Advertisement

pp 1-14 | Cite as

Decellularized Adipose Tissue: Biochemical Composition, in vivo Analysis and Potential Clinical Applications

  • Omair A. Mohiuddin
  • Brett Campbell
  • J. Nicholas Poche
  • Caasy Thomas-Porch
  • Daniel A. Hayes
  • Bruce A. Bunnell
  • Jeffrey M. GimbleEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series

Abstract

Decellularized tissues are gaining popularity as scaffolds for tissue engineering; they allow cell attachment, proliferation, differentiation, and are non-immunogenic. Adipose tissue is an abundant resource that can be decellularized and converted in to a bio-scaffold. Several methods have been developed for adipose tissue decellularization, typically starting with freeze thaw cycles, followed by washes with hypotonic/hypertonic sodium chloride solution, isopropanol, detergent (SDS, SDC and Triton X-100) and trypsin digestion. After decellularization, decellularized adipose tissue (DAT) can be converted into a powder, solution, foam, or sheet to allow for convenient subcutaneous implantation or to repair external injuries. Additionally, DAT bio-ink can be used to 3D print structures that closely resemble physiological tissues and organs. Proteomic analysis of DAT reveals that it is composed of collagens (I, III, IV, VI and VII), glycosaminoglycans, laminin, elastin, and fibronectin. It has also been found to retain growth factors like VEGF and bFGF after decellularization. DAT inherently promotes adipogenesis when seeded with adipose stem cells in vitro, and when DAT is implanted subcutaneously it is capable of recruiting host stem cells and forming adipose tissue in rodents. Furthermore, DAT has promoted healing in rat models of full-thickness skin wounds and peripheral nerve injury. These findings suggest that DAT is a promising candidate for repair of soft tissue defects, and is suitable for breast reconstruction post-mastectomy, wound healing, and adipose tissue regeneration. Moreover, since DAT’s form and stiffness can be altered by physicochemical manipulation, it may prove suitable for engineering of additional soft and hard tissues.

Keywords

Biochemical composition Biological scaffold Clinical applications Decellularized adipose tissue Tissue engineering 

Abbreviations

ASC

adipose stem cell

bFGF

basic fibroblast growth factor

DAT

decellularized adipose tissue

ECM

extra cellular matrix

EDC

1-Ethyl-3-(-3-dimethylaminopropyl) carbodiimide hydrochloride

ELISA

enzyme-linked immunosorbent assay

GAG

glycosaminoglycan

GPDH

glycerol-3-pohosphate dehydrogenase

hDAT

human decellularized adipose tissue

IHC

immuno-histochemistry

MCS

methacrylated chondroitin sulfate

MGC

methacrylated glycol chitosan

MRI

magnetic resonance imaging

MSC

mesenchymal stem cell

NHS

N-hydroxysuccinimide

OEhMSC

Osteogenically enhanced human mesenchymal stem cell

PEG

Polyethylene glycol

SDC

Sodium deoxycholate

SDS

Sodium dodecyl sulfate

VEGF

vascular endothelial growth factor

References

  1. Agmon G, Christman KL (2016) Controlling stem cell behavior with decellularized extracellular matrix scaffolds. Curr Opin Solid State Mater Sci 20:193–201.  https://doi.org/10.1016/j.cossms.2016.02.001CrossRefGoogle Scholar
  2. Amini AR, Laurencin CT, Nukavarapu SP (2012) Bone tissue engineering: recent advances and challenges. Crit Rev Biomed Eng 40:363–408Google Scholar
  3. Beaufils P, Becker R, Kopf S, Matthieu O, Pujol N (2017) The knee meniscus: management of traumatic tears and degenerative lesions. EFORT Open Rev 2:195–203Google Scholar
  4. Breuls RGM, Jiya TU, Smit TH (2008) Scaffold stiffness influences cell behavior: opportunities for skeletal tissue engineering. Open Orthop J 2:103–109Google Scholar
  5. Brown BN et al (2011) Comparison of three methods for the derivation of a biologic scaffold composed of adipose tissue extracellular matrix. Tissue Eng Part C Methods 17:411–421.  https://doi.org/10.1089/ten.tec.2010.0342CrossRefGoogle Scholar
  6. Brown CF, Yan J, Han TT, Marecak DM, Amsden BG, Flynn LE (2015) Effect of decellularized adipose tissue particle size and cell density on adipose-derived stem cell proliferation and adipogenic differentiation in composite methacrylated chondroitin sulphate hydrogels. Biomed Mater (Bristol, England) 10:045010.  https://doi.org/10.1088/1748-6041/10/4/045010CrossRefGoogle Scholar
  7. Cheung HK, Han TT, Marecak DM, Watkins JF, Amsden BG, Flynn LE (2014) Composite hydrogel scaffolds incorporating decellularized adipose tissue for soft tissue engineering with adipose-derived stem cells. Biomaterials 35:1914–1923.  https://doi.org/10.1016/j.biomaterials.2013.11.067CrossRefGoogle Scholar
  8. Choi JS et al (2009) Human extracellular matrix (ECM) powders for injectable cell delivery and adipose tissue engineering. J Control Release 139:2–7.  https://doi.org/10.1016/j.jconrel.2009.05.034CrossRefGoogle Scholar
  9. Choi JS et al (2011) Decellularized extracellular matrix derived from human adipose tissue as a potential scaffold for allograft tissue engineering. J Biomed Mater Res A 97:292–299.  https://doi.org/10.1002/jbm.a.33056CrossRefGoogle Scholar
  10. Choi YC, Choi JS, Kim BS, Kim JD, Yoon HI, Cho YW (2012) Decellularized extracellular matrix derived from porcine adipose tissue as a xenogeneic biomaterial for tissue engineering. Tissue Eng Part C Methods 18:866–876.  https://doi.org/10.1089/ten.TEC.2012.0009CrossRefGoogle Scholar
  11. Chung B, O’Mahony GD, Lam G, Chiu DTW (2017) Adipose tissue-preserved skin graft: applicability and long-term results. Plast Reconstr Surg 140:593–598.  https://doi.org/10.1097/prs.0000000000003623CrossRefGoogle Scholar
  12. Clough BH, McCarley MR, Gregory CA (2015a) A simple critical-sized femoral defect model in mice. J Vis Exp.  https://doi.org/10.3791/52368
  13. Clough BH et al (2015b) Bone regeneration with osteogenically enhanced mesenchymal stem cells and their extracellular matrix proteins. J Bone Miner Res 30:83–94Google Scholar
  14. Costa A, Naranjo JD, Londono R, Badylak SF (2017) Biologic scaffolds. Cold Spring Harb Perspect Med 7:a025676.  https://doi.org/10.1101/cshperspect.a025676CrossRefGoogle Scholar
  15. Crapo PM, Gilbert TW, Badylak SF (2011) An overview of tissue and whole organ decellularization processes. Biomaterials 32:3233–3243Google Scholar
  16. Dong Y et al (2012) “One-step” preparation of thiol-ene clickable PEG-based thermoresponsive hyperbranched copolymer for in situ crosslinking hybrid hydrogel. Macromol Rapid Commun 33:120–126.  https://doi.org/10.1002/marc.201100534CrossRefGoogle Scholar
  17. Dunne LW, Huang Z, Meng W, Fan X, Zhang N, Zhang Q, An Z (2014) Human decellularized adipose tissue scaffold as a model for breast cancer cell growth and drug treatments. Biomaterials 35:4940–4949.  https://doi.org/10.1016/j.biomaterials.2014.03.003CrossRefGoogle Scholar
  18. Elgali I, Omar O, Dahlin C, Thomsen P (2017) Guided bone regeneration: materials and biological mechanisms revisited. Eur J Oral Sci 125:315–337Google Scholar
  19. Fan X, Tian C, Fu Y, Li X, Deng L, Lu Q (2014) Preparation and characterization of acellular adipose tissue matrix. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi 28:377–383Google Scholar
  20. Flowers SA et al (2017) Lubricin binds cartilage proteins, cartilage oligomeric matrix protein, fibronectin and collagen II at the cartilage surface. Sci Rep 7:13149.  https://doi.org/10.1038/s41598-017-13558-yCrossRefGoogle Scholar
  21. Flynn LE (2010) The use of decellularized adipose tissue to provide an inductive microenvironment for the adipogenic differentiation of human adipose-derived stem cells. Biomaterials 31:4715–4724.  https://doi.org/10.1016/j.biomaterials.2010.02.046CrossRefGoogle Scholar
  22. Ghuman H, Massensini AR, Donnelly J, Kim SM, Medberry CJ, Badylak SF, Modo M (2016) ECM hydrogel for the treatment of stroke: characterization of the host cell infiltrate. Biomaterials 91:166–181.  https://doi.org/10.1016/j.biomaterials.2016.03.014CrossRefGoogle Scholar
  23. Giatsidis G, Guyette JP, Ott HC, Orgill DP (2018) Development of a large-volume human-derived adipose acellular allogenic flap by perfusion decellularization. Wound Repair Regen 26(2):245–250.  https://doi.org/10.1111/wrr.12631CrossRefGoogle Scholar
  24. Giatsidis G et al (2019) Preclinical optimization of a shelf-ready, injectable, human-derived, Decellularized allograft adipose matrix. Tissue Eng A 25:271–287.  https://doi.org/10.1089/ten.TEA.2018.0052CrossRefGoogle Scholar
  25. Gilbert TW, Sellaro TL, Badylak SF (2006) Decellularization of tissues and organs. Biomaterials 27:3675–3683.  https://doi.org/10.1016/j.biomaterials.2006.02.014CrossRefGoogle Scholar
  26. Gilpin A, Yang Y (2017) Decellularization strategies for regenerative medicine: from processing techniques to applications. Biomed Res Int 2017:9831534.  https://doi.org/10.1155/2017/9831534CrossRefGoogle Scholar
  27. Goldberg A, Mitchell K, Soans J, Kim L, Zaidi R (2017) The use of mesenchymal stem cells for cartilage repair and regeneration: a systematic review. J Orthop Surg Res 12:39.  https://doi.org/10.1186/s13018-017-0534-yCrossRefGoogle Scholar
  28. Guneta V, Zhou Z, Tan NS, Sugii S, Wong MTC, Choong C (2017) Recellularization of decellularized adipose tissue-derived stem cells: role of the cell-secreted extracellular matrix in cellular differentiation. Biomater Sci 6:168–178.  https://doi.org/10.1039/c7bm00695kCrossRefGoogle Scholar
  29. Haddad SM, Omidi E, Flynn LE, Samani A (2016) Comparative biomechanical study of using decellularized human adipose tissues for post-mastectomy and post-lumpectomy breast reconstruction. J Mech Behav Biomed Mater 57:235–245.  https://doi.org/10.1016/j.jmbbm.2015.12.005CrossRefGoogle Scholar
  30. Han TT, Toutounji S, Amsden BG, Flynn LE (2015) Adipose-derived stromal cells mediate in vivo adipogenesis, angiogenesis and inflammation in decellularized adipose tissue bioscaffolds. Biomaterials 72:125–137.  https://doi.org/10.1016/j.biomaterials.2015.08.053CrossRefGoogle Scholar
  31. He Y et al (2018) Optimized adipose tissue engineering strategy based on a neo-mechanical processing method. Wound Repair Regen 26(2):163–171.  https://doi.org/10.1111/wrr.12640CrossRefGoogle Scholar
  32. Kim BS, Choi JS, Kim JD, Choi YC, Cho YW (2012) Recellularization of decellularized human adipose-tissue-derived extracellular matrix sheets with other human cell types. Cell Tissue Res 348:559–567.  https://doi.org/10.1007/s00441-012-1391-yCrossRefGoogle Scholar
  33. Levy-Mishali M, Zoldan J, Levenberg S (2009) Effect of scaffold stiffness on myoblast differentiation. Tissue Eng Part A 15:935–944.  https://doi.org/10.1089/ten.tea.2008.0111CrossRefGoogle Scholar
  34. Li S et al (2018) Hybrid synthetic-biological hydrogel system for adipose tissue regeneration. Macromol Biosci 18(11):e1800122.  https://doi.org/10.1002/mabi.201800122CrossRefGoogle Scholar
  35. Lin G et al (2011) Cavernous nerve repair with allogenic adipose matrix and autologous adipose-derived stem cells. Urology 77:1509–e1501–1508.  https://doi.org/10.1016/j.urology.2010.12.076CrossRefGoogle Scholar
  36. Lin CY, Liu TY, Chen MH, Sun JS (2016) An injectable extracellular matrix for the reconstruction of epidural fat and the prevention of epidural fibrosis. Biomed Mat (Bristol, England) 11:035010.  https://doi.org/10.1088/1748-6041/11/3/035010CrossRefGoogle Scholar
  37. Lu Q, Li M, Zou Y, Cao T (2014) Delivery of basic fibroblast growth factors from heparinized decellularized adipose tissue stimulates potent de novo adipogenesis. J Control Release 174:43–50.  https://doi.org/10.1016/j.jconrel.2013.11.007CrossRefGoogle Scholar
  38. Morissette Martin P, Shridhar A, Yu C, Brown C, Flynn LE (2018) Decellularized adipose tissue scaffolds for soft tissue regeneration and adipose-derived stem/stromal cell delivery. Methods Mol Biol (Clifton, NJ) 1773:53–71.  https://doi.org/10.1007/978-1-4939-7799-4_6CrossRefGoogle Scholar
  39. Omidi E, Fuetterer L, Reza Mousavi S, Armstrong RC, Flynn LE, Samani A (2014) Characterization and assessment of hyperelastic and elastic properties of decellularized human adipose tissues. J Biomech 47:3657–3663.  https://doi.org/10.1016/j.jbiomech.2014.09.035CrossRefGoogle Scholar
  40. Parmaksiz M, Dogan A, Odabas S, Elcin AE, Elcin YM (2016) Clinical applications of decellularized extracellular matrices for tissue engineering and regenerative medicine. Biomed Mater (Bristol, England) 11:022003.  https://doi.org/10.1088/1748-6041/11/2/022003CrossRefGoogle Scholar
  41. Pati F et al (2014) Printing three-dimensional tissue analogues with decellularized extracellular matrix bioink. Nat Commun 5:3935.  https://doi.org/10.1038/ncomms4935CrossRefGoogle Scholar
  42. Pati F, Ha DH, Jang J, Han HH, Rhie JW, Cho DW (2015) Biomimetic 3D tissue printing for soft tissue regeneration. Biomaterials 62:164–175.  https://doi.org/10.1016/j.biomaterials.2015.05.043CrossRefGoogle Scholar
  43. Roehm KD, Hornberger J, Madihally SV (2016) In vitro characterization of acelluar porcine adipose tissue matrix for use as a tissue regenerative scaffold. J Biomed Mater Res A 104:3127–3136.  https://doi.org/10.1002/jbm.a.35844CrossRefGoogle Scholar
  44. Schneider AP, Zainer CM, Kubat CK, Mullen NK, Windisch AK (2014) The breast cancer epidemic: 10 facts. Linacre Q 81:244–277.  https://doi.org/10.1179/2050854914y.0000000027CrossRefGoogle Scholar
  45. Schneider S, Unger M, van Griensven M, Balmayor ER (2017) Adipose-derived mesenchymal stem cells from liposuction and resected fat are feasible sources for regenerative medicine. Eur J Med Res 22:17Google Scholar
  46. Song M, Liu Y, Hui L (2018) Preparation and characterization of acellular adipose tissue matrix using a combination of physical and chemical treatments. Mol Med Rep 17:138–146.  https://doi.org/10.3892/mmr.2017.7857CrossRefGoogle Scholar
  47. Sophia Fox AJ, Bedi A, Rodeo SA (2009) The basic science of articular cartilage: structure, composition, and function. Sports Health 1:461–468Google Scholar
  48. Strong AL et al (2016) Obesity inhibits the osteogenic differentiation of human adipose-derived stem cells. J Transl Med 14:27.  https://doi.org/10.1186/s12967-016-0776-1CrossRefGoogle Scholar
  49. Tan QW et al (2017) Hydrogel derived from decellularized porcine adipose tissue as a promising biomaterial for soft tissue augmentation. J Biomed Mater Res A 105:1756–1764.  https://doi.org/10.1002/jbm.a.36025CrossRefGoogle Scholar
  50. Thomas-Porch C et al (2018) Comparative proteomic analyses of human adipose extracellular matrices decellularized using alternative procedures. J Biomed Mater Res A 106(9):2481–2493.  https://doi.org/10.1002/jbm.a.36444CrossRefGoogle Scholar
  51. Turner AE, Yu C, Bianco J, Watkins JF, Flynn LE (2012) The performance of decellularized adipose tissue microcarriers as an inductive substrate for human adipose-derived stem cells. Biomaterials 33:4490–4499.  https://doi.org/10.1016/j.biomaterials.2012.03.026CrossRefGoogle Scholar
  52. Wang L, Johnson JA, Zhang Q, Beahm EK (2013) Combining decellularized human adipose tissue extracellular matrix and adipose-derived stem cells for adipose tissue engineering. Acta Biomater 9:8921–8931.  https://doi.org/10.1016/j.actbio.2013.06.035CrossRefGoogle Scholar
  53. Woo CH, Choi YC, Choi JS, Lee HY, Cho YW (2015) A bilayer composite composed of TiO2-incorporated electrospun chitosan membrane and human extracellular matrix sheet as a wound dressing. J Biomater Sci Polym Ed 26:841–854.  https://doi.org/10.1080/09205063.2015.1061349CrossRefGoogle Scholar
  54. Wu I, Nahas Z, Kimmerling KA, Rosson GD, Elisseeff JH (2012) An injectable adipose matrix for soft-tissue reconstruction. Plast Reconstr Surg 129:1247–1257.  https://doi.org/10.1097/PRS.0b013e31824ec3dcCrossRefGoogle Scholar
  55. Young DA, Ibrahim DO, Hu D, Christman KL (2011) Injectable hydrogel scaffold from decellularized human lipoaspirate. Acta Biomater 7:1040–1049.  https://doi.org/10.1016/j.actbio.2010.09.035CrossRefGoogle Scholar
  56. Yu C, Bianco J, Brown C, Fuetterer L, Watkins JF, Samani A, Flynn LE (2013) Porous decellularized adipose tissue foams for soft tissue regeneration. Biomaterials 34:3290–3302.  https://doi.org/10.1016/j.biomaterials.2013.01.056CrossRefGoogle Scholar
  57. Yu C, Kornmuller A, Brown C, Hoare T, Flynn LE (2017) Decellularized adipose tissue microcarriers as a dynamic culture platform for human adipose-derived stem/stromal cell expansion. Biomaterials 120:66–80.  https://doi.org/10.1016/j.biomaterials.2016.12.017CrossRefGoogle Scholar
  58. Zeitouni S et al (2012) Human mesenchymal stem cell-derived matrices for enhanced osteoregeneration. Sci Transl Med 4:132ra155.  https://doi.org/10.1126/scitranslmed.3003396CrossRefGoogle Scholar
  59. Zhang Q et al (2016a) Decellularized skin/adipose tissue flap matrix for engineering vascularized composite soft tissue flaps. Acta Biomater 35:166–184.  https://doi.org/10.1016/j.actbio.2016.02.017CrossRefGoogle Scholar
  60. Zhang S, Lu Q, Cao T, Toh WS (2016b) Adipose tissue and extracellular matrix development by injectable Decellularized adipose matrix loaded with basic fibroblast growth factor. Plast Reconstr Surg 137:1171–1180.  https://doi.org/10.1097/prs.0000000000002019CrossRefGoogle Scholar
  61. Zhao Y, Fan J, Bai S (2018) Biocompatibility of injectable hydrogel from decellularized human adipose tissue in vitro and in vivo. J Biomed Mater Res B Appl Biomater.  https://doi.org/10.1002/jbm.b.34261

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Omair A. Mohiuddin
    • 1
  • Brett Campbell
    • 2
  • J. Nicholas Poche
    • 3
  • Caasy Thomas-Porch
    • 4
  • Daniel A. Hayes
    • 5
  • Bruce A. Bunnell
    • 1
  • Jeffrey M. Gimble
    • 1
    • 6
    Email author
  1. 1.Center for Stem Cell Research & Regenerative MedicineTulane University School of MedicineNew OrleansUSA
  2. 2.School of MedicineTulane UniversityNew OrleansUSA
  3. 3.School of MedicineLouisiana State UniversityNew OrleansUSA
  4. 4.Department of Biology and ChemistrySouthern University and A&M CollegeBaton RougeUSA
  5. 5.Department of Biomedical EngineeringPennsylvania State UniversityState CollegeUSA
  6. 6.LaCell LLCNew OrleansUSA

Personalised recommendations