Advertisement

Roles of Adhesion to Epithelial Cells in Gastric Colonization by Helicobacter pylori

  • Daniel A. Bonsor
  • Eric J. SundbergEmail author
Chapter
  • 380 Downloads
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1149)

Abstract

Helicobacter pylori adherence to host epithelial cells is essential for its survival against the harsh conditions of the stomach and for successful colonization. Adherence of H. pylori is achieved through several related families of outer membrane proteins and proteins of a type IV secretion system (T4SS), which bridge H. pylori to host cells through protein-protein and other protein-ligand interactions. Local environmental conditions such as cell type, available host cell surface proteins and/or ligands, as well as responses by the host immune system force H. pylori to alter expression of these proteins to adapt quickly to the local environment in order to colonize and survive. Some of these host-pathogen interactions appear to function in a “catch-and-release” manner, regulated by reversible binding at varying pH and allowing H. pylori to detach itself from cells or debris sloughed off the gastric epithelial lining in order to return for subsequent productive interactions. Other interactions between bacterial adhesin proteins and host adhesion molecules, however, appear to function as a committed step in certain pathogenic processes, such as translocation of the CagA oncoprotein through the H. pylori T4SS and into host gastric epithelial cells. Understanding these adhesion interactions is critical for devising new therapeutic strategies, as they are responsible for the earliest stage of infection and its maintenance. This review will discuss the expression and regulation of several outer membrane proteins and CagL, how they engage their known host cell protein/ligand targets, and their effects on clinical outcome.

Keywords

Adhesion Adhesin Protein Blood group antigen Structure 

References

  1. Alm RA, Ling LS, Moir DT, King BL, Brown ED, Doig PC, Smith DR, Noonan B, Guild BC, de Jonge BL, Carmel G, Tummino PJ, Caruso A, Uria-Nickelsen M, Mills DM, Ives C, Gibson R, Merberg D, Mills SD, Jiang Q, Taylor DE, Vovis GF, Trust TJ (1999) Genomic-sequence comparison of two unrelated isolates of the human gastric pathogen Helicobacter pylori. Nature 397:176–180.  https://doi.org/10.1038/16495CrossRefPubMedGoogle Scholar
  2. Alm RA, Bina J, Andrews BM, Doig P, Hancock RE, Trust TJ (2000) Comparative genomics of Helicobacter pylori: analysis of the outer membrane protein families. Infect Immun 68:4155–4168.  https://doi.org/10.1128/IAI.68.7.4155-4168.2000CrossRefPubMedPubMedCentralGoogle Scholar
  3. Ando T, Peek RM, Pride D, Levine SM, Takata T, Lee YC, Kusugami K, van der Ende A, Kuipers EJ, Kusters JG, Blaser MJ (2002) Polymorphisms of Helicobacter pylori HP0638 reflect geographic origin and correlate with cagA status. J Clin Microbiol 40:239–246.  https://doi.org/10.1128/JCM.40.1.239-246.2002CrossRefPubMedPubMedCentralGoogle Scholar
  4. Armitano RI, Matteo MJ, Goldman C, Wonaga A, Viola LA, De Palma GZ, Catalano M (2013) Helicobacter pylori heterogeneity in patients with gastritis and peptic ulcer disease. Infect Genet Evol 16:377–385.  https://doi.org/10.1016/j.meegid.2013.02.024CrossRefPubMedGoogle Scholar
  5. Aspholm M, Olfat FO, Norden J, Sonden B, Lundberg C, Sjostrom R, Altraja S, Odenbreit S, Haas R, Wadstrom T, Engstrand L, Semino-Mora C, Liu H, Dubois A, Teneberg S, Arnqvist A, Boren T (2006) SabA is the H. pylori hemagglutinin and is polymorphic in binding to sialylated glycans. PLoS Pathog 2:e110.  https://doi.org/10.1371/journal.ppat.0020110CrossRefPubMedPubMedCentralGoogle Scholar
  6. Aspholm-Hurtig M, Dailide G, Lahmann M, Kalia A, Ilver D, Roche N, Vikstrom S, Sjostrom R, Linden S, Backstrom A, Lundberg C, Arnqvist A, Mahdavi J, Nilsson UJ, Velapatino B, Gilman RH, Gerhard M, Alarcon T, Lopez-Brea M, Nakazawa T, Fox JG, Correa P, Dominguez-Bello MG, Perez-Perez GI, Blaser MJ, Normark S, Carlstedt I, Oscarson S, Teneberg S, Berg DE, Boren T (2004) Functional adaptation of BabA, the H. pylori ABO blood group antigen binding adhesin. Science 305:519–522.  https://doi.org/10.1126/science.1098801CrossRefPubMedGoogle Scholar
  7. Azevedo M, Eriksson S, Mendes N, Serpa J, Figueiredo C, Resende LP, Ruvoen-Clouet N, Haas R, Boren T, Le Pendu J, David L (2008) Infection by Helicobacter pylori expressing the BabA adhesin is influenced by the secretor phenotype. J Pathol 215:308–316.  https://doi.org/10.1002/path.2363CrossRefPubMedGoogle Scholar
  8. Backert S, Tegtmeyer N, Fischer W (2015) Composition, structure and function of the Helicobacter pylori cag pathogenicity island encoded type IV secretion system. Future Microbiol 10(6):955–965.  https://doi.org/10.2217/fmb.15.32CrossRefPubMedPubMedCentralGoogle Scholar
  9. Backstrom A, Lundberg C, Kersulyte D, Berg DE, Boren T, Arnqvist A (2004) Metastability of Helicobacter pylori bab adhesin genes and dynamics in Lewis b antigen binding. Proc Natl Acad Sci U S A 101:16923–16928.  https://doi.org/10.1073/pnas.0404817101CrossRefPubMedPubMedCentralGoogle Scholar
  10. Barden S, Niemann HH (2015) Adhesion of several cell lines to Helicobacter pylori CagL is mediated by integrin alphaVbeta6 via an RGDLXXL motif. J Mol Biol 427:1304–1315.  https://doi.org/10.1016/j.jmb.2015.01.006CrossRefPubMedGoogle Scholar
  11. Barden S, Lange S, Tegtmeyer N, Conradi J, Sewald N, Backert S, Niemann HH (2013) A helical RGD motif promoting cell adhesion: crystal structures of the Helicobacter pylori type IV secretion system pilus protein CagL. Structure 21:1931–1941.  https://doi.org/10.1016/j.str.2013.08.018CrossRefPubMedGoogle Scholar
  12. Barden S, Schomburg B, Conradi J, Backert S, Sewald N, Niemann HH (2014) Structure of a three-dimensional domain-swapped dimer of the Helicobacter pylori type IV secretion system pilus protein CagL. Acta Crystallogr D Biol Crystallogr 70:1391–1400.  https://doi.org/10.1107/S1399004714003150CrossRefPubMedGoogle Scholar
  13. Barrozo RM, Cooke CL, Hansen LM, Lam AM, Gaddy JA, Johnson EM, Cariaga TA, Suarez G, Peek RM Jr, Cover TL, Solnick JV (2013) Functional plasticity in the type IV secretion system of Helicobacter pylori. PLoS Pathog 9:e1003189.  https://doi.org/10.1371/journal.ppat.1003189CrossRefPubMedPubMedCentralGoogle Scholar
  14. Beier D, Spohn G, Rappuoli R, Scarlato V (1997) Identification and characterization of an operon of Helicobacter pylori that is involved in motility and stress adaptation. J Bacteriol 179:4676–4683.  https://doi.org/10.1128/jb.179.15.4676-4683.1997CrossRefPubMedPubMedCentralGoogle Scholar
  15. Belanger LF, Leblond CP (1946) A method for locating radioactive elements in tissues by covering histological sections with a photographic emulsion. Endocrinology 39:8–13.  https://doi.org/10.1210/endo-39-1-8CrossRefPubMedGoogle Scholar
  16. Belogolova E, Bauer B, Pompaiah M, Asakura H, Brinkman V, Ertl C, Bartfeld S, Nechitaylo TY, Haas R, Machuy N, Salama N, Churin Y, Meyer TF (2013) Helicobacter pylori outer membrane protein HopQ identified as a novel T4SS-associated virulence factor. Cell Microbiol 15:1896–1912.  https://doi.org/10.1111/cmi.12158CrossRefPubMedPubMedCentralGoogle Scholar
  17. Benktander J, Barone A, Johansson MM, Teneberg S (2018) Helicobacter pylori SabA binding gangliosides of human stomach. Virulence 9:738–751.  https://doi.org/10.1080/21505594.2018.1440171CrossRefPubMedPubMedCentralGoogle Scholar
  18. Blaser MJ, Perez-Perez GI, Kleanthous H, Cover TL, Peek RM, Chyou PH, Stemmermann GN, Nomura A (1995) Infection with Helicobacter pylori strains possessing cagA is associated with an increased risk of developing adenocarcinoma of the stomach. Cancer Res 55:2111–2115PubMedGoogle Scholar
  19. Bonig T, Olbermann P, Bats SH, Fischer W, Josenhans C (2016) Systematic site-directed mutagenesis of the Helicobacter pylori CagL protein of the Cag type IV secretion system identifies novel functional domains. Sci Rep 6:38101.  https://doi.org/10.1038/srep38101CrossRefPubMedPubMedCentralGoogle Scholar
  20. Bonsor DA, Pham KT, Beadenkopf R, Diederichs K, Haas R, Beckett D, Fischer W, Sundberg EJ (2015) Integrin engagement by the helical RGD motif of the Helicobacter pylori CagL protein is regulated by pH-induced displacement of a neighboring helix. J Biol Chem 290:12929–12940.  https://doi.org/10.1074/jbc.M115.641829CrossRefPubMedPubMedCentralGoogle Scholar
  21. Bonsor DA, Zhao Q, Schmidinger B, Weiss E, Wang J, Deredge D, Beadenkopf R, Dow B, Fischer W, Beckett D, Wintrode PL, Haas R, Sundberg EJ (2018) The Helicobacter pylori adhesin protein HopQ exploits the dimer interface of human CEACAMs to facilitate translocation of the oncoprotein CagA. EMBO J.  https://doi.org/10.15252/embj.201798664
  22. Boren T, Falk P, Roth KA, Larson G, Normark S (1993) Attachment of Helicobacter pylori to human gastric epithelium mediated by blood group antigens. Science 262:1892–1895.  https://doi.org/10.1126/science.8018146CrossRefPubMedGoogle Scholar
  23. Bosch JA, de Geus EJ, Ligtenberg TJ, Nazmi K, Veerman EC, Hoogstraten J, Amerongen AV (2000) Salivary MUC5B-mediated adherence (ex vivo) of Helicobacter pylori during acute stress. Psychosom Med 62:40–49CrossRefGoogle Scholar
  24. Bugaytsova JA, Bjornham O, Chernov YA, Gideonsson P, Henriksson S, Mendez M, Sjostrom R, Mahdavi J, Shevtsova A, Ilver D, Moonens K, Quintana-Hayashi MP, Moskalenko R, Aisenbrey C, Bylund G, Schmidt A, Aberg A, Brannstrom K, Koniger V, Vikstrom S, Rakhimova L, Hofer A, Ogren J, Liu H, Goldman MD, Whitmire JM, Aden J, Younson J, Kelly CG, Gilman RH, Chowdhury A, Mukhopadhyay AK, Nair GB, Papadakos KS, Martinez-Gonzalez B, Sgouras DN, Engstrand L, Unemo M, Danielsson D, Suerbaum S, Oscarson S, Morozova-Roche LA, Olofsson A, Grobner G, Holgersson J, Esberg A, Stromberg N, Landstrom M, Eldridge AM, Chromy BA, Hansen LM, Solnick JV, Linden SK, Haas R, Dubois A, Merrell DS, Schedin S, Remaut H, Arnqvist A, Berg DE, Boren T (2017) Helicobacter pylori adapts to chronic infection and gastric disease via pH-responsive BabA-mediated adherence. Cell Host Microbe 21:376–389.  https://doi.org/10.1016/j.chom.2017.02.013CrossRefPubMedPubMedCentralGoogle Scholar
  25. Buti L, Spooner E, Van der Veen AG, Rappuoli R, Covacci A, Ploegh HL (2011) Helicobacter pylori cytotoxin-associated gene A (CagA) subverts the apoptosis-stimulating protein of p53 (ASPP2) tumor suppressor pathway of the host. Proc Natl Acad Sci U S A 108:9238–9243.  https://doi.org/10.1073/pnas.1106200108CrossRefPubMedPubMedCentralGoogle Scholar
  26. Cao P, Cover TL (2002) Two different families of hopQ alleles in Helicobacter pylori. J Clin Microbiol 40:4504–4511.  https://doi.org/10.1128/JCM.40.12.4504-4511.2002CrossRefPubMedPubMedCentralGoogle Scholar
  27. Censini S, Lange C, Xiang Z, Crabtree JE, Ghiara P, Borodovsky M, Rappuoli R, Covacci A (1996) cag, a pathogenicity island of Helicobacter pylori, encodes type I-specific and disease-associated virulence factors. Proc Natl Acad Sci U S A 93:14648–14653.  https://doi.org/10.1073/pnas.93.25.14648CrossRefPubMedPubMedCentralGoogle Scholar
  28. Cherati MR, Shokri-Shirvani J, Karkhah A, Rajabnia R, Nouri HR (2017) Helicobacter pylori cagL amino acid polymorphism D58E59 pave the way toward peptic ulcer disease while N58E59 is associated with gastric cancer in north of Iran. Microb Pathog 107:413–418.  https://doi.org/10.1016/j.micpath.2017.04.025CrossRefPubMedGoogle Scholar
  29. Chiarini A, Cala C, Bonura C, Gullo A, Giuliana G, Peralta S, D’Arpa F, Giammanco A (2009) Prevalence of virulence-associated genotypes of Helicobacter pylori and correlation with severity of gastric pathology in patients from western Sicily, Italy. Eur J Clin Microbiol Infect Dis 28:437–446.  https://doi.org/10.1007/s10096-008-0644-xCrossRefGoogle Scholar
  30. Choi JM, Choi YH, Sudhanva MS, Devakumar S, Lee KH, Cha JH, Lee SH (2015) Crystal structure of CagL from Helicobacter pylori K74 strain. Biochem Biophys Res Commun 460:964–970.  https://doi.org/10.1016/j.bbrc.2015.03.135CrossRefPubMedGoogle Scholar
  31. Colbeck JC, Hansen LM, Fong JM, Solnick JV (2006) Genotypic profile of the outer membrane proteins BabA and BabB in clinical isolates of Helicobacter pylori. Infect Immun 74:4375–4378.  https://doi.org/10.1128/IAI.00485-06CrossRefPubMedPubMedCentralGoogle Scholar
  32. Conradi J, Huber S, Gaus K, Mertink F, Royo Gracia S, Strijowski U, Backert S, Sewald N (2012a) Cyclic RGD peptides interfere with binding of the Helicobacter pylori protein CagL to integrins alphaVbeta3 and alpha5beta1. Amino Acids 43:219–232.  https://doi.org/10.1007/s00726-011-1066-0CrossRefPubMedGoogle Scholar
  33. Conradi J, Tegtmeyer N, Woźna M, Wissbrock M, Michalek C et al (2012b) An RGD helper sequence in CagL of Helicobacter pylori assists in interactions with integrins and injection of CagA. Front Cell Infect Microbiol 2(70).  https://doi.org/10.3389/fcimb.2012.00070
  34. Coppens F, Castaldo G, Debraekeleer A, Subedi S, Moonens K, Lo A, Remaut H (2018) Hop-family Helicobacter outer membrane adhesins form a novel class of type 5-like secretion proteins with an interrupted beta-barrel domain. Mol Microbiol.  https://doi.org/10.1111/mmi.14075CrossRefGoogle Scholar
  35. Croxen MA, Sisson G, Melano R, Hoffman PS (2006) The Helicobacter pylori chemotaxis receptor TlpB (HP0103) is required for pH taxis and for colonization of the gastric mucosa. J Bacteriol 188:2656–2665.  https://doi.org/10.1128/JB.188.7.2656-2665.2006CrossRefPubMedPubMedCentralGoogle Scholar
  36. Dabiri H, Maleknejad P, Yamaoka Y, Feizabadi MM, Jafari F, Rezadehbashi M, Nakhjavani FA, Mirsalehian A, Zali MR (2009) Distribution of Helicobacter pylori cagA, cagE, oipA and vacA in different major ethnic groups in Tehran, Iran. J Gastroenterol Hepatol 24:1380–1386.  https://doi.org/10.1111/j.1440-1746.2009.05876.xCrossRefPubMedPubMedCentralGoogle Scholar
  37. de Jonge R, Durrani Z, Rijpkema SG, Kuipers EJ, van Vliet AH, Kusters JG (2004a) Role of the Helicobacter pylori outer-membrane proteins AlpA and AlpB in colonization of the guinea pig stomach. J Med Microbiol 53:375–379.  https://doi.org/10.1099/jmm.0.45551-0CrossRefPubMedGoogle Scholar
  38. de Jonge R, Pot RG, Loffeld RJ, van Vliet AH, Kuipers EJ, Kusters JG (2004b) The functional status of the Helicobacter pylori sabB adhesin gene as a putative marker for disease outcome. Helicobacter 9:158–164.  https://doi.org/10.1111/j.1083-4389.2004.00213.xCrossRefGoogle Scholar
  39. Didelot X, Nell S, Yang I, Woltemate S, van der Merwe S, Suerbaum S (2013) Genomic evolution and transmission of Helicobacter pylori in two South African families. Proc Natl Acad Sci U S A 110:13880–13885.  https://doi.org/10.1073/pnas.1304681110CrossRefPubMedPubMedCentralGoogle Scholar
  40. Dossumbekova A, Prinz C, Mages J, Lang R, Kusters JG, Van Vliet AH, Reindl W, Backert S, Saur D, Schmid RM, Rad R (2006) Helicobacter pylori HopH (OipA) and bacterial pathogenicity: genetic and functional genomic analysis of hopH gene polymorphisms. J Infect Dis 194:1346–1355.  https://doi.org/10.1086/508426CrossRefGoogle Scholar
  41. Farzi N, Yadegar A, Aghdaei HA, Yamaoka Y, Zali MR (2018) Genetic diversity and functional analysis of oipA gene in association with other virulence factors among Helicobacter pylori isolates from Iranian patients with different gastric diseases. Infect Genet Evol 60:26–34.  https://doi.org/10.1016/j.meegid.2018.02.017CrossRefGoogle Scholar
  42. Fischer W, Puls J, Buhrdorf R, Gebert B, Odenbreit S, Haas R (2001) Systematic mutagenesis of the Helicobacter pylori cag pathogenicity island: essential genes for CagA translocation in host cells and induction of interleukin-8. Mol Microbiol 42:1337–1348.  https://doi.org/10.1046/j.1365-2958.2001.02714.xCrossRefPubMedGoogle Scholar
  43. Franco AT, Johnston E, Krishna U, Yamaoka Y, Israel DA, Nagy TA, Wroblewski LE, Piazuelo MB, Correa P, Peek RM Jr (2008) Regulation of gastric carcinogenesis by Helicobacter pylori virulence factors. Cancer Res 68:379–387.  https://doi.org/10.1158/0008-5472.CAN-07-0824CrossRefPubMedPubMedCentralGoogle Scholar
  44. Gerhard M, Lehn N, Neumayer N, Boren T, Rad R, Schepp W, Miehlke S, Classen M, Prinz C (1999) Clinical relevance of the Helicobacter pylori gene for blood-group antigen-binding adhesin. Proc Natl Acad Sci U S A 96:12778–12783.  https://doi.org/10.1073/pnas.96.22.12778CrossRefPubMedPubMedCentralGoogle Scholar
  45. Giannakis M, Backhed HK, Chen SL, Faith JJ, Wu M, Guruge JL, Engstrand L, Gordon JI (2009) Response of gastric epithelial progenitors to Helicobacter pylori isolates obtained from Swedish patients with chronic atrophic gastritis. J Biol Chem 284:30383–30394.  https://doi.org/10.1074/jbc.M109.052738CrossRefPubMedPubMedCentralGoogle Scholar
  46. Goodwin AC, Weinberger DM, Ford CB, Nelson JC, Snider JD, Hall JD, Paules CI, Peek RM Jr, Forsyth MH (2008) Expression of the Helicobacter pylori adhesin SabA is controlled via phase variation and the ArsRS signal transduction system. Microbiology 154:2231–2240.  https://doi.org/10.1099/mic.0.2007/016055-0CrossRefPubMedPubMedCentralGoogle Scholar
  47. Gorrell RJ, Zwickel N, Reynolds J, Bulach D, Kwok T (2016) Helicobacter pylori CagL Hypervariable motif: a global analysis of geographical diversity and association with gastric cancer. J Infect Dis 213:1927–1931.  https://doi.org/10.1093/infdis/jiw060CrossRefPubMedGoogle Scholar
  48. Gray-Owen SD, Blumberg RS (2006) CEACAM1: contact-dependent control of immunity. Nat Rev Immunol 6:433–446.  https://doi.org/10.1038/nri1864CrossRefPubMedGoogle Scholar
  49. Hage N, Howard T, Phillips C, Brassington C, Overman R, Debreczeni J, Gellert P, Stolnik S, Winkler GS, Falcone FH (2015) Structural basis of Lewisb antigen binding by the Helicobacter pylori adhesin BabA. Sci Adv 1:e1500315.  https://doi.org/10.1126/sciadv.1500315CrossRefPubMedPubMedCentralGoogle Scholar
  50. Hammarstrom S (1999) The carcinoembryonic antigen (CEA) family: structures, suggested functions and expression in normal and malignant tissues. Semin Cancer Biol 9:67–81.  https://doi.org/10.1006/scbi.1998.0119CrossRefPubMedGoogle Scholar
  51. Hansen LM, Gideonsson P, Canfield DR, Boren T, Solnick JV (2017) Dynamic expression of the BabA Adhesin and its BabB Paralog during Helicobacter pylori infection in rhesus macaques. Infect Immun 85.  https://doi.org/10.1128/IAI.00094-17
  52. Harvey VC, Acio CR, Bredehoft AK, Zhu L, Hallinger DR, Quinlivan-Repasi V, Harvey SE, Forsyth MH (2014) Repetitive sequence variations in the promoter region of the adhesin-encoding gene sabA of helicobacter pylori affect transcription. J Bacteriol 196:3421–3429.  https://doi.org/10.1128/JB.01956-14CrossRefPubMedPubMedCentralGoogle Scholar
  53. Hennig EE, Allen JM, Cover TL (2006) Multiple chromosomal loci for the babA gene in Helicobacter pylori. Infect Immun 74:3046–3051.  https://doi.org/10.1128/IAI.74.5.3046-3051.2006CrossRefPubMedPubMedCentralGoogle Scholar
  54. Horridge DN, Begley AA, Kim J, Aravindan N, Fan K, Forsyth MH (2017) Outer inflammatory protein a (OipA) of Helicobacter pylori is regulated by host cell contact and mediates CagA translocation and interleukin-8 response only in the presence of a functional cag pathogenicity island type IV secretion system. Pathog Dis 75.  https://doi.org/10.1093/femspd/ftx113
  55. Huang CH, Chiou SH (2011) Proteomic analysis of upregulated proteins in Helicobacter pylori under oxidative stress induced by hydrogen peroxide. Kaohsiung J Med Sci 27:544–553.  https://doi.org/10.1016/j.kjms.2011.06.019CrossRefPubMedGoogle Scholar
  56. Ilver D, Arnqvist A, Ogren J, Frick IM, Kersulyte D, Incecik ET, Berg DE, Covacci A, Engstrand L, Boren T (1998) Helicobacter pylori adhesin binding fucosylated histo-blood group antigens revealed by retagging. Science 279:373–377.  https://doi.org/10.1126/science.279.5349.373CrossRefPubMedGoogle Scholar
  57. Imberty A, Mitchell EP, Wimmerova M (2005) Structural basis of high-affinity glycan recognition by bacterial and fungal lectins. Curr Opin Struct Biol 15:525–534.  https://doi.org/10.1016/j.sbi.2005.08.003CrossRefPubMedGoogle Scholar
  58. Israel DA, Salama N, Arnold CN, Moss SF, Ando T, Wirth HP, Tham KT, Camorlinga M, Blaser MJ, Falkow S, Peek RM Jr (2001) Helicobacter pylori strain-specific differences in genetic content, identified by microarray, influence host inflammatory responses. J Clin Invest 107:611–620.  https://doi.org/10.1172/JCI11450CrossRefPubMedPubMedCentralGoogle Scholar
  59. Javaheri A, Kruse T, Moonens K, Mejias-Luque R, Debraekeleer A, Asche CI, Tegtmeyer N, Kalali B, Bach NC, Sieber SA, Hill DJ, Koniger V, Hauck CR, Moskalenko R, Haas R, Busch DH, Klaile E, Slevogt H, Schmidt A, Backert S, Remaut H, Singer BB, Gerhard M (2016) Helicobacter pylori adhesin HopQ engages in a virulence-enhancing interaction with human CEACAMs. Nat Microbiol 2:16189.  https://doi.org/10.1038/nmicrobiol.2016.189CrossRefPubMedGoogle Scholar
  60. Jimenez-Soto LF, Kutter S, Sewald X, Ertl C, Weiss E, Kapp U, Rohde M, Pirch T, Jung K, Retta SF, Terradot L, Fischer W, Haas R (2009) Helicobacter pylori type IV secretion apparatus exploits beta1 integrin in a novel RGD-independent manner. PLoS Pathog 5:e1000684.  https://doi.org/10.1371/journal.ppat.1000684CrossRefPubMedPubMedCentralGoogle Scholar
  61. Jimenez-Soto LF, Clausen S, Sprenger A, Ertl C, Haas R (2013) Dynamics of the Cag-type IV secretion system of Helicobacter pylori as studied by bacterial co-infections. Cell Microbiol 15:1924–1937.  https://doi.org/10.1111/cmi.12166CrossRefPubMedGoogle Scholar
  62. Kang J, Blaser MJ (2006) Bacterial populations as perfect gases: genomic integrity and diversification tensions in Helicobacter pylori. Nat Rev Microbiol 4:826–836.  https://doi.org/10.1038/nrmicro1528CrossRefPubMedGoogle Scholar
  63. Kao CY, Sheu BS, Sheu SM, Yang HB, Chang WL, Cheng HC, Wu JJ (2012) Higher motility enhances bacterial density and inflammatory response in dyspeptic patients infected with Helicobacter pylori. Helicobacter 17:411–416.  https://doi.org/10.1111/j.1523-5378.2012.00974.xCrossRefPubMedGoogle Scholar
  64. Keilberg D, Ottemann KM (2016) How Helicobacter pylori senses, targets and interacts with the gastric epithelium. Environ Microbiol 18:791–806.  https://doi.org/10.1111/1462-2920.13222CrossRefPubMedGoogle Scholar
  65. Kennemann L, Didelot X, Aebischer T, Kuhn S, Drescher B, Droege M, Reinhardt R, Correa P, Meyer TF, Josenhans C, Falush D, Suerbaum S (2011) Helicobacter pylori genome evolution during human infection. Proc Natl Acad Sci U S A 108:5033–5038.  https://doi.org/10.1073/pnas.1018444108CrossRefPubMedPubMedCentralGoogle Scholar
  66. Kennemann L, Brenneke B, Andres S, Engstrand L, Meyer TF, Aebischer T, Josenhans C, Suerbaum S (2012) In vivo sequence variation in HopZ, a phase-variable outer membrane protein of Helicobacter pylori. Infect Immun 80:4364–4373.  https://doi.org/10.1128/IAI.00977-12CrossRefPubMedPubMedCentralGoogle Scholar
  67. Kenny DT, Skoog EC, Linden SK, Struwe WB, Rudd PM, Karlsson NG (2012) Presence of terminal N-acetylgalactosaminebeta1-4N-acetylglucosamine residues on O-linked oligosaccharides from gastric MUC5AC: involvement in Helicobacter pylori colonization? Glycobiology 22:1077–1085.  https://doi.org/10.1093/glycob/cws076CrossRefPubMedGoogle Scholar
  68. Kim A, Servetas SL, Kang J, Kim J, Jang S, Cha HJ, Lee WJ, Kim J, Romero-Gallo J, Peek RM Jr, Merrell DS, Cha JH (2015) Helicobacter pylori bab Paralog distribution and association with cagA, vacA, and homA/B genotypes in American and South Korean clinical isolates. PLoS One 10:e0137078.  https://doi.org/10.1371/journal.pone.0137078CrossRefPubMedPubMedCentralGoogle Scholar
  69. Kim A, Servetas SL, Kang J, Kim J, Jang S, Choi YH, Su H, Jeon YE, Hong YA, Yoo YJ, Merrell DS, Cha JH (2016) Helicobacter pylori outer membrane protein, HomC, shows geographic dependent polymorphism that is influenced by the Bab family. J Microbiol 54:846–852.  https://doi.org/10.1007/s12275-016-6434-8CrossRefPubMedGoogle Scholar
  70. Kobayashi M, Lee H, Nakayama J, Fukuda M (2009) Roles of gastric mucin-type O-glycans in the pathogenesis of Helicobacter pylori infection. Glycobiology 19:453–461.  https://doi.org/10.1093/glycob/cwp004CrossRefPubMedPubMedCentralGoogle Scholar
  71. Koelblen T, Berge C, Cherrier MV, Brillet K, Jimenez-Soto L, Ballut L, Takagi J, Montserret R, Rousselle P, Fischer W, Haas R, Fronzes R, Terradot L (2017) Molecular dissection of protein-protein interactions between integrin alpha5beta1 and the Helicobacter pylori Cag type IV secretion system. FEBS J 284:4143–4157.  https://doi.org/10.1111/febs.14299CrossRefPubMedGoogle Scholar
  72. Königer V, Holsten L, Harrison U, Busch B, Loell E, Zhao Q, Bonsor DA, Roth A, Kengmo-Tchoupa A, Smith SI, Mueller S, Sundberg EJ, Zimmermann W, Fischer W, Hauck CR, Haas R (2016) Helicobacter pylori exploits human CEACAMs via HopQ for adherence and translocation of CagA. Nat Microbiol 2:16188.  https://doi.org/10.1038/nmicrobiol.2016.188
  73. Kwok T, Zabler D, Urman S, Rohde M, Hartig R, Wessler S, Misselwitz R, Berger J, Sewald N, Konig W, Backert S (2007) Helicobacter exploits integrin for type IV secretion and kinase activation. Nature 449:862–866.  https://doi.org/10.1038/nature06187CrossRefPubMedGoogle Scholar
  74. Langenberg ML, Tytgat GN, Schipper MEI (1984) Campylobacter-like organisms in the stomach of patients and healthy individuals. Lancet 1:1348–1349.  https://doi.org/10.1016/S0140-6736(84)91836-1CrossRefGoogle Scholar
  75. Lee ER (1985) Dynamic histology of the antral epithelium in the mouse stomach: III. Ultrastructure and renewal of pit cells. Am J Anat 172:225–240.  https://doi.org/10.1002/aja.1001720305CrossRefPubMedGoogle Scholar
  76. Lehours P, Menard A, Dupouy S, Bergey B, Richy F, Zerbib F, Ruskone-Fourmestraux A, Delchier JC, Megraud F (2004) Evaluation of the association of nine Helicobacter pylori virulence factors with strains involved in low-grade gastric mucosa-associated lymphoid tissue lymphoma. Infect Immun 72:880–888.  https://doi.org/10.1128/IAI.72.2.880-888.2004CrossRefPubMedPubMedCentralGoogle Scholar
  77. Leylabadlo HE, Yekani M, Ghotaslou R (2016) Helicobacter pylori hopQ alleles (type I and II) in gastric cancer. Biomed Rep 4:601–604.  https://doi.org/10.3892/br.2016.634CrossRefPubMedPubMedCentralGoogle Scholar
  78. Linden S, Mahdavi J, Hedenbro J, Boren T, Carlstedt I (2004) Effects of pH on Helicobacter pylori binding to human gastric mucins: identification of binding to non-MUC5AC mucins. Biochem J 384:263–270.  https://doi.org/10.1042/BJ20040402CrossRefPubMedPubMedCentralGoogle Scholar
  79. Linz B, Windsor HM, McGraw JJ, Hansen LM, Gajewski JP, Tomsho LP, Hake CM, Solnick JV, Schuster SC, Marshall BJ (2014) A mutation burst during the acute phase of Helicobacter pylori infection in humans and rhesus macaques. Nat Commun 5:4165.  https://doi.org/10.1038/ncomms5165CrossRefPubMedGoogle Scholar
  80. Loh JT, Torres VJ, Algood HM, McClain MS, Cover TL (2008) Helicobacter pylori HopQ outer membrane protein attenuates bacterial adherence to gastric epithelial cells. FEMS Microbiol Lett 289:53–58.  https://doi.org/10.1111/j.1574-6968.2008.01368.xCrossRefPubMedPubMedCentralGoogle Scholar
  81. Loh JT, Beckett AC, Scholz MB, Cover TL (2018) High-salt conditions alter transcription of Helicobacter pylori genes encoding outer membrane proteins. Infect Immun 86.  https://doi.org/10.1128/IAI.00626-17
  82. Lu H, Wu JY, Beswick EJ, Ohno T, Odenbreit S, Haas R, Reyes VE, Kita M, Graham DY, Yamaoka Y (2007) Functional and intracellular signaling differences associated with the Helicobacter pylori AlpAB adhesin from Western and East Asian strains. J Biol Chem 282:6242–6254.  https://doi.org/10.1074/jbc.M611178200CrossRefPubMedPubMedCentralGoogle Scholar
  83. Lu HS, Saito Y, Umeda M, Murata-Kamiya N, Zhang HM, Higashi H, Hatakeyama M (2008) Structural and functional diversity in the PAR1b/MARK2-binding region of Helicobacter pylori CagA. Cancer Sci 99:2004–2011.  https://doi.org/10.1111/j.1349-7006.2008.00950.xCrossRefPubMedGoogle Scholar
  84. Magalhaes A, Marcos-Pinto R, Nairn AV, Dela Rosa M, Ferreira RM, Junqueira-Neto S, Freitas D, Gomes J, Oliveira P, Santos MR, Marcos NT, Xiaogang W, Figueiredo C, Oliveira C, Dinis-Ribeiro M, Carneiro F, Moremen KW, David L, Reis CA (2015) Helicobacter pylori chronic infection and mucosal inflammation switches the human gastric glycosylation pathways. Biochim Biophys Acta 1852:1928–1939.  https://doi.org/10.1016/j.bbadis.2015.07.001CrossRefPubMedPubMedCentralGoogle Scholar
  85. Mahdavi J, Sonden B, Hurtig M, Olfat FO, Forsberg L, Roche N, Angstrom J, Larsson T, Teneberg S, Karlsson KA, Altraja S, Wadstrom T, Kersulyte D, Berg DE, Dubois A, Petersson C, Magnusson KE, Norberg T, Lindh F, Lundskog BB, Arnqvist A, Hammarstrom L, Boren T (2002) Helicobacter pylori SabA adhesin in persistent infection and chronic inflammation. Science 297:573–578.  https://doi.org/10.1126/science.1069076CrossRefPubMedPubMedCentralGoogle Scholar
  86. Matteo MJ, Armitano RI, Romeo M, Wonaga A, Olmos M, Catalano M (2011) Helicobacter pylori bab genes during chronic colonization. Int J Mol Epidemiol Genet 2:286–291PubMedPubMedCentralGoogle Scholar
  87. Mimuro H, Suzuki T, Tanaka J, Asahi M, Haas R, Sasakawa C (2002) Grb2 is a key mediator of helicobacter pylori CagA protein activities. Mol Cell 10:745–755.  https://doi.org/10.1016/S1097-2765(02)00681-0CrossRefPubMedGoogle Scholar
  88. Mobley HL (1996) The role of Helicobacter pylori urease in the pathogenesis of gastritis and peptic ulceration. Aliment Pharmacol Ther 10(Suppl 1):57–64.  https://doi.org/10.1046/j.1365-2036.1996.22164006.xCrossRefPubMedGoogle Scholar
  89. Moonens K, Gideonsson P, Subedi S, Bugaytsova J, Romao E, Mendez M, Norden J, Fallah M, Rakhimova L, Shevtsova A, Lahmann M, Castaldo G, Brannstrom K, Coppens F, Lo AW, Ny T, Solnick JV, Vandenbussche G, Oscarson S, Hammarstrom L, Arnqvist A, Berg DE, Muyldermans S, Boren T, Remaut H (2016) Structural insights into polymorphic ABO glycan binding by Helicobacter pylori. Cell Host Microbe 19:55–66.  https://doi.org/10.1016/j.chom.2015.12.004CrossRefPubMedPubMedCentralGoogle Scholar
  90. Moonens K, Hamway Y, Neddermann M, Reschke M, Tegtmeyer N, Kruse T, Kammerer R, Mejias-Luque R, Singer BB, Backert S, Gerhard M, Remaut H (2018) Helicobacter pylori adhesin HopQ disrupts trans dimerization in human CEACAMs. EMBO J.  https://doi.org/10.15252/embj.201798665
  91. Morelli G, Didelot X, Kusecek B, Schwarz S, Bahlawane C, Falush D, Suerbaum S, Achtman M (2010) Microevolution of Helicobacter pylori during prolonged infection of single hosts and within families. PLoS Genet 6:e1001036.  https://doi.org/10.1371/journal.pgen.1001036CrossRefPubMedPubMedCentralGoogle Scholar
  92. Murata-Kamiya N, Kurashima Y, Teishikata Y, Yamahashi Y, Saito Y, Higashi H, Aburatani H, Akiyama T, Peek RM Jr, Azuma T, Hatakeyama M (2007) Helicobacter pylori CagA interacts with E-cadherin and deregulates the beta-catenin signal that promotes intestinal transdifferentiation in gastric epithelial cells. Oncogene 26:4617–4626.  https://doi.org/10.1038/sj.onc.1210251CrossRefPubMedGoogle Scholar
  93. Nell S, Kennemann L, Schwarz S, Josenhans C, Suerbaum S (2014) Dynamics of Lewisb binding and sequence variation of the babA adhesin gene during chronic Helicobacter pylori infection in humans. MBio 5.  https://doi.org/10.1128/mBio.02281-14
  94. Odenbreit S, Swoboda K, Barwig I, Ruhl S, Boren T, Koletzko S, Haas R (2009) Outer membrane protein expression profile in Helicobacter pylori clinical isolates. Infect Immun 77:3782–3790.  https://doi.org/10.1128/IAI.00364-09CrossRefPubMedPubMedCentralGoogle Scholar
  95. Oh JD, Kling-Backhed H, Giannakis M, Xu J, Fulton RS, Fulton LA, Cordum HS, Wang C, Elliott G, Edwards J, Mardis ER, Engstrand LG, Gordon JI (2006) The complete genome sequence of a chronic atrophic gastritis Helicobacter pylori strain: evolution during disease progression. Proc Natl Acad Sci U S A 103:9999–10004.  https://doi.org/10.1073/pnas.0603784103CrossRefPubMedPubMedCentralGoogle Scholar
  96. Ohno T, Sugimoto M, Nagashima A, Ogiwara H, Vilaichone RK, Mahachai V, Graham DY, Yamaoka Y (2009) Relationship between Helicobacter pylori hopQ genotype and clinical outcome in Asian and Western populations. J Gastroenterol Hepatol 24:462–468.  https://doi.org/10.1111/j.1440-1746.2008.05762.xCrossRefPubMedPubMedCentralGoogle Scholar
  97. Ohno T, Vallstrom A, Rugge M, Ota H, Graham DY, Arnqvist A, Yamaoka Y (2011) Effects of blood group antigen-binding adhesin expression during Helicobacter pylori infection of Mongolian gerbils. J Infect Dis 203:726–735.  https://doi.org/10.1093/infdis/jiq090CrossRefPubMedPubMedCentralGoogle Scholar
  98. Oleastro M, Menard A (2013) The role of Helicobacter pylori outer membrane proteins in adherence and pathogenesis. Biology (Basel) 2:1110–1134.  https://doi.org/10.3390/biology2031110CrossRefGoogle Scholar
  99. Oleastro M, Cordeiro R, Ferrand J, Nunes B, Lehours P, Carvalho-Oliveira I, Mendes AI, Penque D, Monteiro L, Megraud F, Menard A (2008) Evaluation of the clinical significance of homB, a novel candidate marker of Helicobacter pylori strains associated with peptic ulcer disease. J Infect Dis 198:1379–1387.  https://doi.org/10.1086/592166CrossRefPubMedGoogle Scholar
  100. Pang SS, Nguyen ST, Perry AJ, Day CJ, Panjikar S, Tiralongo J, Whisstock JC, Kwok T (2014) The three-dimensional structure of the extracellular adhesion domain of the sialic acid-binding adhesin SabA from Helicobacter pylori. J Biol Chem 289:6332–6340.  https://doi.org/10.1074/jbc.M113.513135CrossRefPubMedGoogle Scholar
  101. Parsonnet J, Friedman GD, Orentreich N, Vogelman H (1997) Risk for gastric cancer in people with CagA positive or CagA negative Helicobacter pylori infection. Gut 40:297–301.  https://doi.org/10.1136/gut.40.3.297CrossRefPubMedPubMedCentralGoogle Scholar
  102. Peck B, Ortkamp M, Diehl KD, Hundt E, Knapp B (1999) Conservation, localization and expression of HopZ, a protein involved in adhesion of Helicobacter pylori. Nucleic Acids Res 27:3325–3333.  https://doi.org/10.1093/nar/27.16.3325CrossRefPubMedPubMedCentralGoogle Scholar
  103. Posselt G, Backert S, Wessler S (2013) The functional interplay of Helicobacter pylori factors with gastric epithelial cells induces a multi-step process in pathogenesis. Cell Commun Signal 11:77.  https://doi.org/10.1186/1478-811X-11-77CrossRefPubMedPubMedCentralGoogle Scholar
  104. Pride DT, Blaser MJ (2002) Concerted evolution between duplicated genetic elements in Helicobacter pylori. J Mol Biol 316:629–642.  https://doi.org/10.1006/jmbi.2001.5311CrossRefPubMedPubMedCentralGoogle Scholar
  105. Rossez Y, Gosset P, Boneca IG, Magalhaes A, Ecobichon C, Reis CA, Cieniewski-Bernard C, Joncquel Chevalier Curt M, Leonard R, Maes E, Sperandio B, Slomianny C, Sansonetti PJ, Michalski JC, Robbe-Masselot C (2014) The lacdiNAc-specific adhesin LabA mediates adhesion of Helicobacter pylori to human gastric mucosa. J Infect Dis 210:1286–1295.  https://doi.org/10.1093/infdis/jiu239CrossRefPubMedGoogle Scholar
  106. Saberi S, Schmidt A, Eybpoosh S, Esmaili M, Talebkhan Y, Mohajerani N, Oghalaie A, Eshagh Hosseini M, Mohagheghi MA, Bugaytova J, Boren T, Mohammadi M (2016) Helicobacter pylori strains from duodenal ulcer patients exhibit mixed babA/B genotypes with low levels of BabA adhesin and Lewisb binding. Dig Dis Sci 61:2868–2877.  https://doi.org/10.1007/s10620-016-4217-zCrossRefGoogle Scholar
  107. Saha A, Backert S, Hammond CE, Gooz M, Smolka AJ (2010) Helicobacter pylori CagL activates ADAM17 to induce repression of the gastric H, K-ATPase alpha subunit. Gastroenterology 139:239–248.  https://doi.org/10.1053/j.gastro.2010.03.036CrossRefPubMedPubMedCentralGoogle Scholar
  108. Sakamoto S, Watanabe T, Tokumaru T, Takagi H, Nakazato H, Lloyd KO (1989) Expression of Lewisa, Lewisb, Lewisx, Lewisy, siayl-Lewisa, and sialyl-Lewisx blood group antigens in human gastric carcinoma and in normal gastric tissue. Cancer Res 49:745–752PubMedGoogle Scholar
  109. Saunders NJ, Peden JF, Hood DW, Moxon ER (1998) Simple sequence repeats in the Helicobacter pylori genome. Mol Microbiol 27:1091–1098.  https://doi.org/10.1046/j.1365-2958.1998.00768.xCrossRefPubMedGoogle Scholar
  110. Schreiber S, Konradt M, Groll C, Scheid P, Hanauer G, Werling HO, Josenhans C, Suerbaum S (2004) The spatial orientation of Helicobacter pylori in the gastric mucus. Proc Natl Acad Sci U S A 101:5024–5029.  https://doi.org/10.1073/pnas.0308386101CrossRefPubMedPubMedCentralGoogle Scholar
  111. Segal ED, Cha J, Lo J, Falkow S, Tompkins LS (1999) Altered states: involvement of phosphorylated CagA in the induction of host cellular growth changes by Helicobacter pylori. Proc Natl Acad Sci U S A 96:14559–14564.  https://doi.org/10.1073/pnas.96.25.14559CrossRefPubMedPubMedCentralGoogle Scholar
  112. Selbach M, Moese S, Meyer TF, Backert S (2002) Functional analysis of the Helicobacter pylori cag pathogenicity island reveals both VirD4-CagA-dependent and VirD4-CagA-independent mechanisms. Infect Immun 70:665–671.  https://doi.org/10.1128/IAI.70.2.665-671.2002CrossRefPubMedPubMedCentralGoogle Scholar
  113. Selbach M, Paul FE, Brandt S, Guye P, Daumke O, Backert S, Dehio C, Mann M (2009) Host cell interactome of tyrosine-phosphorylated bacterial proteins. Cell Host Microbe 5:397–403.  https://doi.org/10.1016/j.chom.2009.03.004CrossRefPubMedGoogle Scholar
  114. Senkovich OA, Yin J, Ekshyyan V, Conant C, Traylor J, Adegboyega P, McGee DJ, Rhoads RE, Slepenkov S, Testerman TL (2011) Helicobacter pylori AlpA and AlpB bind host laminin and influence gastric inflammation in gerbils. Infect Immun 79:3106–3116.  https://doi.org/10.1128/IAI.01275-10CrossRefPubMedPubMedCentralGoogle Scholar
  115. Servetas SL, Kim A, Su H, Cha JH, Merrell DS (2018) Comparative analysis of the Hom family of outer membrane proteins in isolates from two geographically distinct regions: the United States and South Korea. Helicobacter 23:e12461.  https://doi.org/10.1111/hel.12461CrossRefPubMedPubMedCentralGoogle Scholar
  116. Shaffer CL, Gaddy JA, Loh JT, Johnson EM, Hill S, Hennig EE, McClain MS, McDonald WH, Cover TL (2011) Helicobacter pylori exploits a unique repertoire of type IV secretion system components for pilus assembly at the bacteria-host cell interface. PLoS Pathog 7:e1002237.  https://doi.org/10.1371/journal.ppat.1002237CrossRefPubMedPubMedCentralGoogle Scholar
  117. Sheu BS, Odenbreit S, Hung KH, Liu CP, Sheu SM, Yang HB, Wu JJ (2006) Interaction between host gastric Sialyl-Lewis X and H. pylori SabA enhances H. pylori density in patients lacking gastric Lewis B antigen. Am J Gastroenterol 101:36–44.  https://doi.org/10.1111/j.1572-0241.2006.00358.xCrossRefPubMedGoogle Scholar
  118. Skoog EC, Sjoling A, Navabi N, Holgersson J, Lundin SB, Linden SK (2012) Human gastric mucins differently regulate Helicobacter pylori proliferation, gene expression and interactions with host cells. PLoS One 7:e36378.  https://doi.org/10.1371/journal.pone.0036378CrossRefPubMedPubMedCentralGoogle Scholar
  119. Snelling WJ, Moran AP, Ryan KA, Scully P, McGourty K, Cooney JC, Annuk H, O’Toole PW (2007) HorB (HP0127) is a gastric epithelial cell adhesin. Helicobacter 12:200–209.  https://doi.org/10.1111/j.1523-5378.2007.00499.xCrossRefPubMedGoogle Scholar
  120. Solnick JV, Hansen LM, Salama NR, Boonjakuakul JK, Syvanen M (2004) Modification of Helicobacter pylori outer membrane protein expression during experimental infection of rhesus macaques. Proc Natl Acad Sci U S A 101:2106–2111.  https://doi.org/10.1073/pnas.0308573100CrossRefPubMedPubMedCentralGoogle Scholar
  121. Styer CM, Hansen LM, Cooke CL, Gundersen AM, Choi SS, Berg DE, Benghezal M, Marshall BJ, Peek RM Jr, Boren T, Solnick JV (2010) Expression of the BabA adhesin during experimental infection with Helicobacter pylori. Infect Immun 78:1593–1600.  https://doi.org/10.1128/IAI.01297-09CrossRefPubMedPubMedCentralGoogle Scholar
  122. Sugimoto M, Ohno T, Graham DY, Yamaoka Y (2011) Helicobacter pylori outer membrane proteins on gastric mucosal interleukin 6 and 11 expression in Mongolian gerbils. J Gastroenterol Hepatol 26:1677–1684.  https://doi.org/10.1111/j.1440-1746.2011.06817.xCrossRefPubMedPubMedCentralGoogle Scholar
  123. Tabassam FH, Graham DY, Yamaoka Y (2012) Helicobacter pylori-associated regulation of forkhead transcription factors FoxO1/3a in human gastric cells. Helicobacter 17:193–202.  https://doi.org/10.1111/j.1523-5378.2012.00939.xCrossRefPubMedPubMedCentralGoogle Scholar
  124. Tafreshi M, Zwickel N, Gorrell RJ, Kwok T (2015) Preservation of Helicobacter pylori CagA translocation and host cell proinflammatory responses in the face of CagL Hypervariability at amino acid residues 58/59. PLoS One 10:e0133531.  https://doi.org/10.1371/journal.pone.0133531CrossRefPubMedPubMedCentralGoogle Scholar
  125. Talarico S, Whitefield SE, Fero J, Haas R, Salama NR (2012) Regulation of Helicobacter pylori adherence by gene conversion. Mol Microbiol 84:1050–1061.  https://doi.org/10.1111/j.1365-2958.2012.08073.xCrossRefPubMedPubMedCentralGoogle Scholar
  126. Tchoupa AK, Schuhmacher T, Hauck CR (2014) Signaling by epithelial members of the CEACAM family – mucosal docking sites for pathogenic bacteria. Cell Commun Signal 12:27.  https://doi.org/10.1186/1478-811X-12-27CrossRefPubMedPubMedCentralGoogle Scholar
  127. Tegtmeyer N, Hartig R, Delahay RM, Rohde M, Brandt S, Conradi J, Takahashi S, Smolka AJ, Sewald N, Backert S (2010) A small fibronectin-mimicking protein from bacteria induces cell spreading and focal adhesion formation. J Biol Chem 285:23515–23526.  https://doi.org/10.1074/jbc.M109.096214CrossRefPubMedPubMedCentralGoogle Scholar
  128. Tegtmeyer N, Wessler S, Backert S (2011) Role of the cag-pathogenicity island encoded type IV secretion system in Helicobacter pylori pathogenesis. FEBS J 278:1190–1202.  https://doi.org/10.1111/j.1742-4658.2011.08035.xCrossRefPubMedPubMedCentralGoogle Scholar
  129. Tegtmeyer N, Lind J, Schmid B, Backert S (2014) Helicobacter pylori CagL Y58/E59 mutation turns-off type IV secretion-dependent delivery of CagA into host cells. PLoS One 9:e97782.  https://doi.org/10.1371/journal.pone.0097782CrossRefPubMedPubMedCentralGoogle Scholar
  130. Tegtmeyer N, Harrer A, Schmitt V, Singer BB, Backert S (2019) Expression of CEACAM1 or CEACAM5 in AZ-521 cells restores the type IV secretion deficiency for translocation of CagA by Helicobacter pylori. Cell Microbiol 21:e12965.  https://doi.org/10.1111/cmi.12965CrossRefGoogle Scholar
  131. Teymournejad O, Mobarez AM, Hassan ZM, Talebi Bezmin Abadi A (2017) Binding of the Helicobacter pylori OipA causes apoptosis of host cells via modulation of Bax/Bcl-2 levels. Sci Rep 7:8036.  https://doi.org/10.1038/s41598-017-08176-7CrossRefPubMedPubMedCentralGoogle Scholar
  132. Tomb JF, White O, Kerlavage AR, Clayton RA, Sutton GG, Fleischmann RD, Ketchum KA, Klenk HP, Gill S, Dougherty BA, Nelson K, Quackenbush J, Zhou L, Kirkness EF, Peterson S, Loftus B, Richardson D, Dodson R, Khalak HG, Glodek A, McKenney K, Fitzegerald LM, Lee N, Adams MD, Hickey EK, Berg DE, Gocayne JD, Utterback TR, Peterson JD, Kelley JM, Cotton MD, Weidman JM, Fujii C, Bowman C, Watthey L, Wallin E, Hayes WS, Borodovsky M, Karp PD, Smith HO, Fraser CM, Venter JC (1997) The complete genome sequence of the gastric pathogen Helicobacter pylori. Nature 388:539–547.  https://doi.org/10.1038/41483CrossRefGoogle Scholar
  133. Tsutsumi R, Higashi H, Higuchi M, Okada M, Hatakeyama M (2003) Attenuation of Helicobacter pylori CagA x SHP-2 signaling by interaction between CagA and C-terminal Src kinase. J Biol Chem 278:3664–3670.  https://doi.org/10.1074/jbc.M208155200CrossRefPubMedGoogle Scholar
  134. Unemo M, Aspholm-Hurtig M, Ilver D, Bergstrom J, Boren T, Danielsson D, Teneberg S (2005) The sialic acid binding SabA adhesin of Helicobacter pylori is essential for nonopsonic activation of human neutrophils. J Biol Chem 280:15390–15397.  https://doi.org/10.1074/jbc.M412725200CrossRefPubMedGoogle Scholar
  135. Veerman EC, Bolscher JG, Appelmelk BJ, Bloemena E, van den Berg TK, Nieuw Amerongen AV (1997) A monoclonal antibody directed against high M(r) salivary mucins recognizes the SO3-3Gal beta 1-3GlcNAc moiety of sulfo-Lewisa: a histochemical survey of human and rat tissue. Glycobiology 7:37–43.  https://doi.org/10.1093/glycob/7.1.37CrossRefPubMedGoogle Scholar
  136. Walz A, Odenbreit S, Mahdavi J, Boren T, Ruhl S (2005) Identification and characterization of binding properties of Helicobacter pylori by glycoconjugate arrays. Glycobiology 15:700–708.  https://doi.org/10.1093/glycob/cwi049CrossRefPubMedGoogle Scholar
  137. Walz A, Odenbreit S, Stuhler K, Wattenberg A, Meyer HE, Mahdavi J, Boren T, Ruhl S (2009) Identification of glycoprotein receptors within the human salivary proteome for the lectin-like BabA and SabA adhesins of Helicobacter pylori by fluorescence-based 2-D bacterial overlay. Proteomics 9:1582–1592.  https://doi.org/10.1002/pmic.200700808CrossRefPubMedGoogle Scholar
  138. Wiedemann T, Hofbaur S, Tegtmeyer N, Huber S, Sewald N, Wessler S, Backert S, Rieder G (2012) Helicobacter pylori CagL dependent induction of gastrin expression via a novel alphavbeta5-integrin-integrin linked kinase signalling complex. Gut 61:986–996.  https://doi.org/10.1136/gutjnl-2011-300525CrossRefPubMedGoogle Scholar
  139. Williams JC, McInnis KA, Testerman TL (2008) Adherence of Helicobacter pylori to abiotic surfaces is influenced by serum. Appl Environ Microbiol 74:1255–1258.  https://doi.org/10.1128/AEM.01958-07CrossRefPubMedGoogle Scholar
  140. Yamaoka Y, Kwon DH, Graham DY (2000) A M(r) 34,000 proinflammatory outer membrane protein (oipA) of Helicobacter pylori. Proc Natl Acad Sci U S A 97:7533–7538.  https://doi.org/10.1073/pnas.130079797CrossRefPubMedPubMedCentralGoogle Scholar
  141. Yamaoka Y, Kikuchi S, el-Zimaity HM, Gutierrez O, Osato MS, Graham DY (2002a) Importance of Helicobacter pylori oipA in clinical presentation, gastric inflammation, and mucosal interleukin 8 production. Gastroenterology 123:414–424.  https://doi.org/10.1053/gast.2002.34781CrossRefGoogle Scholar
  142. Yamaoka Y, Kita M, Kodama T, Imamura S, Ohno T, Sawai N, Ishimaru A, Imanishi J, Graham DY (2002b) Helicobacter pylori infection in mice: role of outer membrane proteins in colonization and inflammation. Gastroenterology 123:1992–2004.  https://doi.org/10.1053/gast.2002.37074CrossRefPubMedGoogle Scholar
  143. Yamaoka Y, Souchek J, Odenbreit S, Haas R, Arnqvist A, Boren T, Kodama T, Osato MS, Gutierrez O, Kim JG, Graham DY (2002c) Discrimination between cases of duodenal ulcer and gastritis on the basis of putative virulence factors of Helicobacter pylori. J Clin Microbiol 40:2244–2246.  https://doi.org/10.1128/JCM.40.6.2244-2246.2002CrossRefPubMedPubMedCentralGoogle Scholar
  144. Yamaoka Y, Ojo O, Fujimoto S, Odenbreit S, Haas R, Gutierrez O, El-Zimaity HM, Reddy R, Arnqvist A, Graham DY (2006) Helicobacter pylori outer membrane proteins and gastroduodenal disease. Gut 55:775–781.  https://doi.org/10.1136/gut.2005.083014CrossRefPubMedPubMedCentralGoogle Scholar
  145. Yanai A, Maeda S, Hikiba Y, Shibata W, Ohmae T, Hirata Y, Ogura K, Yoshida H, Omata M (2007) Clinical relevance of Helicobacter pylori sabA genotype in Japanese clinical isolates. J Gastroenterol Hepatol 22:2228–2232.  https://doi.org/10.1111/j.1440-1746.2007.04831.xCrossRefGoogle Scholar
  146. Yeh YC, Chang WL, Yang HB, Cheng HC, Wu JJ, Sheu BS (2011) H. pylori cagL amino acid sequence polymorphism Y58E59 induces a corpus shift of gastric integrin alpha5beta1 related with gastric carcinogenesis. Mol Carcinog 50:751–759.  https://doi.org/10.1002/mc.20753CrossRefPubMedGoogle Scholar
  147. Yeh YC, Cheng HC, Yang HB, Chang WL, Sheu BS (2013) H. pylori CagL-Y58/E59 prime higher integrin alpha5beta1 in adverse pH condition to enhance hypochlorhydria vicious cycle for gastric carcinogenesis. PLoS One 8:e72735.  https://doi.org/10.1371/journal.pone.0072735CrossRefPubMedPubMedCentralGoogle Scholar
  148. Zebhauser R, Kammerer R, Eisenried A, McLellan A, Moore T, Zimmermann W (2005) Identification of a novel group of evolutionarily conserved members within the rapidly diverging murine Cea family. Genomics 86:566–580.  https://doi.org/10.1016/j.ygeno.2005.07.008CrossRefPubMedGoogle Scholar
  149. Zhang XS, Tegtmeyer N, Traube L, Jindal S, Perez-Perez G, Sticht H, Backert S, Blaser MJ (2015) A specific A/T polymorphism in Western tyrosine phosphorylation B-motifs regulates Helicobacter pylori CagA epithelial cell interactions. PLoS Pathog 11(2):e1004621.  https://doi.org/10.1371/journal.ppat.1004621CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institute of Human VirologyUniversity of Maryland School of Medicine, University of MarylandBaltimoreUSA
  2. 2.Department of MedicineUniversity of Maryland School of Medicine, University of MarylandBaltimoreUSA
  3. 3.Department of Microbiology and ImmunologyUniversity of Maryland School of Medicine, University of MarylandBaltimoreUSA

Personalised recommendations