transcript

CDX2

Homeobox transcription factor 2

CM

Conditioned medium

CSCs

Cancer stem cells

DIRAS3

GTP-binding RAS-like 3

EMT

Epithelial-mesenchymal transition

GATA6

GATA-binding protein 6

hAECs

Amniotic membrane-derived epithelial stem cells

hAMPE

hAECs protein extract

hAMSCs

Human amniotic membrane-derived mesenchymal stem cells

HCC

Hepatocellular carcinoma

HPCs

Hepatic progenitor cells

HSP

Heat shock protein

MDR

Multidrug resistance

MHC

Major histocompatibility complex

MMP

Matrix metalloproteinase

MRI

Magnetic resonance imaging

MSCs

Mesenchymal stem cells

NLK

Nemo-like kinase

PACDC

Pancreatic adenocarcinoma-derived cell lines

PCNA

Proliferating cell nuclear antigen

PEDF

Pigment epithelium-derived factor

PI3K

Phosphatide inositol 3 kinase

Rbl-1

Retinoblastoma-like 1

SPIO

Superparamagnetic iron oxide

TAK1

TGF β-activated kinase-1

TAMs

Tumor-associated macrophages

TERT

Telomerase reverse transcriptase

TGF-β

Transforming growth factor Beta

TRAIL

Tumor necrosis factor-related apoptosis-inducing ligand

UC-MSCs

Umbilical cord-derived mesenchymal stem cells

Notes

Acknowledgement

This work is supported by grant #5300, funded by the Science and Technology Development Fund (STDF) and the Sawiris Foundation for Social Development.

Conflict of Interest

The authors declare that they have no competing interests.

References

  1. Abdel-Hamid NM et al (2018) Herbal management of hepatocellular carcinoma through cutting the pathways of the common risk factors. Biomed Pharmacother 107:1246–1258Google Scholar
  2. Abdelmoneem M et al (2019) Dual-targeted Lactoferrin Shell-Oily Core Nanocapsules for synergistic targeted/herbal therapy of hepatocellular carcinoma. ACS Appl Mater Interfaces 11(30):26731–26744Google Scholar
  3. Alexia C et al (2004) An evaluation of the role of insulin-like growth factors (IGF) and of type-I IGF receptor signalling in hepatocarcinogenesis and in the resistance of hepatocarcinoma cells against drug-induced apoptosis. Biochem Pharmacol 68(6):1003–1015Google Scholar
  4. Alison M, Islam S, Lim S (2009) Stem cells in liver regeneration, fibrosis and cancer: the good, the bad and the ugly. J Pathol 217(2):282–298Google Scholar
  5. Anastas JN, Moon RT (2013) WNT signalling pathways as therapeutic targets in cancer. Nat Rev Cancer 13(1):11Google Scholar
  6. Bader AG et al (2005) Oncogenic PI3K deregulates transcription and translation. Nat Rev Cancer 5(12):921Google Scholar
  7. Bader AG, Kang S, Vogt PK (2006) Cancer-specific mutations in PIK3CA are oncogenic in vivo. Proc Natl Acad Sci 103(5):1475–1479Google Scholar
  8. Balendiran GK, Dabur R, Fraser D (2004) The role of glutathione in cancer. Cell Biochem Funct 22(6):343–352Google Scholar
  9. Barboni B et al (2014) Gestational stage affects amniotic epithelial cells phenotype, methylation status, immunomodulatory and stemness properties. Stem Cell Rev Rep 10(5):725–741Google Scholar
  10. Bengochea A et al (2008) Common dysregulation of Wnt/Frizzled receptor elements in human hepatocellular carcinoma. Br J Cancer 99(1):143Google Scholar
  11. Bénistant C, Chapuis H, Roche S (2000) A specific function for phosphatidylinositol 3-kinase [alpha](p85 [alpha]-p110 [alpha]) in cell survival and for phosphatidylinositol 3-kinase [beta](p85 [alpha]-p110 [beta]) in de novo DNA synthesis of human colon carcinoma cells. Oncogene 19(44):5083Google Scholar
  12. Blum HE (2005) Hepatocellular carcinoma: therapy and prevention. World J Gastroenterol 11(47):7391–7400Google Scholar
  13. Bournazou E, Bromberg J (2013) Targeting the tumor microenvironment: JAK-STAT3 signaling. JAKSTAT 2(2):e23828Google Scholar
  14. Brugge J, Hung M-C, Mills GB (2007) A new mutational AKTivation in the PI3K pathway. Cancer Cell 12(2):104–107Google Scholar
  15. Bruno S et al (2013) Microvesicles derived from human bone marrow mesenchymal stem cells inhibit tumor growth. Stem Cells Dev 22(5):758–771Google Scholar
  16. Caja L et al (2011) The transforming growth factor-beta (TGF-β) mediates acquisition of a mesenchymal stem cell-like phenotype in human liver cells. J Cell Physiol 226(5):1214–1223Google Scholar
  17. Carlson B (2004) Placenta and extraembryonic membranes. In: Human embryology and developmental biology, 3rd edn. Mosby, Philadelphia, pp 106–127Google Scholar
  18. Chen YL, Law P-Y, Loh HH (2005) Inhibition of PI3K/Akt signaling: an emerging paradigm for targeted cancer therapy. Curr Med Chem Anticancer Agents 5(6):575–589Google Scholar
  19. Chen X et al (2008) A tumor-selective biotherapy with prolonged impact on established metastases based on cytokine gene-engineered MSCs. Mol Ther 16(4):749–756Google Scholar
  20. Chen L et al (2010) CHD1L promotes hepatocellular carcinoma progression and metastasis in mice and is associated with these processes in human patients. J Clin Invest 120(4):1178–1191Google Scholar
  21. Chen J et al (2019) Human mesenchymal stem cells promote tumor growth via MAPK pathway and metastasis by epithelial mesenchymal transition and integrin alpha5 in hepatocellular carcinoma. Cell Death Dis 10(6):425Google Scholar
  22. Chiba T et al (2007) Enhanced self-renewal capability in hepatic stem/progenitor cells drives cancer initiation. Gastroenterology 133(3):937–950Google Scholar
  23. Chuma M et al (2008) 8-Hydroxy-2′-deoxy-guanosine is a risk factor for development of hepatocellular carcinoma in patients with chronic hepatitis C virus infection. J Gastroenterol Hepatol 23(9):1431–1436Google Scholar
  24. Clayton A et al (2001) Analysis of antigen presenting cell derived exosomes, based on immuno-magnetic isolation and flow cytometry. J Immunol Methods 247(1–2):163–174Google Scholar
  25. Colombino M et al (2012) BRAF and PIK3CA genes are somatically mutated in hepatocellular carcinoma among patients from South Italy. Cell Death Dis 3(1):e259Google Scholar
  26. Cousin B et al (2009) Adult stromal cells derived from human adipose tissue provoke pancreatic cancer cell death both in vitro and in vivo. PLoS One 4(7):e6278Google Scholar
  27. Danen-Van Oorschot AA et al (2003) Importance of nuclear localization of apoptin for tumor-specific induction of apoptosis. J Biol Chem 278(30):27729–27736Google Scholar
  28. Dawson D et al (1999) Pigment epithelium-derived factor: a potent inhibitor of angiogenesis. Science 285(5425):245–248Google Scholar
  29. De Boeck A et al (2013) Bone marrow-derived mesenchymal stem cells promote colorectal cancer progression through paracrine neuregulin 1/HER3 signalling. Gut 62(4):550–560Google Scholar
  30. De Jong WH et al (2008) Particle size-dependent organ distribution of gold nanoparticles after intravenous administration. Biomaterials 29(12):1912–1919Google Scholar
  31. de Lima VM et al (2008) A rodent model of NASH with cirrhosis, oval cell proliferation and hepatocellular carcinoma. J Hepatol 49(6):1055–1061Google Scholar
  32. Deng Q et al (2014) TRAIL-secreting mesenchymal stem cells promote apoptosis in heat-shock-treated liver cancer cells and inhibit tumor growth in nude mice. Gene Ther 21(3):317–327Google Scholar
  33. Doi C et al (2010) Cytotherapy with naive rat umbilical cord matrix stem cells significantly attenuates growth of murine pancreatic cancer cells and increases survival in syngeneic mice. Cytotherapy 12(3):408–417Google Scholar
  34. Domenis R et al (2017) Systemic T cells immunosuppression of Glioma stem cell-derived Exosomes is mediated by Monocytic myeloid-derived suppressor cells. PLoS One 12(1):e0169932Google Scholar
  35. Dominici M et al (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8(4):315–317Google Scholar
  36. Dunlop E, Tee A (2009) Mammalian target of rapamycin complex 1: signalling inputs, substrates and feedback mechanisms. Cell Signal 21(6):827–835Google Scholar
  37. El-Badawy A, El-Badri N (2016) Clinical efficacy of stem cell therapy for diabetes mellitus: a meta-analysis. PLoS One 11(4):e0151938Google Scholar
  38. El-Badawy A et al (2016) Adipose stem cells display higher regenerative capacities and more adaptable electro-kinetic properties compared to bone marrow-derived mesenchymal stromal cells. Sci Rep 6:37801Google Scholar
  39. El-Badawy A et al (2017a) Cancer cell-soluble factors reprogram mesenchymal stromal cells to slow cycling, chemoresistant cells with a more stem-like state. Stem Cell Res Ther 8(1):254Google Scholar
  40. El-Badawy A, Ahmed SM, El-Badri N (2017b) Adipose-derived stem cell-based therapies in regenerative medicine. In: El-Badri N (ed) Advances in stem cell therapy: bench to bedside. Springer International Publishing, Cham, pp 117–138Google Scholar
  41. El-Badawy A et al (2018) Telomerase reverse transcriptase coordinates with the epithelial-to-mesenchymal transition through a feedback loop to define properties of breast cancer stem cells. Biol Open 7(7):bio034181Google Scholar
  42. El-Badri N (2016) Advances in stem cell therapy: bench to bedside. Springer, Humana PressGoogle Scholar
  43. El–Serag HB, Rudolph KL (2007) Hepatocellular carcinoma: epidemiology and molecular carcinogenesis. Gastroenterology 132(7):2557–2576Google Scholar
  44. Elsharkawy AM, Mann DA (2007) Nuclear factor-kappaB and the hepatic inflammation-fibrosis-cancer axis. Hepatology 46(2):590–597Google Scholar
  45. Esch JSA 2nd et al (2005) Portal application of autologous CD133+ bone marrow cells to the liver: a novel concept to support hepatic regeneration. Stem Cells 23(4):463–470Google Scholar
  46. Fattovich G et al (2002) Effect of hepatitis B and C virus infections on the natural history of compensated cirrhosis: a cohort study of 297 patients. Am J Gastroenterol 97(11):2886–2895Google Scholar
  47. Fattovich G et al (2004) Hepatocellular carcinoma in cirrhosis: incidence and risk factors. Gastroenterology 127(5 Suppl 1):S35–S50Google Scholar
  48. Ferlay J et al (2010) GLOBOCAN 2008, cancer incidence and mortality worldwide: IARC CancerBase No. 10 [Internet]. International Agency for Research on Cancer, Lyon, p 2Google Scholar
  49. Font-Burgada J et al (2015) Hybrid periportal hepatocytes regenerate the injured liver without giving rise to cancer. Cell 162(4):766–779Google Scholar
  50. Fraser JK et al (2008) Adipose-derived stem cells. Methods Mol Biol 449:59–67Google Scholar
  51. Furst G et al (2007) Portal vein embolization and autologous CD133+ bone marrow stem cells for liver regeneration: initial experience. Radiology 243(1):171–179Google Scholar
  52. Gabr MM et al (2017) From human Mesenchymal stem cells to insulin-producing cells: comparison between bone marrow- and adipose tissue-derived cells. Biomed Res Int 2017:3854232Google Scholar
  53. Galderisi U, Giordano A, Paggi MG (2010) The bad and the good of mesenchymal stem cells in cancer: boosters of tumor growth and vehicles for targeted delivery of anticancer agents. World J Stem Cells 2(1):5Google Scholar
  54. Gao Y et al (2010) Human mesenchymal stem cells overexpressing pigment epithelium-derived factor inhibit hepatocellular carcinoma in nude mice. Oncogene 29(19):2784–2794Google Scholar
  55. Gauthaman K et al (2012) Human umbilical cord Wharton’s jelly stem cell (hWJSC) extracts inhibit cancer cell growth in vitro. J Cell Biochem 113(6):2027–2039Google Scholar
  56. Giambartolomei S et al (2001) Sustained activation of the Raf/MEK/Erk pathway in response to EGF in stable cell lines expressing the Hepatitis C Virus (HCV) core protein. Oncogene 20(20):2606Google Scholar
  57. Giannelli G et al (2005) Laminin-5 with transforming growth factor-β1 induces epithelial to mesenchymal transition in hepatocellular carcinoma. Gastroenterology 129(5):1375–1383Google Scholar
  58. Giannelli G, Villa E, Lahn M (2014) Transforming growth factor-β as a therapeutic target in hepatocellular carcinoma. Cancer Res 74(7):1890–1894Google Scholar
  59. Gollob JA et al (2006) Role of Raf kinase in cancer: therapeutic potential of targeting the Raf/MEK/ERK signal transduction pathway. In: Seminars in oncology. Elsevier, WB SaundersGoogle Scholar
  60. Gordon MD, Nusse R (2006) Wnt signaling: multiple pathways, multiple receptors, and multiple transcription factors. J Biol Chem 281(32):22429–22433Google Scholar
  61. Grisendi G et al (2010) Adipose-derived mesenchymal stem cells as stable source of tumor necrosis factor-related apoptosis-inducing ligand delivery for cancer therapy. Cancer Res 70(9):3718–3729Google Scholar
  62. Grozdanov PN, Yovchev MI, Dabeva MD (2006) The oncofetal protein glypican-3 is a novel marker of hepatic progenitor/oval cells. Lab Investig 86(12):1272–1284Google Scholar
  63. Haraguchi N et al (2010) CD13 is a therapeutic target in human liver cancer stem cells. J Clin Invest 120(9):3326–3339Google Scholar
  64. He G et al (2013) Identification of liver cancer progenitors whose malignant progression depends on autocrine IL-6 signaling. Cell 155(2):384–396Google Scholar
  65. He AR, Smith D, Mishra L (2015) Targeting cancer stem cells in hepatocellular carcinoma. Gastrointest Cancer Targets Ther 5:1–10Google Scholar
  66. Heldin C-H, Moustakas A (2012) Role of Smads in TGFβ signaling. Cell Tissue Res 347(1):21–36Google Scholar
  67. Hoffmann K et al (2011) Correlation of gene expression of ATP-binding cassette protein and tyrosine kinase signaling pathway in patients with hepatocellular carcinoma. Anticancer Res 31(11):3883–3890Google Scholar
  68. Hogan NM et al (2012) Mesenchymal stem cells in the colorectal tumor microenvironment: recent progress and implications. Int J Cancer 131(1):1–7Google Scholar
  69. Holczbauer A et al (2013) Modeling pathogenesis of primary liver cancer in lineage-specific mouse cell types. Gastroenterology 145(1):221–231Google Scholar
  70. Hsu YL et al (2017) Hypoxic lung cancer-secreted exosomal miR-23a increased angiogenesis and vascular permeability by targeting prolyl hydroxylase and tight junction protein ZO-1. Oncogene 36(34):4929–4942Google Scholar
  71. Hu TH et al (2003) Expression and prognostic role of tumor suppressor gene PTEN/MMAC1/TEP1 in hepatocellular carcinoma. Cancer 97(8):1929–1940Google Scholar
  72. Huynh H et al (2010) AZD6244 enhances the anti-tumor activity of sorafenib in ectopic and orthotopic models of human hepatocellular carcinoma (HCC). J Hepatol 52(1):79–87Google Scholar
  73. Imamura H et al (2003) Risk factors contributing to early and late phase intrahepatic recurrence of hepatocellular carcinoma after hepatectomy. J Hepatol 38(2):200–207Google Scholar
  74. Iorio MV, Croce CM (2012) MicroRNA dysregulation in cancer: diagnostics, monitoring and therapeutics. A comprehensive review. EMBO Mol Med 4(3):143–159Google Scholar
  75. Ito Y et al (1998) Activation of mitogen-activated protein kinases/extracellular signal-regulated kinases in human hepatocellular carcinoma. Hepatology 27(4):951–958Google Scholar
  76. Ji J, Wang XW (2012) Clinical implications of cancer stem cell biology in hepatocellular carcinoma. Semin Oncol 39(4):461–472Google Scholar
  77. Ji J, Yamashita T, Wang XW (2011) Wnt/beta-catenin signaling activates microRNA-181 expression in hepatocellular carcinoma. Cell Biosci 1(1):4Google Scholar
  78. Jiao H et al (2012) Human amniotic membrane derived-mesenchymal stem cells induce C6 glioma apoptosis in vivo through the Bcl-2/caspase pathways. Mol Biol Rep 39(1):467–473Google Scholar
  79. Jindal A, Thadi A, Shailubhai K (2019) Hepatocellular carcinoma: etiology and current and future drugs. J Clin Exp Hepatol 9(2):221–232Google Scholar
  80. Jors S et al (2015) Lineage fate of ductular reactions in liver injury and carcinogenesis. J Clin Invest 125(6):2445–2457Google Scholar
  81. Kalinina O et al (2013) Somatic changes in primary liver cancer in Russia: a pilot study. Mutat Res Genet Toxicol Environ Mutagen 755(2):90–99Google Scholar
  82. Kang N-H et al (2012) Human amniotic membrane-derived epithelial stem cells display anticancer activity in BALB/c female nude mice bearing disseminated breast cancer xenografts. Int J Oncol 40(6):2022–2028Google Scholar
  83. Karnoub AE et al (2007) Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature 449(7162):557–563Google Scholar
  84. Khakoo AY et al (2006) Human mesenchymal stem cells exert potent antitumorigenic effects in a model of Kaposi’s sarcoma. J Exp Med 203(5):1235–1247Google Scholar
  85. Kim DW et al (2013a) Wharton’s jelly-derived Mesenchymal stem cells: phenotypic characterization and optimizing their therapeutic potential for clinical applications. Int J Mol Sci 14(6):11692–11712Google Scholar
  86. Kim SW et al (2013b) Complete regression of metastatic renal cell carcinoma by multiple injections of engineered mesenchymal stem cells expressing dodecameric TRAIL and HSV-TK. Clin Cancer Res 19(2):415–427Google Scholar
  87. Kim YH et al (2016) Image-aided suicide gene therapy utilizing multifunctional hTERT-targeting adenovirus for clinical translation in hepatocellular carcinoma. Theranostics 6(3):357–368Google Scholar
  88. Kitade M et al (2013) Specific fate decisions in adult hepatic progenitor cells driven by MET and EGFR signaling. Genes Dev 27(15):1706–1717Google Scholar
  89. Ko SF et al (2015) Adipose-derived Mesenchymal stem cell exosomes suppress hepatocellular carcinoma growth in a rat model: apparent diffusion coefficient, natural killer T-cell responses, and histopathological features. Stem Cells Int 2015:853506Google Scholar
  90. Kogure T et al (2011) Intercellular nanovesicle-mediated microRNA transfer: a mechanism of environmental modulation of hepatocellular cancer cell growth. Hepatology 54(4):1237–1248Google Scholar
  91. Kubo M et al (2001) Immunogenicity of human amniotic membrane in experimental xenotransplantation. Invest Ophthalmol Vis Sci 42(7):1539–1546Google Scholar
  92. Kucerova L et al (2010) Tumor cell behaviour modulation by mesenchymal stromal cells. Mol Cancer 9:129Google Scholar
  93. Lai T-Y et al (2011) β-catenin plays a key role in metastasis of human hepatocellular carcinoma. Oncol Rep 26(2):415–422Google Scholar
  94. Lang HL et al (2017a) Glioma cells enhance angiogenesis and inhibit endothelial cell apoptosis through the release of exosomes that contain long non-coding RNA CCAT2. Oncol Rep 38(2):785–798Google Scholar
  95. Lang HL et al (2017b) Glioma cells promote angiogenesis through the release of exosomes containing long non-coding RNA POU3F3. Eur Rev Med Pharmacol Sci 21(5):959–972Google Scholar
  96. Lathrop MJ et al (2015) Antitumor effects of TRAIL-expressing mesenchymal stromal cells in a mouse xenograft model of human mesothelioma. Cancer Gene Ther 22(1):44–54Google Scholar
  97. Leonardi GC et al (2012) The tumor microenvironment in hepatocellular carcinoma (review). Int J Oncol 40(6):1733–1747Google Scholar
  98. Li GC et al (2010) Human mesenchymal stem cells inhibit metastasis of a hepatocellular carcinoma model using the MHCC97-H cell line. Cancer Sci 101(12):2546–2553Google Scholar
  99. Li Z et al (2016) E1A-engineered human umbilical cord mesenchymal stem cells as carriers and amplifiers for adenovirus suppress hepatocarcinoma in mice. Oncotarget 7(32):51815–51828Google Scholar
  100. Li G et al (2017) Anti-angiogenesis gene therapy for hepatocellular carcinoma via systemic injection of mesenchymal stem cells engineered to secrete soluble Flt-1. Mol Med Rep 16(5):5799–5806Google Scholar
  101. Lin L et al (2009a) The STAT3 inhibitor NSC 74859 is effective in hepatocellular cancers with disrupted TGF-β signaling. Oncogene 28(7):961Google Scholar
  102. Lin G et al (2009b) Treatment of type 1 diabetes with adipose tissue-derived stem cells expressing pancreatic duodenal homeobox 1. Stem Cells Dev 18(10):1399–1406Google Scholar
  103. Lin G et al (2010) Effects of transplantation of adipose tissue-derived stem cells on prostate tumor. Prostate 70(10):1066–1073Google Scholar
  104. Liu L et al (2006) Sorafenib blocks the RAF/MEK/ERK pathway, inhibits tumor angiogenesis, and induces tumor cell apoptosis in hepatocellular carcinoma model PLC/PRF/5. Cancer Res 66(24):11851–11858Google Scholar
  105. Liu C et al (2016) Mesenchymal stem cells enhance the metastasis of 3D-cultured hepatocellular carcinoma cells. BMC Cancer 16:566Google Scholar
  106. Llovet JM, Bruix J (2008) Molecular targeted therapies in hepatocellular carcinoma. Hepatology 48(4):1312–1327Google Scholar
  107. Llovet JM et al (2000) Randomized controlled trial of interferon treatment for advanced hepatocellular carcinoma. Hepatology 31(1):54–58Google Scholar
  108. Llovet JM, Burroughs A, Bruix J (2003) Hepatocellular carcinoma. Lancet 362(9399):1907–1917Google Scholar
  109. Loebinger MR et al (2009) Mesenchymal stem cell delivery of TRAIL can eliminate metastatic cancer. Cancer Res 69(10):4134–4142Google Scholar
  110. Loebinger MR et al (2010) TRAIL-expressing mesenchymal stem cells kill the putative cancer stem cell population. Br J Cancer 103(11):1692–1697Google Scholar
  111. Lou G et al (2015) Exosomes derived from miR-122-modified adipose tissue-derived MSCs increase chemosensitivity of hepatocellular carcinoma. J Hematol Oncol 8(1):122Google Scholar
  112. Lu YR et al (2008) The growth inhibitory effect of mesenchymal stem cells on tumor cells in vitro and in vivo. Cancer Biol Ther 7(2):245–251Google Scholar
  113. Lv LH et al (2012) Anticancer drugs cause release of exosomes with heat shock proteins from human hepatocellular carcinoma cells that elicit effective natural killer cell antitumor responses in vitro. J Biol Chem 287(19):15874–15885Google Scholar
  114. Lv MY et al (2019) Urolithin B suppresses tumor growth in hepatocellular carcinoma through inducing the inactivation of Wnt/beta-catenin signaling. J Cell Biochem 120(10):17273–17282Google Scholar
  115. Ma Y et al (2012a) The in vitro and in vivo effects of human umbilical cord mesenchymal stem cells on the growth of breast cancer cells. Breast Cancer Res Treat 133(2):473–485Google Scholar
  116. Ma B et al (2012b) Murine bone marrow stromal cells pulsed with homologous tumor-derived exosomes inhibit proliferation of liver cancer cells. Clin Transl Oncol 14(10):764–773Google Scholar
  117. Maddika S et al (2005) Cancer-specific toxicity of apoptin is independent of death receptors but involves the loss of mitochondrial membrane potential and the release of mitochondrial cell-death mediators by a Nur77-dependent pathway. J Cell Sci 118(Pt 19):4485–4493Google Scholar
  118. Magatti M et al (2012) Amniotic membrane-derived cells inhibit proliferation of cancer cell lines by inducing cell cycle arrest. J Cell Mol Med 16(9):2208–2218Google Scholar
  119. Malaguarnera M et al (1996) Role of interleukin 6 in hepatocellular carcinoma. Bull Cancer 83(5):379–384Google Scholar
  120. Mamede A et al (2012) Amniotic membrane: from structure and functions to clinical applications. Cell Tissue Res 349(2):447–458Google Scholar
  121. Mamede AC et al (2014) Effect of amniotic membrane proteins in human cancer cell lines: an exploratory study. J Membr Biol 247(4):357–360Google Scholar
  122. Mamede A et al (2015) Selective cytotoxicity and cell death induced by human amniotic membrane in hepatocellular carcinoma. Med Oncol 32(12):257Google Scholar
  123. Mamede A et al (2016) Oxidative stress, DNA, cell cycle/cell cycle associated proteins and multidrug resistance proteins: targets of human amniotic membrane in hepatocellular carcinoma. Pathol Oncol Res 22(4):689–697Google Scholar
  124. Mannová P, Beretta L (2005) Activation of the N-Ras–PI3K–Akt-mTOR pathway by hepatitis C virus: control of cell survival and viral replication. J Virol 79(14):8742–8749Google Scholar
  125. Marei HES et al (2017) Cholinergic and dopaminergic neuronal differentiation of human adipose tissue derived mesenchymal stem cells. J Cell Physiol 233(2):936–945Google Scholar
  126. Marongiu F et al (2010) Isolation of amniotic mesenchymal stem cells. Curr Protoc Stem Cell Biol 12:1E. 5.1–1E. 5.11Google Scholar
  127. Marquardt JU (2016) Deconvolution of the cellular origin in hepatocellular carcinoma: hepatocytes take the center stage. Hepatology 64(4):1020–1023Google Scholar
  128. Maurya DK et al (2010) Therapy with un-engineered naive rat umbilical cord matrix stem cells markedly inhibits growth of murine lung adenocarcinoma. BMC Cancer 10:590Google Scholar
  129. McElreavey KD et al (1991) Isolation, culture and characterisation of fibroblast-like cells derived from the Wharton’s jelly portion of human umbilical cord. Biochem Soc Trans 19(1):29sGoogle Scholar
  130. Meliga E et al (2007) Adipose-derived cells. Cell Transplant 16(9):963–970Google Scholar
  131. Menon LG et al (2009) Human bone marrow-derived mesenchymal stromal cells expressing S-TRAIL as a cellular delivery vehicle for human glioma therapy. Stem Cells 27(9):2320–2330Google Scholar
  132. Mi F, Gong L (2017) Secretion of interleukin-6 by bone marrow mesenchymal stem cells promotes metastasis in hepatocellular carcinoma. Biosci Rep 37(4):BSR20170181Google Scholar
  133. Morgan SE, Kastan MB (1997) p53 and ATM: cell cycle, cell death, and cancer. Adv Cancer Res 71:1–25Google Scholar
  134. Mu X et al (2015) Hepatocellular carcinoma originates from hepatocytes and not from the progenitor/biliary compartment. J Clin Invest 125(10):3891–3903Google Scholar
  135. Nakamura H et al (2011) HCV core protein promotes heparin binding EGF-like growth factor expression and activates Akt. Hepatol Res 41(5):455–462Google Scholar
  136. Niknejad H et al (2013) Side dependent effects of the human amnion on angiogenesis. Placenta 34(4):340–345Google Scholar
  137. Niknejad H et al (2014) Human amniotic epithelial cells induce apoptosis of cancer cells: a new anti-tumor therapeutic strategy. Cytotherapy 16(1):33–40Google Scholar
  138. Nooter K, Herweijer H (1991) Multidrug resistance (mdr) genes in human cancer. Br J Cancer 63(5):663–669Google Scholar
  139. Nowell PC (1976) The clonal evolution of tumor cell populations. Science 194(4260):23–28Google Scholar
  140. Ohta N et al (2015) Human umbilical cord matrix mesenchymal stem cells suppress the growth of breast cancer by expression of tumor suppressor genes. PLoS One 10(5):e0123756Google Scholar
  141. Perz JF et al (2006) The contributions of hepatitis B virus and hepatitis C virus infections to cirrhosis and primary liver cancer worldwide. J Hepatol 45(4):529–538Google Scholar
  142. Pietras K, Ostman A (2010) Hallmarks of cancer: interactions with the tumor stroma. Exp Cell Res 316(8):1324–1331Google Scholar
  143. Pineau P et al (2010) miR-221 overexpression contributes to liver tumorigenesis. Proc Natl Acad Sci U S A 107(1):264–269Google Scholar
  144. Protiva P, Gong J, Sreekumar B, Torres R, Zhang X, Belinsky GS, Cornwell M, Crawford SE, Iwakiri Y, Chung C (2015) Pigment epithelium-derived factor (PEDF) inhibits Wnt/beta-catenin signaling in the liver. Cell Mol Gastroenterol Hepatol 1:535–549.e514Google Scholar
  145. Qu Z et al (2016) Exosomes derived from HCC cells induce sorafenib resistance in hepatocellular carcinoma both in vivo and in vitro. J Exp Clin Cancer Res 35:159Google Scholar
  146. Rebouissou S et al (2016) Genotype-phenotype correlation of CTNNB1 mutations reveals different ß-catenin activity associated with liver tumor progression. Hepatology 64(6):2047–2061Google Scholar
  147. Reya T et al (2001) Stem cells, cancer, and cancer stem cells. Nature 414(6859):105Google Scholar
  148. Ridge SM, Sullivan FJ, Glynn SA (2017) Mesenchymal stem cells: key players in cancer progression. Mol Cancer 16(1):31Google Scholar
  149. Roberts LR, Gores GJ (2005) Hepatocellular carcinoma: molecular pathways and new therapeutic targets. In: Seminars in liver disease. Copyright© 2005 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USAGoogle Scholar
  150. Rolfo A et al (2014) New perspectives for prostate cancer treatment: in vitro inhibition of LNCaP and PC3 cell proliferation by amnion-derived mesenchymal stromal cells conditioned media. Aging Male 17(2):94–101Google Scholar
  151. Russo FP, Parola M (2011) Stem and progenitor cells in liver regeneration and repair. Cytotherapy 13(2):135–144Google Scholar
  152. Sahin F et al (2004) mTOR and P70 S6 kinase expression in primary liver neoplasms. Clin Cancer Res 10(24):8421–8425Google Scholar
  153. Sasportas LS et al (2009) Assessment of therapeutic efficacy and fate of engineered human mesenchymal stem cells for cancer therapy. Proc Natl Acad Sci U S A 106(12):4822–4827Google Scholar
  154. Schwarzenbach H et al (2014) Clinical relevance of circulating cell-free microRNAs in cancer. Nat Rev Clin Oncol 11:145Google Scholar
  155. Secchiero P et al (2010) Human bone marrow mesenchymal stem cells display anti-cancer activity in SCID mice bearing disseminated non-Hodgkin’s lymphoma xenografts. PLoS One 5(6):e11140Google Scholar
  156. Seo JH, Kim YH, Kim JS (2008) Properties of the amniotic membrane may be applicable in cancer therapy. Med Hypotheses 70(4):812–814Google Scholar
  157. Severi T et al (2010) Tumor initiation and progression in hepatocellular carcinoma: risk factors, classification, and therapeutic targets. Acta Pharmacol Sin 31(11):1409–1420Google Scholar
  158. Shao C et al (2004) Suppression of corneal neovascularization by PEDF release from human amniotic membranes. Invest Ophthalmol Vis Sci 45(6):1758–1762Google Scholar
  159. Sherif RN et al (2018) Effect of human umbilical cord blood derived CD34(+) hematopoietic stem cell on the expression of Wnt4 and P53 genes in a rat model of hepatocellular carcinoma. Tissue Cell 50:125–132Google Scholar
  160. Shin S et al (2016) Genetic lineage tracing analysis of the cell of origin of Hepatotoxin-induced liver tumors in mice. Hepatology (Baltimore, Md) 64(4):1163–1177Google Scholar
  161. Shinagawa K et al (2010) Mesenchymal stem cells enhance growth and metastasis of colon cancer. Int J Cancer 127(10):2323–2333Google Scholar
  162. Shirai Y et al (1994) Plasma transforming growth factor-β1 in patients with hepatocellular carcinoma. Comparison with chronic liver diseases. Cancer 73(9):2275–2279Google Scholar
  163. Soltysova A, Altanerova V, Altaner C (2005) Cancer stem cells. Neoplasma 52(6):435Google Scholar
  164. Song YH et al (2016) Adipose-derived stem cells increase angiogenesis through matrix metalloproteinase-dependent collagen Remodeling. Integr Biol Quant Biosci Nano Macro 8(2):205–215Google Scholar
  165. Su F, Ioannou GN (2018) The impact of direct-acting antiviral therapy for hepatitis C on hepatocellular carcinoma risk. Curr Hepatol Rep 17(4):377–384Google Scholar
  166. Suetsugu A et al (2006) Characterization of CD133+ hepatocellular carcinoma cells as cancer stem/progenitor cells. Biochem Biophys Res Commun 351(4):820–824Google Scholar
  167. Sugihara E, Saya H (2013) Complexity of cancer stem cells. Int J Cancer 132(6):1249–1259Google Scholar
  168. Sun XY et al (2011) MSC(TRAIL)-mediated HepG2 cell death in direct and indirect co-cultures. Anticancer Res 31(11):3705–3712Google Scholar
  169. Taebunpakul P et al (2012) Apoptin induces apoptosis by changing the equilibrium between the stability of TAp73 and DeltaNp73 isoforms through ubiquitin ligase PIR2. Apoptosis 17(8):762–776Google Scholar
  170. Takahara K et al (2016) microRNA-145 mediates the inhibitory effect of adipose tissue-derived stromal cells on prostate Cancer. Stem Cells Dev 25(17):1290–1298Google Scholar
  171. Tang Y et al (2008) Progenitor/stem cells give rise to liver cancer due to aberrant TGF-β and IL-6 signaling. Proc Natl Acad Sci 105(7):2445–2450Google Scholar
  172. Tang XJ et al (2014) TRAIL-engineered bone marrow-derived mesenchymal stem cells: TRAIL expression and cytotoxic effects on C6 glioma cells. Anticancer Res 34(2):729–734Google Scholar
  173. Tang YM et al (2016) Umbilical cord-derived mesenchymal stem cells inhibit growth and promote apoptosis of HepG2 cells. Mol Med Rep 14(3):2717–2724Google Scholar
  174. Tornesello ML et al (2016) Molecular alterations in hepatocellular carcinoma associated with hepatitis B and hepatitis C infections. Oncotarget 7(18):25087–25102Google Scholar
  175. Tovoli F et al (2018) Systemic treatments for hepatocellular carcinoma: challenges and future perspectives. Hepat Oncol 5(1):HEP01–HEP01Google Scholar
  176. Tschaharganeh DF et al (2014) p53-dependent Nestin regulation links tumor suppression to cellular plasticity in liver cancer. Cell 158(3):579–592Google Scholar
  177. Tsilimigras DI et al (2019) Prognosis after resection of Barcelona Clinic Liver Cancer (BCLC) stage 0, A, and B hepatocellular carcinoma: a comprehensive assessment of the current BCLC classification. Ann Surg Oncol 1–8Google Scholar
  178. Villanueva A et al (2008) Pivotal role of mTOR signaling in hepatocellular carcinoma. Gastroenterology 135(6):1972–1983. e11Google Scholar
  179. Wang XW (2001) Microinjection technique used to study functional interaction between p53 and hepatitis B virus X gene in apoptosis. Mol Biotechnol 18(2):169–177Google Scholar
  180. Wang H-Y, Liu T, Malbon CC (2006) Structure-function analysis of Frizzleds. Cell Signal 18(7):934–941Google Scholar
  181. Wang H et al (2017) Genetically engineered bone marrow-derived mesenchymal stem cells co-expressing IFN-gamma and IL-10 inhibit hepatocellular carcinoma by modulating MAPK pathway. J BUON 22(6):1517–1524Google Scholar
  182. Weidle HU et al (2017) The multiple roles of Exosomes in metastasis. Cancer Genomics Proteomics 14(1):1–16Google Scholar
  183. Wu SD et al (2012) Role of the microenvironment in hepatocellular carcinoma development and progression. Cancer Treat Rev 38(3):218–225Google Scholar
  184. Wu Q et al (2015) Decreased expression of hepatocyte nuclear factor 4alpha (Hnf4alpha)/microRNA-122 (miR-122) axis in hepatitis B virus-associated hepatocellular carcinoma enhances potential oncogenic GALNT10 protein activity. J Biol Chem 290(2):1170–1185Google Scholar
  185. Xiao W et al (2013) Effects of the epigenetic drug MS-275 on the release and function of exosome-related immune molecules in hepatocellular carcinoma cells. Eur J Med Res 18:61Google Scholar
  186. Xu H et al (2015) Targeting human telomerase reverse transcriptase by a simple siRNA expression cassette in HepG2 cells. Hepat Mon 15(3):e24343Google Scholar
  187. Yamashita T et al (2007) Activation of hepatic stem cell marker EpCAM by Wnt–β-catenin signaling in hepatocellular carcinoma. Cancer Res 67(22):10831–10839Google Scholar
  188. Yamashita T et al (2009) EpCAM-positive hepatocellular carcinoma cells are tumor-initiating cells with stem/progenitor cell features. Gastroenterology 136(3):1012–1024. e4Google Scholar
  189. Yan C et al (2014) Suppression of orthotopically implanted hepatocarcinoma in mice by umbilical cord-derived mesenchymal stem cells with sTRAIL gene expression driven by AFP promoter. Biomaterials 35(9):3035–3043Google Scholar
  190. Yang ZF et al (2008) Identification of local and circulating cancer stem cells in human liver cancer. Hepatology 47(3):919–928Google Scholar
  191. Yang X et al (2014) IFN-γ-secreting-Mesenchymal stem cells exert an antitumor effect in vivo via the TRAIL pathway. J Immunol Res 2014:9Google Scholar
  192. Yang J et al (2016) Condition medium of HepG-2 cells induces the transdifferentiation of human umbilical cord mesenchymal stem cells into cancerous mesenchymal stem cells. Am J Transl Res 8(8):3429Google Scholar
  193. Yao Y et al (2013) Tumor cell-derived exosome-targeted dendritic cells stimulate stronger CD8+ CTL responses and antitumor immunities. Biochem Biophys Res Commun 436(1):60–65Google Scholar
  194. Yap TA et al (2008) Targeting the PI3K–AKT–mTOR pathway: progress, pitfalls, and promises. Curr Opin Pharmacol 8(4):393–412Google Scholar
  195. Yazdanpanah G et al (2015) The effects of cryopreservation on angiogenesis modulation activity of human amniotic membrane. Cryobiology 71(3):413–418Google Scholar
  196. Yu S et al (2007) Tumor exosomes inhibit differentiation of bone marrow dendritic cells. J Immunol 178(11):6867–6875Google Scholar
  197. Yu JM et al (2008) Mesenchymal stem cells derived from human adipose tissues favor tumor cell growth in vivo. Stem Cells Dev 17(3):463–473Google Scholar
  198. Yu P et al (2015) NSK-01105 inhibits proliferation and induces apoptosis of prostate cancer cells by blocking the Raf/MEK/ERK and PI3K/Akt/mTOR signal pathways. Tumor Biol 36(3):2143–2153Google Scholar
  199. Yuan X et al (2016) Mesenchymal stem cells deliver and release conditionally replicative adenovirus depending on hepatic differentiation to eliminate hepatocellular carcinoma cells specifically. Cancer Lett 381(1):85–95Google Scholar
  200. Yuan Y et al (2018) Suppression of tumor cell proliferation and migration by human umbilical cord mesenchymal stem cells: a possible role for apoptosis and Wnt signaling. Oncol Lett 15(6):8536–8544Google Scholar
  201. Yuzugullu H et al (2009) Canonical Wnt signaling is antagonized by noncanonical Wnt5a in hepatocellular carcinoma cells. Mol Cancer 8(1):90Google Scholar
  202. Zang W et al (2019) Traditional Chinese Medicine (TCM) Astragalus Membranaceus and Curcuma Wenyujin promote vascular normalization in tumor-derived endothelial cells of human hepatocellular carcinoma. Anticancer Res 39(6):2739–2747Google Scholar
  203. Zhang B et al (2012a) The inhibitory effect of MSCs expressing TRAIL as a cellular delivery vehicle in combination with cisplatin on hepatocellular carcinoma. Cancer Biol Ther 13(12):1175–1184Google Scholar
  204. Zhang HG et al (2012b) Exosomes and immune surveillance of neoplastic lesions: a review. Biotech Histochem 87(3):161–168Google Scholar
  205. Zhang J et al (2016) Inhibitory effect of genetically engineered mesenchymal stem cells with Apoptin on hepatoma cells in vitro and in vivo. Mol Cell Biochem 416(1–2):193–203Google Scholar
  206. Zhao W et al (2012) Efficacy of mesenchymal stem cells derived from human adipose tissue in inhibition of hepatocellular carcinoma cells in vitro. Cancer Biother Radiopharm 27(9):606–613Google Scholar
  207. Zhao J et al (2014) Stem cell-mediated delivery of SPIO-loaded gold nanoparticles for the theranosis of liver injury and hepatocellular carcinoma. Nanotechnology 25(40):405101Google Scholar
  208. Zhou L et al (2010) The mTOR pathway is associated with the poor prognosis of human hepatocellular carcinoma. Med Oncol 27(2):255–261Google Scholar
  209. Zhou HS et al (2016) Mesenchymal stem cells promote pancreatic adenocarcinoma cells invasion by transforming growth factor-beta1 induced epithelial-mesenchymal transition. Oncotarget 7(27):41294–41305Google Scholar
  210. Zhu W et al (2006) Mesenchymal stem cells derived from bone marrow favor tumor cell growth in vivo. Exp Mol Pathol 80(3):267–274Google Scholar
  211. Zhu Y et al (2009) Human mesenchymal stem cells inhibit cancer cell proliferation by secreting DKK-1. Leukemia 23(5):925–933Google Scholar
  212. Zhu Z et al (2010) Cancer stem/progenitor cells are highly enriched in CD133+CD44+ population in hepatocellular carcinoma. Int J Cancer 126(9):2067–2078Google Scholar
  213. Zhu W et al (2012) Exosomes derived from human bone marrow mesenchymal stem cells promote tumor growth in vivo. Cancer Lett 315:28–37Google Scholar
  214. Zhu YJ et al (2017) New knowledge of the mechanisms of sorafenib resistance in liver cancer. Acta Pharmacol Sin 38(5):614–622Google Scholar
  215. Zuo Q et al (2012) Multivariate analysis of several molecular markers and clinicopathological features in postoperative prognosis of hepatocellular carcinoma. Anat Rec 295(3):423–431Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Hoda Elkhenany
    • 1
    • 2
  • Ahmed Shekshek
    • 3
  • Mohamed Abdel-Daim
    • 4
    • 5
  • Nagwa El-Badri
    • 1
    Email author
  1. 1.Center of Excellence for Stem Cells and Regenerative Medicine (CESC)Zewail City of Science and TechnologyGizaEgypt
  2. 2.Department of Surgery, Faculty of Veterinary MedicineAlexandria UniversityAlexandriaEgypt
  3. 3.Faculty of MedicineBeni Suef UniversityBeni Suef GovernorateEgypt
  4. 4.Department of Zoology, Science CollegeKing Saud UniversityRiyadhSaudi Arabia
  5. 5.Pharmacology Department, Faculty of Veterinary MedicineSuez Canal UniversityIsmailiaEgypt

Personalised recommendations