Advertisement

pp 1-33 | Cite as

Quinolines and Quinolones as Antibacterial, Antifungal, Anti-virulence, Antiviral and Anti-parasitic Agents

  • Lidija SenerovicEmail author
  • Dejan Opsenica
  • Ivana Moric
  • Ivana Aleksic
  • Marta Spasić
  • Branka Vasiljevic
Chapter
Part of the Advances in Experimental Medicine and Biology book series

Abstract

Infective diseases have become health threat of a global proportion due to appearance and spread of microorganisms resistant to majority of therapeutics currently used for their treatment. Therefore, there is a constant need for development of new antimicrobial agents, as well as novel therapeutic strategies. Quinolines and quinolones, isolated from plants, animals, and microorganisms, have demonstrated numerous biological activities such as antimicrobial, insecticidal, anti-inflammatory, antiplatelet, and antitumor. For more than two centuries quinoline/quinolone moiety has been used as a scaffold for drug development and even today it represents an inexhaustible inspiration for design and development of novel semi-synthetic or synthetic agents exhibiting broad spectrum of bioactivities. The structural diversity of synthetized compounds provides high and selective activity attained through different mechanisms of action, as well as low toxicity on human cells. This review describes quinoline and quinolone derivatives with antibacterial, antifungal, anti-virulent, antiviral, and anti-parasitic activities with the focus on the last 10 years literature.

Keywords

Antibiotics Antifungals Anti-parasitics Antivirals Anti-virulence activity Quinoline/quinolone derivatives 

Notes

Acknowledgments

This study has been funded by the Ministry of Education, Science and Technological Development, Republic of Serbia (Grants No. 173048 and No.172008).

References

  1. Abouelhassan Y, Garrison AT, Burch GM, Wong W, Norwood VM, Huigens RW 3rd (2014) Discovery of quinoline small molecules with potent dispersal activity against methicillin-resistant Staphylococcus aureus and Staphylococcus epidermidis biofilms using a scaffold hopping strategy. Bioorg Med Chem Lett 24(21):5076–5080.  https://doi.org/10.1016/j.bmcl.2014.09.009CrossRefGoogle Scholar
  2. Abouelhassan Y, Garrison AT, Bai F, Norwood VM, Nguyen MT, Jin S, Huigens RW 3rd (2015) A phytochemical-halogenated Quinoline combination therapy strategy for the treatment of pathogenic bacteria. ChemMedChem 10(7):1157–1162.  https://doi.org/10.1002/cmdc.201500179CrossRefGoogle Scholar
  3. Al-Bari MA (2015) Chloroquine analogues in drug discovery: new directions of uses, mechanisms of actions and toxic manifestations from malaria to multifarious diseases. J Antimicrob Chemother 70(6):1608–1621.  https://doi.org/10.1093/jac/dkv018CrossRefGoogle Scholar
  4. Albuquerque P, Casadevall A (2012) Quorum sensing in fungi--a review. Med Mycol 50(4):337–345.  https://doi.org/10.3109/13693786.2011.652201CrossRefGoogle Scholar
  5. Aleksić I, Šegan S, Andrić F, Zlatović M, Moric I, Opsenica DM, Senerovic L (2017) Long-chain 4-Aminoquinolines as quorum sensing inhibitors in Serratia marcescens and Pseudomonas aeruginosa. ACS Chem Biol 12(5):1425–1434.  https://doi.org/10.1021/acschembio.6b01149CrossRefGoogle Scholar
  6. Almandil NB, Taha M, Rahim F, Wadood A, Imran S, Alqahtani MA, Bamarouf YA, Ibrahim M, Mosaddik A, Gollapalli M (2019) Synthesis of novel quinoline-based thiadiazole, evaluation of their antileishmanial potential and molecular docking studies. Bioorg Chem 85:109–116.  https://doi.org/10.1016/j.bioorg.2018.12.025CrossRefGoogle Scholar
  7. Anderson RJ, Groundwater PW, Todd A, Worsley A (2012) Antibacterial agents: chemistry, mode of action, mechanisms of resistance and clinical applications. Wiley, ChichesterGoogle Scholar
  8. Andries K, Verhasselt P, Guillemont J, Gohlmann HW, Neefs JM, Winkler H, Van Gestel J, Timmerman P, Zhu M, Lee E, Williams P, de Chaffoy D, Huitric E, Hoffner S, Cambau E, Truffot-Pernot C, Lounis N, Jarlier V (2005) A diarylquinoline drug active on the ATP synthase of Mycobacterium tuberculosis. Science 307(5707):223–227.  https://doi.org/10.1126/science.1106753CrossRefGoogle Scholar
  9. Antinarelli LM, Dias RM, Souza IO, Lima WP, Gameiro J, da Silva AD, Coimbra ES (2015) 4-Aminoquinoline derivatives as potential antileishmanial agents. Chem Biol Drug Des 86(4):704–714.  https://doi.org/10.1111/cbdd.12540CrossRefGoogle Scholar
  10. Antinarelli LMR, de Oliveira Souza I, Zabala CPV, Gameiro J, Britta EA, Nakamura CV, Lima WP, da Silva AD, Coimbra ES (2018) Antileishmanial activity of a 4-hydrazinoquinoline derivative: induction of autophagy and apoptosis-related processes and effectiveness in experimental cutaneous leishmaniasis. Exp Parasitol 195:78–86Google Scholar
  11. Baragana B, Hallyburton I, Lee MC, Norcross NR, Grimaldi R, Otto TD, Proto WR, Blagborough AM, Meister S, Wirjanata G, Ruecker A, Upton LM, Abraham TS, Almeida MJ, Pradhan A, Porzelle A, Luksch T, Martinez MS, Luksch T, Bolscher JM, Woodland A, Norval S, Zuccotto F, Thomas J, Simeons F, Stojanovski L, Osuna-Cabello M, Brock PM, Churcher TS, Sala KA, Zakutansky SE, Jimenez-Diaz MB, Sanz LM, Riley J, Basak R, Campbell M, Avery VM, Sauerwein RW, Dechering KJ, Noviyanti R, Campo B, Frearson JA, Angulo-Barturen I, Ferrer-Bazaga S, Gamo FJ, Wyatt PG, Leroy D, Siegl P, Delves MJ, Kyle DE, Wittlin S, Marfurt J, Price RN, Sinden RE, Winzeler EA, Charman SA, Bebrevska L, Gray DW, Campbell S, Fairlamb AH, Willis PA, Rayner JC, Fidock DA, Read KD, Gilbert IH (2015) A novel multiple-stage antimalarial agent that inhibits protein synthesis. Nature 522(7556):315–320.  https://doi.org/10.1038/nature14451CrossRefGoogle Scholar
  12. Barbosa-Lima G, Moraes AM, Araujo ADS, da Silva ET, de Freitas CS, Vieira YR, Marttorelli A, Neto JC, Bozza PT, de Souza MVN, Souza TML (2017) 2,8-bis(trifluoromethyl)quinoline analogs show improved anti-Zika virus activity, compared to mefloquine. Eur J Med Chem 127:334–340.  https://doi.org/10.1016/j.ejmech.2016.12.058CrossRefGoogle Scholar
  13. Barnett DS, Guy RK (2014) Antimalarials in development in 2014. Chem Rev 114(22):11221–11241.  https://doi.org/10.1021/cr500543fCrossRefGoogle Scholar
  14. Basak A, Abouelhassan Y, Huigens RW 3rd (2015) Halogenated quinolines discovered through reductive amination with potent eradication activities against MRSA, MRSE and VRE biofilms. Org Biomol Chem 13(41):10290–10294.  https://doi.org/10.1039/c5ob01883hCrossRefGoogle Scholar
  15. Basak A, Abouelhassan Y, Norwood VM, Bai F, Nguyen MT, Jin S, Huigens RW 3rd (2016) Synthetically tuning the 2-position of halogenated Quinolines: optimizing antibacterial and biofilm eradication activities via alkylation and reductive amination pathways. Chemistry 22(27):9181–9189.  https://doi.org/10.1002/chem.201600926CrossRefGoogle Scholar
  16. Basak A, Abouelhassan Y, Kim YS, Norwood VM, Jin S, Huigens RW 3rd (2018) Halogenated quinolines bearing polar functionality at the 2-position: identification of new antibacterial agents with enhanced activity against Staphylococcus epidermidis. Eur J Med Chem 155:705–713.  https://doi.org/10.1016/j.ejmech.2018.06.045CrossRefGoogle Scholar
  17. Basilico N, Parapini S, Sparatore A, Romeo S, Misiano P, Vivas L, Yardley V, Croft SL, Habluetzel A, Lucantoni L, Renia L, Russell B, Suwanarusk R, Nosten F, Dondio G, Bigogno C, Jabes D, Taramelli D (2017) In vivo and in vitro activities and ADME-Tox profile of a quinolizidine-modified 4-Aminoquinoline: a potent anti-P. falciparum and anti-P. vivax blood-stage antimalarial. Molecules 22(12).  https://doi.org/10.3390/molecules22122102Google Scholar
  18. Ben Yaakov D, Shadkchan Y, Albert N, Kontoyiannis DP, Osherov N (2017) The quinoline bromoquinol exhibits broad-spectrum antifungal activity and induces oxidative stress and apoptosis in aspergillus fumigatus. J Antimicrob Chemother 72(8):2263–2272.  https://doi.org/10.1093/jac/dkx117CrossRefGoogle Scholar
  19. Bernier SP, Surette MG (2013) Concentration-dependent activity of antibiotics in natural environments. Front Microbiol 4:20.  https://doi.org/10.3389/fmicb.2013.00020CrossRefGoogle Scholar
  20. Bisacchi GS (2015) Origins of the quinolone class of antibacterials: an expanded “discovery story”. J Med Chem 58(12):4874–4882.  https://doi.org/10.1021/jm501881cCrossRefGoogle Scholar
  21. Boudhar A, Ng XW, Loh CY, Chia WN, Tan ZM, Nosten F, Dymock BW, Tan KS (2016) Overcoming chloroquine resistance in malaria: design, synthesis, and structure-activity relationships of novel hybrid compounds. Antimicrob Agents Chemother 60(5):3076–3089.  https://doi.org/10.1128/AAC.02476-15CrossRefGoogle Scholar
  22. Capela R, Magalhaes J, Miranda D, Machado M, Sanches-Vaz M, Albuquerque IS, Sharma M, Gut J, Rosenthal PJ, Frade R, Perry MJ, Moreira R, Prudencio M, Lopes F (2018) Endoperoxide-8-aminoquinoline hybrids as dual-stage antimalarial agents with enhanced metabolic stability. Eur J Med Chem 149:69–78.  https://doi.org/10.1016/j.ejmech.2018.02.048CrossRefGoogle Scholar
  23. Cecchetti V, Parolin C, Moro S, Pecere T, Filipponi E, Calistri A, Tabarrini O, Gatto B, Palumbo M, Fravolini A, Palu G (2000) 6-Aminoquinolones as new potential anti-HIV agents. J Med Chem 43(20):3799–3802Google Scholar
  24. Chander S, Ashok P, Zheng YT, Wang P, Raja KS, Taneja A, Murugesan S (2016) Design, synthesis and in-vitro evaluation of novel tetrahydroquinoline carbamates as HIV-1 RT inhibitor and their antifungal activity. Bioorg Chem 64:66–73.  https://doi.org/10.1016/j.bioorg.2015.12.005CrossRefGoogle Scholar
  25. Chanquia SN, Larregui F, Puente V, Labriola C, Lombardo E, Garcia Linares G (2019) Synthesis and biological evaluation of new quinoline derivatives as antileishmanial and antitrypanosomal agents. Bioorg Chem 83:526–534.  https://doi.org/10.1016/j.bioorg.2018.10.053CrossRefGoogle Scholar
  26. Chico RM, Chandramohan D (2011) Azithromycin plus chloroquine: combination therapy for protection against malaria and sexually transmitted infections in pregnancy. Expert Opin Drug Metab Toxicol 7(9):1153–1167.  https://doi.org/10.1517/17425255.2011.598506CrossRefGoogle Scholar
  27. Chu XM, Wang C, Liu W, Liang LL, Gong KK, Zhao CY, Sun KL (2019) Quinoline and quinolone dimers and their biological activities: an overview. Eur J Med Chem 161:101–117.  https://doi.org/10.1016/j.ejmech.2018.10.035CrossRefGoogle Scholar
  28. Costa-Orlandi CB, Sardi JCO, Pitangui NS, de Oliveira HC, Scorzoni L, Galeane MC, Medina-Alarcon KP, Melo W, Marcelino MY, Braz JD, Fusco-Almeida AM, Mendes-Giannini MJS (2017) Fungal biofilms and Polymicrobial diseases. J Fungi 3(2):pii: E22.  https://doi.org/10.3390/jof3020022CrossRefGoogle Scholar
  29. de Azambuja Carvalho PH, Duval AR, Manzolli Leite FR, Nedel F, Cunico W, Lund RG (2016) (7-Chloroquinolin-4-yl)arylhydrazones: Candida albicans enzymatic repression and cytotoxicity evaluation, part 2. J Enzyme Inhib Med Chem 31(1):126–131.  https://doi.org/10.3109/14756366.2015.1010527CrossRefGoogle Scholar
  30. de Souza IO, Schrekker CM, Lopes W, Orru RV, Hranjec M, Perin N, Machado M, Oliveira LF, Donato RK, Stefani V, Fuentefria AM, Schrekker HS (2016) Bifunctional fluorescent benzimidazo[1,2-alpha]quinolines for Candida spp. biofilm detection and biocidal activity. J Photochem Photobiol B 163:319–326.  https://doi.org/10.1016/j.jphotobiol.2016.08.037CrossRefGoogle Scholar
  31. Defoirdt T (2018) Quorum-sensing systems as targets for Antivirulence therapy. Trends Microbiol 26(4):313–328.  https://doi.org/10.1016/j.tim.2017.10.005CrossRefGoogle Scholar
  32. Delattin N, Bardiot D, Marchand A, Chaltin P, De Brucker K, Cammue BP, Thevissen K (2012) Identification of fungicidal 2,6-disubstituted quinolines with activity against Candida biofilms. Molecules 17(10):12243–12251.  https://doi.org/10.3390/molecules171012243CrossRefGoogle Scholar
  33. Delvecchio R, Higa LM, Pezzuto P, Valadao AL, Garcez PP, Monteiro FL, Loiola EC, Dias AA, Silva FJ, Aliota MT, Caine EA, Osorio JE, Bellio M, O’Connor DH, Rehen S, de Aguiar RS, Savarino A, Campanati L, Tanuri A (2016) Chloroquine, an endocytosis blocking agent, inhibits Zika virus infection in different cell models. Viruses 8(12).  https://doi.org/10.3390/v8120322Google Scholar
  34. Devine W, Woodring JL, Swaminathan U, Amata E, Patel G, Erath J, Roncal NE, Lee PJ, Leed SE, Rodriguez A, Mensa-Wilmot K, Sciotti RJ, Pollastri MP (2015) Protozoan parasite growth inhibitors discovered by cross-screening yield potent scaffolds for Lead discovery. J Med Chem 58(14):5522–5537.  https://doi.org/10.1021/acs.jmedchem.5b00515CrossRefGoogle Scholar
  35. Deziel E, Lepine F, Milot S, He J, Mindrinos MN, Tompkins RG, Rahme LG (2004) Analysis of Pseudomonas aeruginosa 4-hydroxy-2-alkylquinolines (HAQs) reveals a role for 4-hydroxy-2-heptylquinoline in cell-to-cell communication. Proc Natl Acad Sci U S A 101(5):1339–1344.  https://doi.org/10.1073/pnas.0307694100CrossRefGoogle Scholar
  36. Diggle SP, Lumjiaktase P, Dipilato F, Winzer K, Kunakorn M, Barrett DA, Chhabra SR, Camara M, Williams P (2006) Functional genetic analysis reveals a 2-Alkyl-4-quinolone signaling system in the human pathogen Burkholderia pseudomallei and related bacteria. Chem Biol 13(7):701–710.  https://doi.org/10.1016/j.chembiol.2006.05.006CrossRefGoogle Scholar
  37. Dola VR, Soni A, Agarwal P, Ahmad H, Raju KS, Rashid M, Wahajuddin M, Srivastava K, Haq W, Dwivedi AK, Puri SK, Katti SB (2017) Synthesis and evaluation of Chirally defined side chain variants of 7-Chloro-4-Aminoquinoline to overcome drug resistance in malaria chemotherapy. Antimicrob Agents Chemother 61(3).  https://doi.org/10.1128/AAC.01152-16
  38. Dolan N, Gavin DP, Eshwika A, Kavanagh K, McGinley J, Stephens JC (2016) Synthesis, antibacterial and anti-MRSA activity, in vivo toxicity and a structure-activity relationship study of a quinoline thiourea. Bioorg Med Chem Lett 26(2):630–635.  https://doi.org/10.1016/j.bmcl.2015.11.058CrossRefGoogle Scholar
  39. Duval AR, Carvalho PH, Soares MC, Gouvea DP, Siqueira GM, Lund RG, Cunico W (2011) 7-chloroquinolin-4-yl arylhydrazone derivatives: synthesis and antifungal activity. Sci World J 11:1489–1495.  https://doi.org/10.1100/tsw.2011.141CrossRefGoogle Scholar
  40. Egan TJ, Marques HM (1999) The role of haem in the activity of chloroquine and related antimalarial drugs. Coord Chem Rev 190–192:493–517Google Scholar
  41. El Shehry MF, Ghorab MM, Abbas SY, Fayed EA, Shedid SA, Ammar YA (2018) Quinoline derivatives bearing pyrazole moiety: synthesis and biological evaluation as possible antibacterial and antifungal agents. Eur J Med Chem 143:1463–1473.  https://doi.org/10.1016/j.ejmech.2017.10.046CrossRefGoogle Scholar
  42. Espinosa-Valdes MP, Borbolla-Alvarez S, Delgado-Espinosa AE, Sanchez-Tejeda JF, Ceron-Nava A, Quintana-Romero OJ, Ariza-Castolo A, Garcia-Del Rio DF, Loza-Mejia MA (2019) Synthesis, in silico, and in vitro evaluation of long chain alkyl amides from 2-Amino-4-quinolone derivatives as biofilm inhibitors. Molecules 24(2).  https://doi.org/10.3390/molecules24020327Google Scholar
  43. Ettari R, Tamborini L, Angelo IC, Micale N, Pinto A, De Micheli C, Conti P (2013) Inhibition of rhodesain as a novel therapeutic modality for human African trypanosomiasis. J Med Chem 56(14):5637–5658.  https://doi.org/10.1021/jm301424dCrossRefGoogle Scholar
  44. Fernández-Piñar R, Cámara M, Dubern J-F, Ramos JL, Espinosa-Urgel M (2011) The Pseudomonas aeruginosa quinolone quorum sensing signal alters the multicellular behaviour of Pseudomonas putida KT2440. Res Microbiol 162(8):773–781.  https://doi.org/10.1016/j.resmic.2011.06.013CrossRefGoogle Scholar
  45. Gama N, Kumar K, Ekengard E, Haukka M, Darkwa J, Nordlander E, Meyer D (2016) Gold(I) complex of 1,1′-bis(diphenylphosphino) ferrocene-quinoline conjugate: a virostatic agent against HIV-1. Biometals 29(3):389–397.  https://doi.org/10.1007/s10534-016-9921-9CrossRefGoogle Scholar
  46. Garrison AT, Abouelhassan Y, Yang H, Yousaf HH, Nguyen TJ, Huigens Iii RW (2017) Microwave-enhanced Friedlander synthesis for the rapid assembly of halogenated quinolines with antibacterial and biofilm eradication activities against drug resistant and tolerant bacteria. Med Chem Commun 8(4):720–724.  https://doi.org/10.1039/c6md00381hCrossRefGoogle Scholar
  47. Gould MK, de Koning HP (2011) Cyclic-nucleotide signalling in protozoa. FEMS Microbiol Rev 35(3):515–541.  https://doi.org/10.1111/j.1574-6976.2010.00262.xCrossRefGoogle Scholar
  48. Gualerzi CO, Brandi L, Fabbretti A, Pon CL (2013) Antibiotics: targets, mechanisms and resistance. Wiley-VCH, Weinheim.  https://doi.org/10.1002/9783527659685CrossRefGoogle Scholar
  49. Hajimahdi Z, Zabihollahi R, Aghasadeghi MR, Hosseini Ashtiani S, Zargh A (2016) Novel quinolone-3-carboxylic acid derivatives as anti-HIV-1 agents: design, synthesis, and biological activities. Med Chem Res 25:1861–1876Google Scholar
  50. Hall-Stoodley L, Costerton JW, Stoodley P (2004) Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol 2(2):95–108Google Scholar
  51. Hamama WS, Ibrahim ME, Gooda AA, Zoorob HH (2018) Efficient synthesis, antimicrobial, antioxidant assessments and geometric optimization calculations of azoles- incorporating Quinoline moiety. J Heterocyclic Chem 55(11):2623–2634Google Scholar
  52. He QQ, Zhang X, Yang LM, Zheng YT, Chen F (2013) Synthesis and biological evaluation of 5-fluoroquinolone-3-carboxylic acids as potential HIV-1 integrase inhibitors. J Enzyme Inhib Med Chem 28(4):671–676.  https://doi.org/10.3109/14756366.2012.668540CrossRefGoogle Scholar
  53. Heeb S, Fletcher MP, Chhabra SR, Diggle SP, Williams P, Camara M (2011) Quinolones: from antibiotics to autoinducers. FEMS Microbiol Rev 35(2):247–274.  https://doi.org/10.1111/j.1574-6976.2010.00247.xCrossRefGoogle Scholar
  54. Hucke O, Coulombe R, Bonneau P, Bertrand-Laperle M, Brochu C, Gillard J, Joly MA, Landry S, Lepage O, Llinas-Brunet M, Pesant M, Poirier M, Poirier M, McKercher G, Marquis M, Kukolj G, Beaulieu PL, Stammers TA (2014) Molecular dynamics simulations and structure-based rational design lead to allosteric HCV NS5B polymerase thumb pocket 2 inhibitor with picomolar cellular replicon potency. J Med Chem 57(5):1932–1943.  https://doi.org/10.1021/jm4004522CrossRefGoogle Scholar
  55. Huigens RW 3rd (2018) The path to new halogenated Quinolines with enhanced activities against Staphylococcus epidermidis. Microbiol Insights 11:1178636118808532.  https://doi.org/10.1177/1178636118808532CrossRefGoogle Scholar
  56. Ilangovan A, Fletcher M, Rampioni G, Pustelny C, Rumbaugh K, Heeb S, Cámara M, Truman A, Chhabra SR, Emsley J, Williams P (2013) Structural basis for native agonist and synthetic inhibitor recognition by the Pseudomonas aeruginosa quorum sensing regulator PqsR (MvfR). PLoS Pathog 9(7):e1003508.  https://doi.org/10.1371/journal.ppat.1003508CrossRefGoogle Scholar
  57. Irfan M, Aneja B, Yadava U, Khan SI, Manzoor N, Daniliuc CG, Abid M (2015) Synthesis, QSAR and anticandidal evaluation of 1,2,3-triazoles derived from naturally bioactive scaffolds. Eur J Med Chem 93:246–254.  https://doi.org/10.1016/j.ejmech.2015.02.007CrossRefGoogle Scholar
  58. Irfan M, Alam S, Manzoor N, Abid M (2017) Effect of quinoline based 1,2,3-triazole and its structural analogues on growth and virulence attributes of Candida albicans. PLoS One 12(4):e0175710.  https://doi.org/10.1371/journal.pone.0175710CrossRefGoogle Scholar
  59. Jentsch NG, Hart AP, Hume JD, Sun J, McNeely KA, Lama C, Pigza JA, Donahue MG, Kessl JJ (2018) Synthesis and evaluation of aryl Quinolines as HIV-1 integrase Multimerization inhibitors. ACS Med Chem Lett 9(10):1007–1012.  https://doi.org/10.1021/acsmedchemlett.8b00269CrossRefGoogle Scholar
  60. Katiyar S, Kufareva I, Behera R, Thomas SM, Ogata Y, Pollastri M, Abagyan R, Mensa-Wilmot K (2013) Lapatinib-binding protein kinases in the African trypanosome: identification of cellular targets for kinase-directed chemical scaffolds. PLoS One 8(2):e56150.  https://doi.org/10.1371/journal.pone.0056150CrossRefGoogle Scholar
  61. Khan FAK, Kaduskar RN, Patil R, Patil RH, Ansari SA, Alkahtani HM, Almehizia AA, Shinde DB, Sangshetti JN (2019) Synthesis, biological evaluations and computational studies of N-(3-(-2-(7-Chloroquinolin-2-yl)vinyl) benzylidene)anilines as fungal biofilm inhibitors. Bioorg Med Chem Lett 29(4):623–630.  https://doi.org/10.1016/j.bmcl.2018.12.046CrossRefGoogle Scholar
  62. Konstantinovic J, Videnovic M, Srbljanovic J, Djurkovic-Djakovic O, Bogojevic K, Sciotti R, Solaja B (2017) Antimalarials with benzothiophene moieties as aminoquinoline partners. Molecules 22(3).  https://doi.org/10.3390/molecules22030343Google Scholar
  63. Konstantinovic J, Videnovic M, Orsini S, Bogojevic K, D’Alessandro S, Scaccabarozzi D, Terzic Jovanovic N, Gradoni L, Basilico N, Solaja BA (2018) Novel Aminoquinoline derivatives significantly reduce parasite load in Leishmania infantum infected mice. ACS Med Chem Lett 9(7):629–634.  https://doi.org/10.1021/acsmedchemlett.8b00053CrossRefGoogle Scholar
  64. Korotchenko V, Sathunuru R, Gerena L, Caridha D, Li Q, Kreishman-Deitrick M, Smith PL, Lin AJ (2015) Antimalarial activity of 4-amidinoquinoline and 10-amidinobenzonaphthyridine derivatives. J Med Chem 58(8):3411–3431.  https://doi.org/10.1021/jm501809xCrossRefGoogle Scholar
  65. Krauss J, Muller C, Kiessling J, Richter S, Staudacher V, Bracher F (2014) Synthesis and biological evaluation of novel N-alkyl tetra- and decahydroisoquinolines: novel antifungals that target ergosterol biosynthesis. Arch Pharm 347(4):283–290.  https://doi.org/10.1002/ardp.201300338CrossRefGoogle Scholar
  66. Krauss J, Hornacek M, Muller C, Staudacher V, Stadler M, Bracher F (2015) Synthesis and antifungal evaluation of novel N-alkyl tetra- and perhydroquinoline derivatives. Sci Pharm 83(1):1–14.  https://doi.org/10.3797/scipharm.1409-13CrossRefGoogle Scholar
  67. Kumar DV, Rai R, Brameld KA, Riggs J, Somoza JR, Rajagopalan R, Janc JW, Xia YM, Ton TL, Hu H, Lehoux I, Ho JD, Young WB, Hart B, Green MJ (2012) 3-heterocyclyl quinolone inhibitors of the HCV NS5B polymerase. Bioorg Med Chem Lett 22(1):300–304.  https://doi.org/10.1016/j.bmcl.2011.11.013CrossRefGoogle Scholar
  68. Leon B, Haeckl FP, Linington RG (2015) Optimized quinoline amino alcohols as disruptors and dispersal agents of Vibrio cholerae biofilms. Org Biomol Chem 13(31):8495–8499.  https://doi.org/10.1039/c5ob01134eCrossRefGoogle Scholar
  69. Leven M, Held J, Duffy S, Alves Avelar LA, Meister S, Delves M, Plouffe D, Kuna K, Tschan S, Avery VM, Winzeler EA, Mordmuller B, Kurz T (2019) 8-aminoquinolines with an aminoxyalkyl side chain exert in vitro dual-stage antiplasmodial activity. ChemMedChem 14(4):501–511.  https://doi.org/10.1002/cmdc.201800691CrossRefGoogle Scholar
  70. Loregian A, Mercorelli B, Muratore G, Sinigalia E, Pagni S, Massari S, Gribaudo G, Gatto B, Palumbo M, Tabarrini O, Cecchetti V, Palu G (2010) The 6-aminoquinolone WC5 inhibits human cytomegalovirus replication at an early stage by interfering with the transactivating activity of viral immediate-early 2 protein. Antimicrob Agents Chemother 54(5):1930–1940.  https://doi.org/10.1128/AAC.01730-09CrossRefGoogle Scholar
  71. Lu C, Kirsch B, Zimmer C, de Jong JC, Henn C, Maurer CK, Musken M, Haussler S, Steinbach A, Hartmann RW (2012) Discovery of antagonists of PqsR, a key player in 2-alkyl-4-quinolone-dependent quorum sensing in Pseudomonas aeruginosa. Chem Biol 19(3):381–390.  https://doi.org/10.1016/j.chembiol.2012.01.015CrossRefGoogle Scholar
  72. Lu C, Kirsch B, Maurer CK, de Jong JC, Braunshausen A, Steinbach A, Hartmann RW (2014a) Optimization of anti-virulence PqsR antagonists regarding aqueous solubility and biological properties resulting in new insights in structure–activity relationships. Eur J Med Chem 79:173–183.  https://doi.org/10.1016/j.ejmech.2014.04.016CrossRefGoogle Scholar
  73. Lu C, Maurer CK, Kirsch B, Steinbach A, Hartmann RW (2014b) Overcoming the unexpected functional inversion of a PqsR antagonist in Pseudomonas aeruginosa: an in vivo potent antivirulence agent targeting pqs quorum sensing. Angew Chem Int Ed 53(4):1109–1112.  https://doi.org/10.1002/anie.201307547CrossRefGoogle Scholar
  74. Luthra P, Liang J, Pietzsch CA, Khadka S, Edwards MR, Wei S, De S, Posner B, Bukreyev A, Ready JM, Basler CF (2018) A high throughput screen identifies benzoquinoline compounds as inhibitors of Ebola virus replication. Antivir Res 150:193–201.  https://doi.org/10.1016/j.antiviral.2017.12.019CrossRefGoogle Scholar
  75. Manfroni G, Cannalire R, Barreca ML, Kaushik-Basu N, Leyssen P, Winquist J, Iraci N, Manvar D, Paeshuyse J, Guhamazumder R, Basu A, Sabatini S, Tabarrini O, Danielson UH, Neyts J, Cecchetti V (2014) The versatile nature of the 6-aminoquinolone scaffold: identification of submicromolar hepatitis C virus NS5B inhibitors. J Med Chem 57(5):1952–1963.  https://doi.org/10.1021/jm401362fCrossRefGoogle Scholar
  76. Manohar S, Khan SI, Rawat DS (2013) 4-aminoquinoline-triazine-based hybrids with improved in vitro antimalarial activity against CQ-sensitive and CQ-resistant strains of Plasmodium falciparum. Chem Biol Drug Des 81(5):625–630.  https://doi.org/10.1111/cbdd.12108CrossRefGoogle Scholar
  77. Mao TQ, He QQ, Wan ZY, Chen WX, Chen FE, Tang GF, De Clercq E, Daelemans D, Pannecouque C (2015) Anti-HIV diarylpyrimidine-quinolone hybrids and their mode of action. Bioorg Med Chem 23(13):3860–3868.  https://doi.org/10.1016/j.bmc.2015.03.037CrossRefGoogle Scholar
  78. Martínez A, Deregnaucourt C, Sinou V, Latour C, Roy D, Schrével J, Sánchez-Delgado RA (2017) Synthesis of an organo-ruthenium aminoquinoline-trioxane hybrid and evaluation of its activity against plasmodium falciparum and its toxicity toward normal mammalian cells. Med Chem Res 26(2):473–483Google Scholar
  79. Massoud AA, Langer V, Gohar YM, Abu-Youssef MA, Janis J, Lindberg G, Hansson K, Ohrstrom L (2013) Effects of different substituents on the crystal structures and antimicrobial activities of six Ag(I) quinoline compounds. Inorg Chem 52(7):4046–4060.  https://doi.org/10.1021/ic400081vCrossRefGoogle Scholar
  80. Mercorelli B, Luganini A, Muratore G, Massari S, Terlizzi ME, Tabarrini O, Gribaudo G, Palu G, Loregian A (2014) The 6-Aminoquinolone WC5 inhibits different functions of the immediate-early 2 (IE2) protein of human cytomegalovirus that are essential for viral replication. Antimicrob Agents Chemother 58(11):6615–6626.  https://doi.org/10.1128/AAC.03309-14CrossRefGoogle Scholar
  81. Miquel S, Lagrafeuille R, Souweine B, Forestier C (2016) Anti-biofilm activity as a health issue. Front Microbiol 7:592–592.  https://doi.org/10.3389/fmicb.2016.00592CrossRefGoogle Scholar
  82. Montoya A, Quiroga J, Abonia R, Derita M, Sortino M, Ornelas A, Zacchino S, Insuasty B (2016) Hybrid molecules containing a 7-Chloro-4-aminoquinoline nucleus and a substituted 2-pyrazoline with antiproliferative and antifungal activity. Molecules 21(8).  https://doi.org/10.3390/molecules21080969Google Scholar
  83. Moradali MF, Ghods S, Rehm BH (2017) Pseudomonas aeruginosa lifestyle: a paradigm for adaptation, survival, and persistence. Front Cell Infect Microbiol 7:39.  https://doi.org/10.3389/fcimb.2017.00039CrossRefGoogle Scholar
  84. Musiol R, Serda M, Hensel-Bielowka S, Polanski J (2010) Quinoline-based antifungals. Curr Med Chem 17(18):1960–1973Google Scholar
  85. Nefertiti ASG, Batista MM, Da Silva PB, Batista DGJ, Da Silva CF, Peres RB, Torres-Santos EC, Cunha-Junior EF, Holt E, Boykin DW, Brun R, Wenzler T, Soeiro MNC (2018) In vitro and in vivo studies of the Trypanocidal effect of novel Quinolines. Antimicrob Agents Chemother 62(2).  https://doi.org/10.1128/AAC.01936-17
  86. Nikolić S, Opsenica DM, Filipović V, Dojčinović B, Aranđelović S, Radulović S, Grgurić-Šipka S (2015) Strong in vitro cytotoxic potential of new ruthenium–cymene complexes. Organometallics 34(14):3464–3473.  https://doi.org/10.1021/acs.organomet.5b00041CrossRefGoogle Scholar
  87. Nwaka S, Hudson A (2006) Innovative lead discovery strategies for tropical diseases. Nat Rev Drug Discov 5(11):941–955.  https://doi.org/10.1038/nrd2144CrossRefGoogle Scholar
  88. Ochiana SO, Bland ND, Settimo L, Campbell RK, Pollastri MP (2015) Repurposing human PDE4 inhibitors for neglected tropical diseases. Evaluation of analogs of the human PDE4 inhibitor GSK-256066 as inhibitors of PDEB1 of trypanosoma brucei. Chem Biol Drug Des 85(5):549–564.  https://doi.org/10.1111/cbdd.12443CrossRefGoogle Scholar
  89. Olliaro P, Mussano P (2003) Amodiaquine for treating malaria. Cochrane Database Syst Rev 2:CD000016.  https://doi.org/10.1002/14651858.CD000016CrossRefGoogle Scholar
  90. Ongarora DS, Strydom N, Wicht K, Njoroge M, Wiesner L, Egan TJ, Wittlin S, Jurva U, Masimirembwa CM, Chibale K (2015) Antimalarial benzoheterocyclic 4-aminoquinolines: structure-activity relationship, in vivo evaluation, mechanistic and bioactivation studies. Bioorg Med Chem 23(17):5419–5432.  https://doi.org/10.1016/j.bmc.2015.07.051CrossRefGoogle Scholar
  91. Opsenica I, Filipovic V, Nuss JE, Gomba LM, Opsenica D, Burnett JC, Gussio R, Solaja BA, Bavari S (2012) The synthesis of 2,5-bis(4-amidinophenyl)thiophene derivatives providing submicromolar-range inhibition of the botulinum neurotoxin serotype A metalloprotease. Eur J Med Chem 53:374–379.  https://doi.org/10.1016/j.ejmech.2012.03.043CrossRefGoogle Scholar
  92. Opsenica IM, Verbic TZ, Tot M, Sciotti RJ, Pybus BS, Djurkovic-Djakovic O, Slavic K, Solaja BA (2015) Investigation into novel thiophene- and furan-based 4-amino-7-chloroquinolines afforded antimalarials that cure mice. Bioorg Med Chem 23(9):2176–2186.  https://doi.org/10.1016/j.bmc.2015.02.061CrossRefGoogle Scholar
  93. Parsons M, Worthey EA, Ward PN, Mottram JC (2005) Comparative analysis of the kinomes of three pathogenic trypanosomatids: Leishmania major, Trypanosoma brucei and Trypanosoma cruzi. BMC Genomics 6:127.  https://doi.org/10.1186/1471-2164-6-127CrossRefGoogle Scholar
  94. Patel G, Karver CE, Behera R, Guyett PJ, Sullenberger C, Edwards P, Roncal NE, Mensa-Wilmot K, Pollastri MP (2013) Kinase scaffold repurposing for neglected disease drug discovery: discovery of an efficacious, lapatinib-derived lead compound for trypanosomiasis. J Med Chem 56(10):3820–3832.  https://doi.org/10.1021/jm400349kCrossRefGoogle Scholar
  95. Phillips B, Cai R, Delaney W, Du Z, Ji M, Jin H, Lee J, Li J, Niedziela-Majka A, Mish M, Pyun HJ, Saugier J, Tirunagari N, Wang J, Yang H, Wu Q, Sheng C, Zonte C (2014) Highly potent HCV NS4B inhibitors with activity against multiple genotypes. J Med Chem 57(5):2161–2166.  https://doi.org/10.1021/jm401646wCrossRefGoogle Scholar
  96. Pierre F, O’Brien SE, Haddach M, Bourbon P, Schwaebe MK, Stefan E, Darjania L, Stansfield R, Ho C, Siddiqui-Jain A, Streiner N, Rice WG, Anderes K, Ryckman DM (2011) Novel potent pyrimido[4,5-c]quinoline inhibitors of protein kinase CK2: SAR and preliminary assessment of their analgesic and anti-viral properties. Bioorg Med Chem Lett 21(6):1687–1691.  https://doi.org/10.1016/j.bmcl.2011.01.091CrossRefGoogle Scholar
  97. Pippi B, Reginatto P, Machado G, Bergamo VZ, Lana DFD, Teixeira ML, Franco LL, Alves RJ, Andrade SF, Fuentefria AM (2017) Evaluation of 8-hydroxyquinoline derivatives as hits for antifungal drug design. Med Mycol 55(7):763–773.  https://doi.org/10.1093/mmy/myx003CrossRefGoogle Scholar
  98. Pippi B, Machado G, Bergamo VZ, Alves RJ, Andrade SF, Fuentefria AM (2018) Clioquinol is a promising preventive morphological switching compound in the treatment of Candida infections linked to the use of intrauterine devices. J Med Microbiol 67(11):1655–1663.  https://doi.org/10.1099/jmm.0.000850CrossRefGoogle Scholar
  99. Plantone D, Koudriavtseva T (2018) Current and future use of chloroquine and hydroxychloroquine in infectious, immune, neoplastic, and neurological diseases: a mini-review. Clin Drug Investig 38(8):653–671.  https://doi.org/10.1007/s40261-018-0656-yCrossRefGoogle Scholar
  100. Ramirez-Prada J, Robledo SM, Velez ID, Crespo MDP, Quiroga J, Abonia R, Montoya A, Svetaz L, Zacchino S, Insuasty B (2017) Synthesis of novel quinoline-based 4,5-dihydro-1H-pyrazoles as potential anticancer, antifungal, antibacterial and antiprotozoal agents. Eur J Med Chem 131:237–254.  https://doi.org/10.1016/j.ejmech.2017.03.016CrossRefGoogle Scholar
  101. Reen FJ, Mooij MJ, Holcombe LJ, McSweeney CM, McGlacken GP, Morrissey JP, O’Gara F (2011) The Pseudomonas quinolone signal (PQS), and its precursor HHQ, modulate interspecies and interkingdom behaviour. FEMS Microbiol Ecol 77(2):413–428.  https://doi.org/10.1111/j.1574-6941.2011.01121.xCrossRefGoogle Scholar
  102. Reen FJ, Clarke SL, Legendre C, McSweeney CM, Eccles KS, Lawrence SE, O’Gara F, McGlacken GP (2012) Structure–function analysis of the C-3 position in analogues of microbial behavioural modulators HHQ and PQS. Org Biomol Chem 10(44):8903–8910.  https://doi.org/10.1039/C2OB26823JCrossRefGoogle Scholar
  103. Reen FJ, Shanahan R, Cano R, O’Gara F, McGlacken GP (2015) A structure activity-relationship study of the bacterial signal molecule HHQ reveals swarming motility inhibition in Bacillus atrophaeus. Org Biomol Chem 13(19):5537–5541.  https://doi.org/10.1039/C5OB00315FCrossRefGoogle Scholar
  104. Salas PF, Herrmann C, Cawthray JF, Nimphius C, Kenkel A, Chen J, de Kock C, Smith PJ, Patrick BO, Adam MJ, Orvig C (2013) Structural characteristics of chloroquine-bridged ferrocenophane analogues of ferroquine may obviate malaria drug-resistance mechanisms. J Med Chem 56(4):1596–1613.  https://doi.org/10.1021/jm301422hCrossRefGoogle Scholar
  105. Sato M, Motomura T, Aramaki H, Matsuda T, Yamashita M, Ito Y, Kawakami H, Matsuzaki Y, Watanabe W, Yamataka K, Ikeda S, Kodama E, Matsuoka M, Shinkai H (2006) Novel HIV-1 integrase inhibitors derived from quinolone antibiotics. J Med Chem 49(5):1506–1508.  https://doi.org/10.1021/jm0600139CrossRefGoogle Scholar
  106. Savarino A, Shytaj IL (2015) Chloroquine and beyond: exploring anti-rheumatic drugs to reduce immune hyperactivation in HIV/AIDS. Retrovirology 12:51.  https://doi.org/10.1186/s12977-015-0178-0CrossRefGoogle Scholar
  107. Savarino A, Boelaert JR, Cassone A, Majori G, Cauda R (2003) Effects of chloroquine on viral infections: an old drug against today’s diseases? Lancet Infect Dis 3(11):722–727Google Scholar
  108. Schlitzer M (2007) Malaria chemotherapeutics part I: history of antimalarial drug development, currently used therapeutics, and drugs in clinical development. ChemMedChem 2(7):944–986.  https://doi.org/10.1002/cmdc.200600240CrossRefGoogle Scholar
  109. Scola PM, Sun LQ, Wang AX, Chen J, Sin N, Venables BL, Sit SY, Chen Y, Cocuzza A, Bilder DM, D’Andrea SV, Zheng B, Hewawasam P, Tu Y, Friborg J, Falk P, Hernandez D, Levine S, Chen C, Yu F, Sheaffer AK, Zhai G, Barry D, Knipe JO, Han YH, Schartman R, Donoso M, Mosure K, Sinz MW, Zvyaga T, Good AC, Rajamani R, Kish K, Tredup J, Klei HE, Gao Q, Mueller L, Colonno RJ, Grasela DM, Adams SP, Loy J, Levesque PC, Sun H, Shi H, Sun L, Warner W, Li D, Zhu J, Meanwell NA, McPhee F (2014a) The discovery of asunaprevir (BMS-650032), an orally efficacious NS3 protease inhibitor for the treatment of hepatitis C virus infection. J Med Chem 57(5):1730–1752.  https://doi.org/10.1021/jm500297kCrossRefGoogle Scholar
  110. Scola PM, Wang AX, Good AC, Sun LQ, Combrink KD, Campbell JA, Chen J, Tu Y, Sin N, Venables BL, Sit SY, Chen Y, Cocuzza A, Bilder DM, D’Andrea S, Zheng B, Hewawasam P, Ding M, Thuring J, Li J, Hernandez D, Yu F, Falk P, Zhai G, Sheaffer AK, Chen C, Lee MS, Barry D, Knipe JO, Li W, Han YH, Jenkins S, Gesenberg C, Gao Q, Sinz MW, Santone KS, Zvyaga T, Rajamani R, Klei HE, Colonno RJ, Grasela DM, Hughes E, Chien C, Adams S, Levesque PC, Li D, Zhu J, Meanwell NA, McPhee F (2014b) Discovery and early clinical evaluation of BMS-605339, a potent and orally efficacious tripeptidic acylsulfonamide NS3 protease inhibitor for the treatment of hepatitis C virus infection. J Med Chem 57(5):1708–1729.  https://doi.org/10.1021/jm401840sCrossRefGoogle Scholar
  111. Shaikh SKJ, Kamble RR, Somagond SM, Devarajegowda HC, Dixit SR, Joshi SD (2017) Tetrazolylmethyl quinolines: design, docking studies, synthesis, anticancer and antifungal analyses. Eur J Med Chem 128:258–273.  https://doi.org/10.1016/j.ejmech.2017.01.043CrossRefGoogle Scholar
  112. Shang XF, Morris-Natschke SL, Liu YQ, Guo X, Xu XS, Goto M, Li JC, Yang GZ, Lee KH (2018) Biologically active quinoline and quinazoline alkaloids part I. Med Res Rev 38(3):775–828.  https://doi.org/10.1002/med.21466CrossRefGoogle Scholar
  113. Shinde RB, Raut JS, Chauhan NM, Karuppayil SM (2013) Chloroquine sensitizes biofilms of Candida albicans to antifungal azoles. Braz J Infect Dis 17(4):395–400.  https://doi.org/10.1016/j.bjid.2012.11.002CrossRefGoogle Scholar
  114. Solaja BA, Opsenica D, Smith KS, Milhous WK, Terzic N, Opsenica I, Burnett JC, Nuss J, Gussio R, Bavari S (2008) Novel 4-aminoquinolines active against chloroquine-resistant and sensitive P. falciparum strains that also inhibit botulinum serotype A. J Med Chem 51(15):4388–4391.  https://doi.org/10.1021/jm800737yCrossRefGoogle Scholar
  115. Soukarieh F, Vico Oton E, Dubern J-F, Gomes J, Halliday N, de Pilar CM, Ramírez-Prada J, Insuasty B, Abonia R, Quiroga J, Heeb S, Williams P, Stocks MJ, Cámara M (2018) In silico and in vitro-guided identification of inhibitors of Alkylquinolone-dependent quorum sensing in Pseudomonas aeruginosa. Molecules (Basel, Switzerland) 23(2):257.  https://doi.org/10.3390/molecules23020257CrossRefGoogle Scholar
  116. Sparatore A, Basilico N, Parapini S, Romeo S, Novelli F, Sparatore F, Taramelli D (2005) 4-Aminoquinoline quinolizidinyl- and quinolizidinylalkyl-derivatives with antimalarial activity. Bioorg Med Chem 13(18):5338–5345.  https://doi.org/10.1016/j.bmc.2005.06.047CrossRefGoogle Scholar
  117. Szczepaniak J, Cieslik W, Romanowicz A, Musiol R, Krasowska A (2017) Blocking and dislocation of Candida albicans Cdr1p transporter by styrylquinolines. Int J Antimicrob Agents 50(2):171–176.  https://doi.org/10.1016/j.ijantimicag.2017.01.044CrossRefGoogle Scholar
  118. Talamas FX, Abbot SC, Anand S, Brameld KA, Carter DS, Chen J, Davis D, de Vicente J, Fung AD, Gong L, Harris SF, Inbar P, Labadie SS, Lee EK, Lemoine R, Le Pogam S, Leveque V, Li J, McIntosh J, Najera I, Park J, Railkar A, Rajyaguru S, Sangi M, Schoenfeld RC, Staben LR, Tan Y, Taygerly JP, Villasenor AG, Weller PE (2014) Discovery of N-[4-[6-tert-butyl-5-methoxy-8-(6-methoxy-2-oxo-1H-pyridin-3-yl)-3-quinolyl]pheny l]methanesulfonamide (RG7109), a potent inhibitor of the hepatitis C virus NS5B polymerase. J Med Chem 57(5):1914–1931.  https://doi.org/10.1021/jm401329sCrossRefGoogle Scholar
  119. Tavares GSV, Mendonca DVC, Lage DP, Granato JDT, Ottoni FM, Ludolf F, Chavez-Fumagalli MA, Duarte MC, Tavares CAP, Alves RJ, Coimbra ES, Coelho EAF (2018) Antileishmanial activity, cytotoxicity and mechanism of action of Clioquinol against leishmania infantum and leishmania amazonensis species. Basic Clin Pharmacol Toxicol 123(3):236–246.  https://doi.org/10.1111/bcpt.12990CrossRefGoogle Scholar
  120. Terzic N, Konstantinovic J, Tot M, Burojevic J, Djurkovic-Djakovic O, Srbljanovic J, Stajner T, Verbic T, Zlatovic M, Machado M, Albuquerque IS, Prudencio M, Sciotti RJ, Pecic S, D’Alessandro S, Taramelli D, Solaja BA (2016) Reinvestigating old pharmacophores: are 4-aminoquinolines and tetraoxanes potential two-stage antimalarials? J Med Chem 59(1):264–281.  https://doi.org/10.1021/acs.jmedchem.5b01374CrossRefGoogle Scholar
  121. Upadhyay A, Kushwaha P, Gupta S, Dodda RP, Ramalingam K, Kant R, Goyal N, Sashidhara KV (2018) Synthesis and evaluation of novel triazolyl quinoline derivatives as potential antileishmanial agents. Eur J Med Chem 154:172–181.  https://doi.org/10.1016/j.ejmech.2018.05.014CrossRefGoogle Scholar
  122. Valdivieso E, Mejias F, Torrealba C, Benaim G, Kouznetsov VV, Sojo F, Rojas-Ruiz FA, Arvelo F, Dagger F (2018) In vitro 4-Aryloxy-7-chloroquinoline derivatives are effective in mono- and combined therapy against Leishmania donovani and induce mitocondrial membrane potential disruption. Acta Trop 183:36–42.  https://doi.org/10.1016/j.actatropica.2018.03.023CrossRefGoogle Scholar
  123. Vandekerckhove S, Van Herreweghe S, Willems J, Danneels B, Desmet T, de Kock C, Smith PJ, Chibale K, D’Hooghe M (2015) Synthesis of functionalized 3-, 5-, 6- and 8-aminoquinolines via intermediate (3-pyrrolin-1-yl)- and (2-oxopyrrolidin-1-yl)quinolines and evaluation of their antiplasmodial and antifungal activity. Eur J Med Chem 92:91–102.  https://doi.org/10.1016/j.ejmech.2014.12.020CrossRefGoogle Scholar
  124. Vial L, Lepine F, Milot S, Groleau MC, Dekimpe V, Woods DE, Deziel E (2008) Burkholderia pseudomallei, B. thailandensis, and B. ambifaria produce 4-hydroxy-2-alkylquinoline analogues with a methyl group at the 3 position that is required for quorum-sensing regulation. J Bacteriol 190(15):5339–5352.  https://doi.org/10.1128/JB.00400-08CrossRefGoogle Scholar
  125. Videnovic M, Opsenica DM, Burnett JC, Gomba L, Nuss JE, Selakovic Z, Konstantinovic J, Krstic M, Segan S, Zlatovic M, Sciotti RJ, Bavari S, Solaja BA (2014) Second generation steroidal 4-aminoquinolines are potent, dual-target inhibitors of the botulinum neurotoxin serotype A metalloprotease and P. falciparum malaria. J Med Chem 57(10):4134–4153.  https://doi.org/10.1021/jm500033rCrossRefGoogle Scholar
  126. Villa P, Arumugam N, Almansour AI, Suresh Kumar R, Mahalingam SM, Maruoka K, Thangamani S (2019) Benzimidazole tethered pyrrolo[3,4-b]quinoline with broad-spectrum activity against fungal pathogens. Bioorg Med Chem Lett 29(5):729–733.  https://doi.org/10.1016/j.bmcl.2019.01.006CrossRefGoogle Scholar
  127. Wadhwa P, Jain P, Rudrawar S, Jadhav HRA (2018) Quinoline, coumarin and other heterocyclic analogs based HIV-1 integrase inhibitors. Curr Drug Discov Technol 15(1):2–19.  https://doi.org/10.2174/1570163814666170531115452CrossRefGoogle Scholar
  128. Wanka L, Iqbal K, Schreiner PR (2013) The lipophilic bullet hits the targets: medicinal chemistry of adamantane derivatives. Chem Rev 113(5):3516–3604.  https://doi.org/10.1021/cr100264tCrossRefGoogle Scholar
  129. Waters NC, Edstein MD (2011) 8-Aminoquinolines: primaquine and tafenoquine. In: Treatment and prevention of malaria. Springer, Basel, pp 69–94Google Scholar
  130. Wijnant GJ, Van Bocxlaer K, Yardley V, Murdan S, Croft SL (2017) Efficacy of paromomycin-chloroquine combination therapy in experimental cutaneous leishmaniasis. Antimicrob Agents Chemother 61(8):pii: e00358-17Google Scholar
  131. Wilson TA, Koneru PC, Rebensburg SV, Lindenberger JJ, Kobe MJ, Cockroft NT, Adu-Ampratwum D, Larue RC, Kvaratskhelia M, Fuchs JR (2019) An Isoquinoline scaffold as a novel class of allosteric HIV-1 integrase inhibitors. ACS Med Chem Lett 10(2):215–220.  https://doi.org/10.1021/acsmedchemlett.8b00633CrossRefGoogle Scholar
  132. Woodring JL, Patel G, Erath J, Behera R, Lee PJ, Leed SE, Rodriguez A, Sciotti RJ, Mensa-Wilmot K, Pollastri MP (2015) Evaluation of aromatic 6-substituted Thienopyrimidines as scaffolds against parasites that cause trypanosomiasis, Leishmaniasis, and malaria. Med Chem Commun 6(2):339–346.  https://doi.org/10.1039/C4MD00441HCrossRefGoogle Scholar
  133. World Health Organization (2013). https://www.who.int/tb/features_archive/bedaquilinelaunch/en/. Accessed 20 Apr 2019
  134. World Health Organisation (2017). https://apps.who.int/iris/bitstream/handle/10665/258973/WER9238.pdf?sequence=1. Accessed 22 Mar 2019
  135. World Health Organisation (2018) Leishmaniasis facts. http://www.who.int/en/news-room/fact-sheets/detail/leishmaniasis. Accessed 22 Mar 2019
  136. World Health Organisation (2019). https://apps.who.int/iris/bitstream/handle/10665/275867/9789241565653-eng.pdf?ua=1. Accessed 21 Mar 2019
  137. Xu Z, Zhao SJ, Lv ZS, Gao F, Wang Y, Zhang F, Bai L, Deng JL (2019) Fluoroquinolone-isatin hybrids and their biological activities. Eur J Med Chem 162:396–406.  https://doi.org/10.1016/j.ejmech.2018.11.032CrossRefGoogle Scholar
  138. Zablotskaya A, Segal I, Geronikaki A, Shestakova I, Nikolajeva V, Makarenkova G (2017) N-heterocyclic choline analogues based on 1,2,3,4-tetrahydro(iso)quinoline scaffold with anticancer and anti-infective dual action. Pharmacol Rep 69(3):575–581.  https://doi.org/10.1016/j.pharep.2017.01.028CrossRefGoogle Scholar
  139. Zhang H, Collins J, Nyamwihura R, Ware S, Kaiser M, Ogungbe IV (2018) Discovery of a quinoline-based phenyl sulfone derivative as an antitrypanosomal agent. Bioorg Med Chem Lett 28(9):1647–1651.  https://doi.org/10.1016/j.bmcl.2018.03.039CrossRefGoogle Scholar
  140. Zuo R, Garrison AT, Basak A, Zhang P, Huigens RW 3rd, Ding Y (2016) In vitro antifungal and antibiofilm activities of halogenated quinoline analogues against Candida albicans and Cryptococcus neoformans. Int J Antimicrob Agents 48(2):208–211.  https://doi.org/10.1016/j.ijantimicag.2016.04.019CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Lidija Senerovic
    • 1
    Email author
  • Dejan Opsenica
    • 2
    • 3
  • Ivana Moric
    • 1
  • Ivana Aleksic
    • 1
  • Marta Spasić
    • 4
  • Branka Vasiljevic
    • 1
  1. 1.Institute of Molecular Genetics and Genetic EngineeringUniversity of BelgradeBelgradeSerbia
  2. 2.Institute of Chemistry, Technology and MetallurgyUniversity of BelgradeBelgradeSerbia
  3. 3.Center of excellence in Environmental Chemistry and EngineeringICTM - University of BelgradeBelgradeSerbia
  4. 4.Faculty of ChemistryUniversity of BelgradeBelgradeSerbia

Personalised recommendations