pp 1-14 | Cite as

Transamniotic Stem Cell Therapy

  • Stefanie P. Lazow
  • Dario O. FauzaEmail author
Part of the Advances in Experimental Medicine and Biology book series


Transamniotic stem cell therapy (TRASCET) is a novel prenatal therapeutic alternative for the treatment of congenital anomalies. It is based upon the principle of augmenting the pre-existing biological role of select populations of fetal stem cells for targeted therapeutic benefit. For example, amniotic fluid-derived mesenchymal stem cells (afMSCs) play an integral role in fetal tissue repair, validating the use of afMSCs in regenerative strategies. The simple intra-amniotic delivery of these cells in expanded numbers via TRASCET has been shown to promote the repair of and/or significantly ameliorate the effects associated with major congenital anomalies such as neural tube and abdominal wall defects. For example, TRASCET can induce partial or complete coverage of experimental spina bifida through the formation of a host-derived rudimentary neoskin, thus protecting the spinal cord from further damage secondary to amniotic fluid exposure. Furthermore, TRASCET can significantly reduce the bowel inflammation associated with gastroschisis, a common major abdominal wall defect. After intra-amniotic injection, donor stem cells home to the placenta and the fetal bone marrow in the spina bifida model, suggesting a role for hematogenous cell routing rather than direct defect seeding. Therefore, the expansion of TRASCET to congenital diseases without amniotic fluid exposure, such as congenital diaphragmatic hernia, as well as to maternal diseases, is currently under investigation in this emerging and evolving field of fetal stem cell therapy.


Transamniotic stem cell therapy TRASCET Amniotic mesenchymal stem cell Amniotic stem cell Amniotic neural stem cell Fetal stem cell Fetal cell therapy  



amniotic fluid-derived mesenchymal stem cell


amniotic fluid-derived neural stem cell


cluster of differentiation 45


congenital diaphragmatic hernia


chorionic villus sampling


endothelin converting enzyme


extracorporeal membrane oxygenation


epidermal growth factor


endothelial nitric oxide synthase


endothelin receptor-a


endothelin receptor-b


Food and Drug Administration


fibroblast growth factor-2


fibroblast growth factor-10


hematoxin and eosin


hematopoietic stem cell


management of myelomeningocele study


magnetic resonance imaging


mesenchymal stem cell


neural stem cell


Neural tube defect


polymerase chain reaction


placental-derived mesenchymal stem cell




quantitative real time reverse transcription polymerase chain reaction


surfactant protein-C


transforming growth factor-b-1


transamniotic stem cell therapy


vascular endothelial growth factor-a


  1. Adzick NS, Thom EA, Spong CY, Brock JW 3rd, Burrows PK, Johnson MP et al (2011) A randomized trial of prenatal versus postnatal repair of myelomeningocele. N Engl J Med 364(11):993–1004Google Scholar
  2. Aula P, von Koskull H, Teramo K, Karjalainen O, Virtanen I, Lehto VP et al (1980) Glial origin of rapidly adhering amniotic fluid cells. Br Med J 281(6253):1456–1457Google Scholar
  3. Bittencourt DG, Barreto MW, Franca WM, Goncalves A, Pereira LA, Sbragia L (2006) Impact of corticosteroid on intestinal injury in a gastroschisis rat model: morphometric analysis. J Pediatr Surg 41(3):547–553Google Scholar
  4. Boelig MM, Flake AW (2016) In utero stem cell transplantation. In: Fauza DO, Bani M (eds) Fetal stem cells in regenerative medicine: principles and translational strategies. Springer/Humana Press, New York, pp 317–337Google Scholar
  5. Botto LD, Moore CA, Khoury MJ, Erickson JD (1999) Neural-tube defects. N Engl J Med 341(20):1509–1519Google Scholar
  6. Boulet SL, Yang Q, Mai C, Kirby RS, Collins JS, Robbins JM et al (2008) Trends in the postfortification prevalence of spina bifida and anencephaly in the United States. Birth Defects Res A Clin Mol Teratol 82(7):527–532Google Scholar
  7. Chalphin AV, Tracy SA, Kycia I, Chan C, Finkelstein A, Zurakowski D et al (eds) (2018) Donor mesenchymal stem cell kinetics in transamniotic stem cell therapy for experimental gastroschisis American Academy of Pediatrics annual meeting, Orlando, FLGoogle Scholar
  8. Chalphin AV, Tracy SA, Lazow SP, Kycia I, Zurakowski D, Fauza DO (eds) (2019a) Comparison between placental and amniotic mesenchymal stem cells in transamniotic stem cell therapy for experimental gastroschisis. American Pediatric Surgical Assocation annual meeting, Boston, MAGoogle Scholar
  9. Chalphin AV, Tracy SA, Lazow SP, Kycia I, 789 Zurakowski D, Fauza DO (eds) (2019b) Congenital diaphragmatic hernia as a potential target for transamniotic stem cell therapy. British Association of Pediatric Surgeons annual meeting, Nottingham, UKGoogle Scholar
  10. Chang YJ, Su HL, Hsu LF, Huang PJ, Wang TH, Cheng FC et al (2015) Isolation of human neural stem cells from the amniotic fluid with diagnosed neural tube defects. Stem Cells Dev 24(15):1740–1750Google Scholar
  11. Chiu PP (2014) New insights into congenital diaphragmatic hernia – a surgeon’s introduction to CDH animal models. Front Pediatr 2:36Google Scholar
  12. Christensen JL, Wright DE, Wagers AJ, Weissman IL (2004) Circulation and chemotaxis of fetal hematopoietic stem cells. PLoS Biol 2(3):E75Google Scholar
  13. Cragan JD, Gilboa SM (2009) Including prenatal diagnoses in birth defects monitoring: experience of the metropolitan Atlanta congenital defects program. Birth Defects Res A Clin Mol Teratol 85(1):20–29Google Scholar
  14. Czeizel AE, Dudas I (1992) Prevention of the first occurrence of neural-tube defects by periconceptional vitamin supplementation. N Engl J Med 327(26):1832–1835Google Scholar
  15. Danzer E, Johnson MP (2014) Fetal surgery for neural tube defects. Semin Fetal Neonatal Med 19(1):2–8Google Scholar
  16. Danzer E, Schwarz U, Wehrli S, Radu A, Adzick NS, Flake AW (2005) Retinoic acid induced myelomeningocele in fetal rats: characterization by histopathological analysis and magnetic resonance imaging. Exp Neurol 194(2):467–475Google Scholar
  17. David-Raoudi M, Tranchepain F, Deschrevel B, Vincent JC, Bogdanowicz P, Boumediene K et al (2008) Differential effects of hyaluronan and its fragments on fibroblasts: relation to wound healing. Wound Repair Regen 16(2):274–287Google Scholar
  18. Derderian SC, Jeanty C, MacKenzie TC (2016) Fet-maternal cell trafficking and labor. In: Fauza DO, Bani M (eds) Fetal stem cells in regenerative medicine: principles and translational strategies. Springer/Humana Press, New York, pp 33–45Google Scholar
  19. Dionigi B, Ahmed A, Brazzo J 3rd, Connors JP, Zurakowski D, Fauza DO (2015a) Partial or complete coverage of experimental spina bifida by simple intra-amniotic injection of concentrated amniotic mesenchymal stem cells. J Pediatr Surg 50(1):69–73Google Scholar
  20. Dionigi B, Brazzo JA 3rd, Ahmed A, Feng C, Wu Y, Zurakowski D et al (2015b) Trans-amniotic stem cell therapy (TRASCET) minimizes Chiari-II malformation in experimental spina bifida. J Pediatr Surg 50(6):1037–1041Google Scholar
  21. Downard CD, Jaksic T, Garza JJ, Dzakovic A, Nemes L, Jennings RW et al (2003) Analysis of an improved survival rate for congenital diaphragmatic hernia. J Pediatr Surg 38(5):729–732Google Scholar
  22. Doyle NM, Lally KP (2004) The CDH Study Group and advances in the clinical care of the patient with congenital diaphragmatic hernia. Semin Perinatol 28(3):174–184Google Scholar
  23. Egbe A, Lee S, Ho D, Uppu S, Srivastava S (2015) Racial/ethnic differences in the birth prevalence of congenital anomalies in the United States. J Perinat Med 43(1):111–117Google Scholar
  24. Fauza DO (2004) Amniotic fluid and placental stem cells. Best Pract Res Clin Obstet Gynaecol 18(6):877–891Google Scholar
  25. Fauza DO (2018) Transamniotic stem cell therapy: a novel strategy for the prenatal management of congenital anomalies. Pediatr Res 83(1–2):241–248Google Scholar
  26. Fauza DO, Bani M (2016) Fetal stem cells in regenerative medicine: principles and translational strategies. Springer Science, New York, 453 pGoogle Scholar
  27. Feng C, Graham CD, Connors JP, Brazzo J 3rd, Zurakowski D, Fauza DO (2016a) A comparison between placental and amniotic mesenchymal stem cells for transamniotic stem cell therapy (TRASCET) in experimental spina bifida. J Pediatr Surg 51(6):1010–1013Google Scholar
  28. Feng C, Graham CD, Connors JP, Brazzo J 3rd, Pan AH, Hamilton JR et al (2016b) Transamniotic stem cell therapy (TRASCET) mitigates bowel damage in a model of gastroschisis. J Pediatr Surg 51(1):56–61Google Scholar
  29. Feng C, Graham CD, Shieh HF, Brazzo JA 3rd, Connors JP, Rohrer L et al (2017) Transamniotic stem cell therapy (TRASCET) in a leporine model of gastroschisis. J Pediatr Surg 52(1):30–34Google Scholar
  30. Fu X, Li H (2009) Mesenchymal stem cells and skin wound repair and regeneration: possibilities and questions. Cell Tissue Res 335(2):317–321Google Scholar
  31. Fuchs JR, Kaviani A, Oh JT, LaVan D, Udagawa T, Jennings RW et al (2004) Diaphragmatic reconstruction with autologous tendon engineered from mesenchymal amniocytes. J Pediatr Surg 39(6):834–838. discussion -8Google Scholar
  32. Fukutake M, Ochiai D, Masuda H, Abe Y, Sato Y, Otani T et al (2019) Human amniotic fluid stem cells have a unique potential to accelerate cutaneous wound healing with reduced fibrotic scarring like a fetus. Hum Cell 32(1):51–63Google Scholar
  33. Gien J, Kinsella JP (2016) Management of pulmonary hypertension in infants with congenital diaphragmatic hernia. J Perinatol 36(Suppl 2):S28–S31Google Scholar
  34. Goncalves FL, Bueno MP, Schmidt AF, Figueira RL, Sbragia L (2015) Treatment of bowel in experimental gastroschisis with a nitric oxide donor. Am J Obstet Gynecol 212(3):383 e1-7Google Scholar
  35. Gosden CM, Brock DJ (1977) Morphology of rapidly adhering amniotic-fluid cells as an aid to the diagnosis of neural-tube defects. Lancet (London, England) 1(8018):919–922Google Scholar
  36. Graham CD, Shieh HF, Brazzo JA 3rd, Zurakowski D, Fauza DO (2017) Donor mesenchymal stem cells home to maternal wounds after transamniotic stem cell therapy (TRASCET) in a rodent model. J Pediatr Surg 52(6):1006–1009Google Scholar
  37. Greenebaum E, Mansukhani MM, Heller DS, Timor-Tristsch I (1997) Open neural tube defects: immunocytochemical demonstration of neuroepithelial cells in amniotic fluid. Diagn Cytopathol 16(2):143–144Google Scholar
  38. Grivell RM, Andersen C, Dodd JM (2015) Prenatal interventions for congenital diaphragmatic hernia for improving outcomes. Cochrane Database Syst Rev 11:Cd008925Google Scholar
  39. Gurtner GC, Werner S, Barrandon Y, Longaker MT (2008) Wound repair and regeneration. Nature 453(7193):314–321Google Scholar
  40. Hakguder G, Ates O, Olguner M, Api A, Ozdogan O, Degirmenci B et al (2002) Induction of fetal diuresis with intraamniotic furosemide increases the clearance of intraamniotic substances: an alternative therapy aimed at reducing intraamniotic meconium concentration. J Pediatr Surg 37(9):1337–1342Google Scholar
  41. Hollinger LE, Harting MT, Lally KP (2017) Long-term follow-up of congenital diaphragmatic hernia. Semin Pediatr Surg 26(3):178–184Google Scholar
  42. Hong HS, Lee J, Lee E, Kwon YS, Ahn W, Jiang MH et al (2009) A new role of substance P as an injury-inducible messenger for mobilization of CD29(+) stromal-like cells. Nat Med 15(4):425–435Google Scholar
  43. Hutchins GM, Meuli M, Meuli-Simmen C, Jordan MA, Heffez DS, Blakemore KJ (1996) Acquired spinal cord injury in human fetuses with myelomeningocele. Pediatr Pathol Lab Med 16(5):701–712Google Scholar
  44. Kaviani A, Perry TE, Dzakovic A, Jennings RW, Ziegler MM, Fauza DO (2001) The amniotic fluid as a source of cells for fetal tissue engineering. J Pediatr Surg 36(11):1662–1665Google Scholar
  45. Klein JD, Fauza DO (2011) Amniotic and placental mesenchymal stem cell isolation and culture. Methods Mol Biol 698:75–88Google Scholar
  46. Klein JD, Turner CG, Steigman SA, Ahmed A, Zurakowski D, Eriksson E et al (2011) Amniotic mesenchymal stem cells enhance normal fetal wound healing. Stem Cells Dev 20(6):969–976Google Scholar
  47. Korenromp MJ, van Gool JD, Bruinese HW, Kriek R (1986) Early fetal leg movements in myelomeningocele. Lancet (London, England) 1(8486):917–918Google Scholar
  48. Kunisaki SM, Fuchs JR, Steigman SA, Fauza DO (2007a) A comparative analysis of cartilage engineered from different perinatal mesenchymal progenitor cells. Tissue Eng 13(11):2633–2644Google Scholar
  49. Kunisaki SM, Armant M, Kao GS, Stevenson K, Kim H, Fauza DO (2007b) Tissue engineering from human mesenchymal amniocytes: a prelude to clinical trials. J Pediatr Surg 42(6):974–979. discussion 9-80Google Scholar
  50. Kwong FN, Harris MB (2008) Recent developments in the biology of fracture repair. J Am Acad Orthop Surg 16(11):619–625Google Scholar
  51. Langer JC, Longaker MT, Crombleholme TM, Bond SJ, Finkbeiner WE, Rudolph CA et al (1989) Etiology of intestinal damage in gastroschisis. I: effects of amniotic fluid exposure and bowel constriction in a fetal lamb model. J Pediatr Surg 24(10):992–997Google Scholar
  52. Langham MR Jr, Kays DW, Ledbetter DJ, Frentzen B, Sanford LL, Richards DS (1996) Congenital diaphragmatic hernia. Epidemiol Outcome Clin Perinatol 23(4):671–688Google Scholar
  53. Lee DH, Park S, Kim EY, Kim SK, Chung YN, Cho BK et al (2004) Enhancement of re-closure capacity by the intra-amniotic injection of human embryonic stem cells in surgically induced spinal open neural tube defects in chick embryos. Neurosci Lett 364(2):98–100Google Scholar
  54. Lee DH, Kim EY, Park S, Phi JH, Kim SK, Cho BK et al (2006) Reclosure of surgically induced spinal open neural tube defects by the intraamniotic injection of human embryonic stem cells in chick embryos 24 hours after lesion induction. J Neurosurg 105(2 Suppl):127–133Google Scholar
  55. Lee DH, Phi JH, Kim SK, Cho BK, Kim SU, Wang KC (2010) Enhanced reclosure of surgically induced spinal open neural tube defects in chick embryos by injecting human bone marrow stem cells into the amniotic cavity. Neurosurgery 67(1):129–135. discussion 35Google Scholar
  56. Logghe HL, Mason GC, Thornton JG, Stringer MD (2005) A randomized controlled trial of elective preterm delivery of fetuses with gastroschisis. J Pediatr Surg 40(11):1726–1731Google Scholar
  57. Luthy DA, Wardinsky T, Shurtleff DB, Hollenbach KA, Hickok DE, Nyberg DA et al (1991) Cesarean section before the onset of labor and subsequent motor function in infants with meningomyelocele diagnosed antenatally. N Engl J Med 324(10):662–666Google Scholar
  58. Luton D, de Lagausie P, Guibourdenche J, Oury J, Sibony O, Vuillard E et al (1999) Effect of amnioinfusion on the outcome of prenatally diagnosed gastroschisis. Fetal Diagn Ther 14(3):152–155Google Scholar
  59. Main DM, Mennuti MT (1986) Neural tube defects: issues in prenatal diagnosis and counselling. Obstet Gynecol 67(1):1–16Google Scholar
  60. Malowitz JR, Hornik CP, Laughon MM, Testoni D, Cotten CM, Clark RH et al (2015) Management practice and mortality for infants with congenital diaphragmatic hernia. Am J Perinatol 32(9):887–894Google Scholar
  61. McGivern MR, Best KE, Rankin J, Wellesley D, Greenlees R, Addor MC et al (2015) Epidemiology of congenital diaphragmatic hernia in Europe: a register-based study. Arch Dis Child Fetal Neonatal Ed 100(2):F137–F144Google Scholar
  62. Medvinsky A, Dzierzak E (1996) Definitive hematopoiesis is autonomously initiated by the AGM region. Cell 86(6):897–906Google Scholar
  63. Mendes SC, Robin C, Dzierzak E (2005) Mesenchymal progenitor cells localize within hematopoietic sites throughout ontogeny. Development 132(5):1127–1136Google Scholar
  64. Mendonca ED, Gutierrez CM, Peres LC (2005) Brain tissue fragments in the amniotic fluid of rats with neural tube defect. Pathology 37(2):152–156Google Scholar
  65. Meuli M, Meuli-Simmen C, Yingling CD, Hutchins GM, Hoffman KM, Harrison MR et al (1995a) Creation of myelomeningocele in utero: a model of functional damage from spinal cord exposure in fetal sheep. J Pediatr Surg 30(7):1028–1032. discussion 32-3Google Scholar
  66. Meuli M, Meuli-Simmen C, Hutchins GM, Yingling CD, Hoffman KM, Harrison MR et al (1995b) In utero surgery rescues neurological function at birth in sheep with spina bifida. Nat Med 1(4):342–347Google Scholar
  67. Meuli M, Meuli-Simmen C, Yingling CD, Hutchins GM, Timmel GB, Harrison MR et al (1996) In utero repair of experimental myelomeningocele saves neurological function at birth. J Pediatr Surg 31(3):397–402Google Scholar
  68. Meuli M, Meuli-Simmen C, Hutchins GM, Seller MJ, Harrison MR, Adzick NS (1997) The spinal cord lesion in human fetuses with myelomeningocele: implications for fetal surgery. J Pediatr Surg 32(3):448–452Google Scholar
  69. Mikkola HK, Gekas C, Orkin SH, Dieterlen-Lievre F (2005) Placenta as a site for hematopoietic stem cell development. Exp Hematol 33(9):1048–1054Google Scholar
  70. Mohamed MA, Aly H (2012) Birth region, race and sex may affect the prevalence of congenital diaphragmatic hernia, abdominal wall and neural tube defects among US newborns. J Perinatol 32(11):861–868Google Scholar
  71. MRC Vitamin Study Research Group (1991) Prevention of neural tube defects: results of the Medical Research Council Vitamin Study. Lancet 338(8760):131–137Google Scholar
  72. Osaka K, Tanimura T, Hirayama A, Matsumoto S (1978) Myelomeningocele before birth. J Neurosurg 49(5):711–724Google Scholar
  73. Parker SE, Mai CT, Canfield MA, Rickard R, Wang Y, Meyer RE et al (2010) Updated National Birth Prevalence estimates for selected birth defects in the United States, 2004–2006. Birth Defects Res A Clin Mol Teratol 88(12):1008–1016Google Scholar
  74. Patten BM (1953) Embryological stages in the establishing of myeloschisis with spina bifida. Am J Anat 93(3):365–395Google Scholar
  75. Pennington EC, Gray FL, Ahmed A, Zurakowski D, Fauza DO (2013) Targeted quantitative amniotic cell profiling: a potential diagnostic tool in the prenatal management of neural tube defects. J Pediatr Surg 48(6):1205–1210Google Scholar
  76. Pennington EC, Rialon KL, Dionigi B, Ahmed A, Zurakowski D, Fauza DO (2015) The impact of gestational age on targeted amniotic cell profiling in experimental neural tube defects. Fetal Diagn Ther 37(1):65–69Google Scholar
  77. Pratheesh MD, Dubey PK, Gade NE, Nath A, Sivanarayanan TB, Madhu DN et al (2017) Comparative study on characterization and wound healing potential of goat (Capra hircus) mesenchymal stem cells derived from fetal origin amniotic fluid and adult bone marrow. Res Vet Sci 112:81–88Google Scholar
  78. Seravalli V, Jelin EB, Miller JL, Tekes A, Vricella L, Baschat AA (2017) Fetoscopic tracheal occlusion for treatment of non-isolated congenital diaphragmatic hernia. Prenat Diagn 37(10):1046–1049Google Scholar
  79. Shieh HF, Ahmed A, Tracy SA, Zurakowski D, Fauza DO (2017) Fetal bone marrow homing of donor mesenchymal stem cells after Transamniotic stem cell therapy (TRASCET). J Pediatr Surg 53(1):174–177Google Scholar
  80. Shieh HF, Ahmed A, Rohrer L, Zurakowski D, Fauza DO (2018) Donor mesenchymal stem cell linetics after transamniotic stem cell therapy (TRASCET) for experimental spina bifida. J Pediatr Surg 53(6):1134–1136Google Scholar
  81. Shieh HF, Tracy SA, Hong CR, Chalphin AV, Ahmed A, Rohrer L et al (2019) Transamniotic stem cell therapy (TRASCET) in a rabbit model of spina bifida. J Pediatr Surg 54(2):293–296Google Scholar
  82. Shu J, He X, Li H, Liu X, Qiu X, Zhou T et al (2018) The beneficial effect of human amnion mesenchymal cells in inhibition of inflammation and induction of neuronal repair in EAE mice. J Immunol Res 2018:5083797Google Scholar
  83. Shurtleff DB, Luthy DA, Nyberg DA, Benedetti TJ, Mack LA (1994) Meningomyelocele: management in utero and post natum. CIBA Found Symp 181:270–280. discussion 80-6Google Scholar
  84. Sival DA, Begeer JH, Staal-Schreinemachers AL, Vos-Niel JM, Beekhuis JR, Prechtl HF (1997) Perinatal motor behaviour and neurological outcome in spina bifida aperta. Early Hum Dev 50(1):27–37Google Scholar
  85. Steigman SA, Armant M, Bayer-Zwirello L, Kao GS, Silberstein L, Ritz J et al (2008) Preclinical regulatory validation of a 3-stage amniotic mesenchymal stem cell manufacturing protocol. J Pediatr Surg 43(6):1164–1169Google Scholar
  86. Tammi R, Pasonen-Seppanen S, Kolehmainen E, Tammi M (2005) Hyaluronan synthase induction and hyaluronan accumulation in mouse epidermis following skin injury. J Invest Dermatol 124(5):898–905Google Scholar
  87. Till H, Muensterer O, Mueller M, Klis V, Klotz S, Metzger R et al (2003) Intrauterine repair of gastroschisis in fetal rabbits. Fetal Diagn Ther 18(5):297–300Google Scholar
  88. Tracy SA, Chalphin AV, Kycia I, Chan C, Finkelstein A, Zurakowski D et al (eds) (2018) Insights into hematogenous donor cell routing after transamniotic stem cell therapy American Academy of Pediatrics annual meeting, Orlando, FLGoogle Scholar
  89. Tracy SA, Ahmed A, Tigges JC, Ericsson M, Pal AK, Zurakowski D et al (2019a) A comparison of clinically relevant sources of mesenchymal stem cell-derived exosomes: bone marrow and amniotic fluid. J Pediatr Surg 54(1):86–90Google Scholar
  90. Tracy SA, Chalphin AV, Lazow SP, Kycia I, Chan C, Finkelstein A et al (eds) (2019b) Repeat dosing in the retinoic acid model of transamniotic stem cell therapy for spina bifida. American Pediatric Surgical Assocation Annual Meeting, Boston, MAGoogle Scholar
  91. Turner CG, Klein JD, Wang J, Thakor D, Benedict D, Ahmed A et al (2013a) The amniotic fluid as a source of neural stem cells in the setting of experimental neural tube defects. Stem Cells Dev 22(4):548–553Google Scholar
  92. Turner CG, Pennington EC, Gray FL, Ahmed A, Teng YD, Fauza DO (2013b) Intra-amniotic delivery of amniotic-derived neural stem cells in a syngeneic model of spina bifida. Fetal Diagn Ther 34(1):38–43Google Scholar
  93. Vrecenak JD, Flake AW (2013) In utero hematopoietic cell transplantation--recent progress and the potential for clinical application. Cytotherapy 15(5):525–535Google Scholar
  94. Wu Y, Wang J, Scott PG, Tredget EE (2007) Bone marrow-derived stem cells in wound healing: a review. Wound Repair Regen 15(Suppl 1):S18–S26Google Scholar
  95. Yoon BS, Moon JH, Jun EK, Kim J, Maeng I, Kim JS et al (2010) Secretory profiles and wound healing effects of human amniotic fluid-derived mesenchymal stem cells. Stem Cells Dev 19(6):887–902Google Scholar
  96. Yu J, Gonzalez-Reyes S, Diez-Pardo JA, Tovar JA (2003) Effects of prenatal dexamethasone on the intestine of rats with gastroschisis. J Pediatr Surg 38(7):1032–1035Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of SurgeryBoston Children’s Hospital and Harvard Medical SchoolBostonUSA

Personalised recommendations