Advertisement

pp 1-21 | Cite as

Stem Cells for the Oromaxillofacial Area: Could they be a promising source for regeneration in dentistry?

  • Ayşegül MendiEmail author
  • Hacer Ulutürk
  • Mustafa Sancar Ataç
  • Derviş Yılmaz
Chapter
Part of the Advances in Experimental Medicine and Biology book series

Abstract

Oromaxillofacial tissues (OMT) are composed of tooth and bone, together with nerves and blood vessels. Such a composite material is a huge source for mesenchymal stem cells (MSCs) that can be obtained with ease from extracted teeth, teeth structures and socket blood, flapped gingiva tissue, and mandibular/maxillar bone marrow. They offer a biological answer for restoring damaged dental tissues such as the regeneration of alveolar bone, prevention of pulp tissue defects, and dental structures. Dental tissue-derived mesenchymal stem cells share properties with bone marrow-derived mesenchymal stem cells and there is a considerable potential for these cells to be used in different stem cell-based therapies, such as bone and nerve regeneration. Dental pulp tissue might be a very good source for neurological disorders whereas gingiva-derived mesenchymal stem cells could be a good immune modulatory/suppressive mediators. OMT-MSCs is also promising candidates for regeneration of orofacial tissues from the perspective of developmental fate. Here, we review the fundamental biology and potential for future regeneration strategies of MSCs in oromaxillofacial research.

Keywords

Bone marrow mesenchymal stem cells Dental pulp mesenchymal stem cells Dental stem cells Oromaxillofacial tissue Tooth bank 

Abbreviations

DP-MSCs

Dental pulp mesenchymal stem cells

iBM-MSCs

iliac bone marrow mesenchymal stem cells

MSCs

Mesenchymal stem cells

OMT

Oromaxillofacial stem cell

OMT-SCs

Oromaxillofacial stem cells

PDL-MSCs

Periodontal ligament mesenchymal stem cells

SHED

Exfoliated deciduous teeth mesenchymal stem cells

Notes

Acknowledgement

The authors thank Prof. Kursad Turksen, the Editor-in-Chief of the Advances in Experimental Medicine and Biology for valuable support to accomplish this work. Icons used in the Figures are freely downloaded from www.flatıcon.com website.

Conflict of Interest

No competing financial interests exist.

References

  1. Abedini S, Kaku M, Kawata T, Koseki H, Kojima S, Sumi H, Motokawa M, Fujita T, Ohtani J, Ohwada N, Tanne K (2011) Effects of cryopreservation with a newly-developed magnetic field programmed freezer on periodontal ligament cells and pulp tissues. Cryobiology 62:181–187Google Scholar
  2. Aghajani F, Hooshmand T, Khanmohammadi M, Khanjani S, Edalatkhah H, Zarnani A-H, Kazemnejad S (2016) Comparative immunophenotypic characteristics, proliferative features, and osteogenic differentiation of stem cells isolated from human permanent and deciduous teeth with bone marrow. Mol Biotechnol 58(6):415–427.  https://doi.org/10.1007/s12033-016-9941-2CrossRefGoogle Scholar
  3. Ajlan SA, Ashri NY, Aldahmash AM, Alnbaheen MS (2015) Osteogenic differentiation of dental pulp stem cells under the influence of three different materials. BMC Oral Health 2015:15.  https://doi.org/10.1186/s12903-015-0113-8CrossRefGoogle Scholar
  4. Akintoye SO, Lam T, Shi S, Brahim J, Collins MT, Robey PG (2006) Skeletal site-specific characterization of orofacial and iliac crest human bone marrow stromal cells in same individuals. Bone 38(6):758–768Google Scholar
  5. Alraies A, Alaidaroos NYA, Waddington RJ, Moseley R, Sloan AJ (2017) Variation in human dental pulp stem cell ageing profiles reflect contrasting proliferative and regenerative capabilities. BMC Cell Biol 18(1):12.  https://doi.org/10.1186/s12860-017-0128-xCrossRefGoogle Scholar
  6. An Y, Wei W, Jing H, Ming L, Liu S, Jin Y (2015) Bone marrow mesenchymal stem cell aggregate: an optimal cell therapy for full-layercutaneous wound vascularization and regeneration. Sci Rep 5:17036.  https://doi.org/10.1038/srep17036CrossRefGoogle Scholar
  7. Anitua E (1999) Plasma rich in growth factors: preliminary results of use in the preparation of future sites for implants. Int J Oral Maxillofac Implants 14:529–535Google Scholar
  8. Anitua E, Andia I, Ardanza B, Nurden P, Nurden AT (2004) Autologous platelets as a source of proteins for healing and tissue regeneration. Thromb Haemost 91:4–15Google Scholar
  9. Arora V, Arora P, Munshi AK (2009) Banking stem cells from human exfoliated deciduous teeth (SHED): saving for the future. J Clin Pediatr Dent 33:289–294Google Scholar
  10. Asadi-Golshan R, Razban V, Mirzaei E, Rahmanian A, Khajeh S, Mostafavi Pou Z, Dehghani F (2018) Sensory and motor behaviour evidences supporting the usefulness of conditioned medium from dental pulp derived stem cells in spinal cord injury in rats. Asian Spine J 12:785–793Google Scholar
  11. Ataç MS, Kılınç Y (2014) J- bone graft for the reconstruction of the jaws. J Craniofac Surg 25(4):1468–1469Google Scholar
  12. Atari M, Caballé-Serrano J, Gil-Recio C, Giner-Delgado C, Martínez-Sarrà E, García-Fernández DA, Barajas M, Hernandez-Alfaro F, Ferres-Padro E, Giner-Tarrida L (2012) The enhancement of osteogenesis through the use of dental pulp pluripotent stem cells in 3D. Bone 50(4):930–941.  https://doi.org/10.1016/j.bone.2012.01.005CrossRefGoogle Scholar
  13. Aurrekoetxea M, Garcia-Gallastegui P, Irastorza I, Luzuriaga J, Uribe-Etxebarria V, Unda F, Ibarretxe G (2015) Dental pulp stem cells as a multifaceted tool for bioengineering and the regeneration of craniomaxillofacial tissues. Front Physiol 6:289–299.  https://doi.org/10.3389/fphys.2015.00289CrossRefGoogle Scholar
  14. Baba S, Yamada Y (2016) Phase I/II trial of autologous bone marrow stem cell transplantation with a three-dimensional woven-fabric scaffold for periodontitis. Stem Cells Int 2016:6205910.  https://doi.org/10.1155/2016/6205910CrossRefGoogle Scholar
  15. Beitlitum I, Artzi Z, Nemcovsky CE (2010) Clinical evaluation of particulate allogeneic with and without autogenous bone grafts and resorbable collagen membranes for bone augmentation of atrophic alveolar ridges. Clin Oral Implants Res 21(11):1242–1250Google Scholar
  16. Berglundh T, Lindhe J (1997) Healing around implants placed in bone defects treated with Bio-Oss. An experimental study in the dog. Clin Oral Implants Res 8:117–124Google Scholar
  17. Bhuptani RS, Patravale VB (2016) Porous microscaffolds for 3D culture of dental pulp mesenchymal stem cells. Int J Pharm 515(1–2):555–564.  https://doi.org/10.1016/j.ijpharm.2016.10.040CrossRefGoogle Scholar
  18. Bianco P (2011) Bone and the hematopoietic niche: a tale of two stem cells. Blood 117:5281–5288Google Scholar
  19. Bonnamain V, Thinard R, Sergent-Tanguy S, Huet P, Bienvenu G, Naveilhan P, Farges JC, Alliot-Licht B (2013) Human dental pulp stem cells cultured in serum-free supplemented medium. Front Physiol 4:357.  https://doi.org/10.3389/fphys.2013.00357CrossRefGoogle Scholar
  20. Boronat A, Carrillo C, Penarrocha M, Pennarocha M (2010) Dental implants placed simultaneously with bone grafts in horizontal defects: a clinical retrospective study with 37 patients. Int J Oral Maxillofac Implants 25:189–196Google Scholar
  21. Bouquot JE, Gorlin RJ (1986) Leukoplakia, lichen planus, and other oral keratoses in 23,616 white Americans over the age of 35 years. Oral Surg Oral Med Oral Pathol 61:373–381Google Scholar
  22. Bressan E, Ferroni L, Gardin C, Pinton P, Stellini E, Botticelli D, Sivolella S, Zavan B (2012) Donor age-related biological properties of human dental pulp stem cells change in nanostructured scaffolds. PLoS One 7(11):e49146.  https://doi.org/10.1371/journal.pone.0049146CrossRefGoogle Scholar
  23. Brindley DA, Davie NL, Culme-Seymour EJ, Mason C, Smith DW, Rowley JA (2012) Peak serum: implications of serum supply for cell therapy manufacturing. Regen Med 7:7–13Google Scholar
  24. Carinci F, Piattelli A, Guida L, Perrotti V, Laino G, Oliva A, Annunziata M, Palmieri A, Pezzetti F (2006) Effects of Emdogain on osteoblast gene expression. Oral Dis 12(3):329–342Google Scholar
  25. Caton J, Bostanci N, Remboutsika E, De Bari C, Mitsiadis TA (2011) Future dentistry: cell therapy meets tooth and periodontal repair and regeneration. J Cell Mol Med 15(5):1054–1065.  https://doi.org/10.1111/j.1582-4934.2010.01251.xCrossRefGoogle Scholar
  26. Cha Y, Jeon M, Lee H-S, Kim S, Kim S-O, Lee J-H, Song JS (2015) Effects of in vitro osteogenic induction on in vivo tissue regeneration by dental pulp and periodontal ligament stem cells. J Endod 41:1462–1468Google Scholar
  27. Chang CC, Chang KC, Tsai SJ, Chang HH, Lin CP (2014) Neurogenic differentiation of dental pulp stem cells to neuron-like cells in dopaminergic and motor neuronal inductive media. J Formos Med Assoc 113:956–965Google Scholar
  28. Chen YW, Scutaru TT, Ghetu N, Carasevici E, Lupascu CD, Ferariu D, Pieptu D, Coman CG, Danciu M (2017) The effects of adipose-derived stem cell-differentiated adipocytes on skin burn wound healing in rats. J Burn Care Res 38(1):1–10.  https://doi.org/10.1097/BCR.0000000000000466CrossRefGoogle Scholar
  29. D’Aquino R, De Rosa A, Laino G, Caruso F, Guida L, Rullo R, Checchi V, Laino L, Tirino V, Papaccio G (2009) Human dental pulp stem cells: from biology to clinical applications. J Exp Zool B Mol Dev Evol 312(5):408–415.  https://doi.org/10.1002/jez.b.21263CrossRefGoogle Scholar
  30. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Kreating A, Prockop DJ, Horwitz E (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8(4):315–317.  https://doi.org/10.1080/14653240600855905Google Scholar
  31. Ducret M, Fabre H, Degoul O, Atzeni G, McGuckin C, Forraz N, Alliot-Licht B, Mallein-Gerin F, Perrier-Groult E, Farges JC (2015) Manufacturing of dental pulp cell-based products from human third molars: current strategies and future investigations. Front Physiol 6(213).  https://doi.org/10.3389/fphys.2015.00213
  32. Egusa H, Sonoyama W, Nishimura M, Atsuta I, Akiyama K (2012) Stem cells in dentistry—part I: stem cell sources. J Prosthodont Res 56:151–565Google Scholar
  33. Eleuterio E, Trubiani O, Sulpizio M, Di Giuseppe F, Pierdomenico L, Marchisio M, Giancola R, Giammaria G, Miscia S, Caputi S, Di Ilio C, Angelucci S (2013) Proteome of human stem cells from periodontal ligament and dental pulp. PLoS One 8(8):e71101.  https://doi.org/10.1371/journal.pone.0071101CrossRefGoogle Scholar
  34. Ferro F, Spelat R, Beltrami AP, Cesselli D, Curcio F (2012) Isolation and characterization of human dental pulp derived stem cells by using media containing low human serum percentage as clinical grade substitutes for bovine serum. PLoS One 7(11):e48945.  https://doi.org/10.1371/journal.pone.0048945CrossRefGoogle Scholar
  35. Fukumoto T, Sperling JW, Sanyal A, Fitzsimmons JS, Reinholz GG, Conover CA, O’Driscoll SW (2003) Combined effects of insulin-like growth factor-1 and transforming growth factor-beta1 on periosteal mesenchymal cells during chondrogenesis in vitro. Osteoarthr Cartil 11(1):55–64.  https://doi.org/10.1053/joca.2002.0869CrossRefGoogle Scholar
  36. Ghieh F, Jurjus R, Ibrahim A, Geagea AG, Daouk H, El Baba B, Chams S, Matar M, Zein W, Iurius A (2015) The use of stem cells in burn wound healing: a review. Biomed Res Int.  https://doi.org/10.1155/2015/684084Google Scholar
  37. Gomez JA, Gerales Monteiro B, Melo GB, Smith RL, Cavenaghi Pereira da Silva M, Lizier NF, Kerkis A, Cerruti H, Kerkis I (2010) Corneal reconstruction with tisue engineered cell sheets composed of human immature dental pulp stem cells. Invest Ophtalmol Vis Sci 51:1408–1414Google Scholar
  38. Gonzalez-King J, Garcia NA, Ontoria Oviedo I, Ciria M, Montero JA, Sepulveda P (2017) Hypoxia inducible factor-1α potentiates jagged 1-mediated angiogenesis by mesenchymal stem cell-derived exosomes. Stem Cells 35:1747–1759Google Scholar
  39. Goto N, Fujimoto K, Fujii S, Ida-Yonemochi H, Ohshima H, Kawamoto T, Noshiro M, Shukunami C, Kozai K, Kato Y (2016) Role of MSX1 in osteogenic differentiation of human dental pulp stem cells. Stem Cells Int.  https://doi.org/10.1155/2016/8035759Google Scholar
  40. Gronthos S, Brahim J, Li W, Fisher L, Cherman N, Boyde A, Denbesten P, Robey PG, Shi S (2002) Stem cell properties of human dental pulp stem cells. J Dent Res 81(8):531–535Google Scholar
  41. Gronthos S, Mankani M, Brahim J, Gehron Robey P, Shi S (2000) Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci 97(25):13625–13630Google Scholar
  42. Grottkau BE, Purudappa PP, Lin Y (2010) Multilineage differentiation of dental pulp stem cells from green fluorescent protein transgenic mice. Int J Oral Sci 2:21–27Google Scholar
  43. Guilak F, Lott KE, Awad HA, Cao Q, Hicok KC, Fermor B, Gimble JM (2006) Clonal analysis of the differentiation potential of human adiposederived adult stem cells. J Cell Physiol 206:229–237Google Scholar
  44. Hämmerle CH, Jung RE, Yaman D, Lang NP (2008) Ridge augmentation by applying bioresorbable membranes and deproteinized bovine bone mineral: A report of twelve consecutive cases. Clin Oral Implants Res 19:19–25Google Scholar
  45. Hargreaves KM, Berman LH, Rotstein I (2016) Cohen’s pathways of the pulp, 11th edn. Elsevier, St. LouisGoogle Scholar
  46. Hassani A, Khojasteh A, Shamsabad AN (2005) The anterior palate as a donor site in maxillofacial bone grafting: a quantitative anatomic study. J Oral Maxillofac Surg 63:1196–1200Google Scholar
  47. Hayashi Y, Murakami M, Kawamura R, Ishizaka R, Fukuta O, Nakashima M (2015) CXCL14 and MCP1 are potent trophic factors associated with cell migration and angiogenesis leading to higher regenerative potential of dental pulp side population cells. Stem Cell Res Ther 6:111.  https://doi.org/10.1186/s13287-015-0088-zCrossRefGoogle Scholar
  48. Herberts CA, Kwa MS, Hermsen HP (2011) Risk factors in the development of stem cell therapy. J Transl Med 9:29–42Google Scholar
  49. Huang GT, Gronthos S, Shi S (2009) Mesenchymal stem cells derived from dental tissues vs. those from other sources: their biology and role in regenerative medicine. J Dent Res 88:792–806Google Scholar
  50. Ishkitiev N, Yaegaki K, Imai T, Tanaka T, Fushimi N, Mitev V, Okada M, Tominaga N, Ono S, Ishikawa H (2015) Novel management of acute or secondary biliary liver conditions using hepatically differentiated human dental pulp cells. Tissue Eng Part A 21:586–593Google Scholar
  51. Ismail SB, Kumar SK, Zain RB (2007) Oral lichen planus and lichenoid reactions; Etiopathogenesis, diagnosis, management and malignant transformation. J Oral Sci 49:89–106Google Scholar
  52. Izumoto-Akita T, Tsunekawa S, Yamamoto A, Uenishi E, Ishikawa K, Ogata H, Iida A, Ikeniwa M, Hosokawa K, Niwa Y, Maekawa R, Yamauchi Y, Seino Y, Hamada Y, Hibi H, Arima H, Ueda M, Oiso Y (2015) Secreted factors from dental pulp stem cells improve glucose intolerance in streptozotocin-induced diabetic mice by increasing pancreatic β-cell function. BMJ Open Diabetes Res Care 19:3(1):e000128.  https://doi.org/10.1136/bmjdrc-2015-000128CrossRefGoogle Scholar
  53. Jang J-H, Lee H-W, Cho KM, Shin H-W, Kang MK, Park SH, Kim E (2016) In vitro characterization of human dental pulp stem cells isolated by three different methods. Restor Dent Endod 41(4):283–295Google Scholar
  54. Kaku M, Kamada H, Kawata T, Koseki H, Abedini S, Kojima S, Motokawa M, Fujita T, Ohtani J, Tsuka N, Matsuda Y, Sunagawa H, Hernandes RA, Ohwada N, Tanne K (2010) Cryopreservation of periodontal ligament cells with magnetic field for tooth banking. Cryobiology 61(1):73–78Google Scholar
  55. Kang C-M, Kim H, Song JS, Choi B-J, Kim S-O, Jung H-S, Moon SJ, Choi HJ (2016) Genetic comparison of stemness of human umbilical cord and dental pulp. Stem Cells Int 2016:1–12Google Scholar
  56. Keating A (2012) Mesenchymal stromal cells: new directions. Cell Stem Cell 10:709–716Google Scholar
  57. Kellner M, Steindorff MM, Strempel JF, Winkel A, Kühnel MP, Stiesch M (2014) Differences of isolated dental stem cells dependent on donor age and consequences for autologous tooth replacement. Arch Oral Biol 59:559–567Google Scholar
  58. Khojasteh A, Behnia H, Shayesteh YS, Morad G, Alikhasi M (2012) Localized bone augmentation with cortical bone blocks tented over different particulate bone substitutes: a retrospective study. Int J Oral Maxillofac Implants 27(6):1481–1493Google Scholar
  59. Khojasteh A, Morad G, Behnia H (2013) Clinical importance of recipient site characteristics for vertical ridge augmentation: a systematic review of literature and proposal of a classification. J Oral Implantol 39:386–398Google Scholar
  60. Kim B-C, Bae H, Kwon I-K, Lee E-J, Park J-H, Khademhosseini A, Hwang YS (2012) Osteoblastic/cementoblastic and neural differentiation of dental stem cells and their applications to tissue engineering and regenerative medicine. Tissue Eng Part B Rev 18(3):235–244Google Scholar
  61. Kolerman R, Nissan J, Tal H (2014) Combined osteotome-induced ridge expansion and guided bone regeneration simultaneous with implant placement: a biometric study. Clin Implant Dent Relat Res 16:691–704Google Scholar
  62. Ledesma-Martínez E, Mendoza-Núñez VM, Santiago-Osorio E (2016) Mesenchymal stem cells derived from dental pulp: a review. Stem Cells Int 2016:1–12.  https://doi.org/10.1155/2016/4709572CrossRefGoogle Scholar
  63. Liu J, Yu F, Sun Y, Jiang B, Zhang W, Yang J, Xu GT, Liang A, Liu S (2015) Concise reviews: characteristics and potential applications of human dental tissue-derived mesenchymal stem cells. Stem Cells 33(3):627–638.  https://doi.org/10.1002/stem.1909CrossRefGoogle Scholar
  64. Manimaran K, Sharma R, Sankaranarayanan S, Perumal SM (2016) Regeneration of mandibular ameloblastıma defect with the help of autologous dental pulp stem cells and bucval pad of fat stromal vascular fraction. Ann MAxillofac Surg 6:97–100Google Scholar
  65. Mao JJ, Prockop DJ (2012) Stem cells in the face: tooth regeneration and beyond. Cell Stem Cell 11:291–301.  https://doi.org/10.1016/j.stem.2012.08.010CrossRefGoogle Scholar
  66. Mazur P (1984) Freezing of living cells: mechanisms and implications. Am J Phys 247:125–142Google Scholar
  67. Mead B, Hill LJ, Blanch RJ, Ward K, Logan A, Berry M, Leadbeater W, Scheven BA (2015) Mesenchymal stromal cell mediated neuroprotection and functional preservation of retinal ganglion cells in a rodent model of glaucoma. Cytother.  https://doi.org/10.1016/j.jcyt.2015.12.002Google Scholar
  68. Mead B, Logan A, Berry M, Leadbeater W, Scheven BA (2013) Intravitreally transplanted dental pulp stem cells promote neuroprotection and axon regeneration of retinal ganglion cells after optic nerve injury. Invest Phtalmol Vis Sci 15:7544–7556Google Scholar
  69. Mead B, Logan A, Berry M, Leadbeater W, Scheven BA (2014) Paracrine-mediated neuroprotection and neuritogenesis of axotomised retinal ganglion cells by human dental pulp stem cells: comparison with human bone marrow and adipose-derived mesenchymal stem cells. PLoS One 9:e109305Google Scholar
  70. Meijndert L, Raghoebar GM, Schüpbach P, Meijer HJ, Vissink A (2005) Bone quality at the implant site after reconstruction of a local defect of the maxillary anterior ridge with chin bone or deproteinised cancellous bovine bone. Int J Oral Maxillofac Surg 34:877–884Google Scholar
  71. Mendez-Ferrer S, Michurina TV, Ferraro F, Mazloom AR, Macarthur BD, Lira SA, Scadden DT, Ma’ayan A, Enikolopov GN, Frenette PS (2010) Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature 466:829–834Google Scholar
  72. Mendi A, Gökcınar Yağcı B, Kızıloğlu M, Saraç N, Uğur A, Yılmaz D, Uçkan D (2017) The effects of Syzygium aromaticum, Cinnamomum zeylanicum, and Salvia triloba extracts on proliferation and differentiation of dental pulp stem cells. J Appl Oral Sci 25(5):515–522Google Scholar
  73. Mendi A, Gökçinar Yagci B, Sarac N, Kiziloglu M, Ugur A, Uçkan D, Yilmaz D (2018) Niche differs the effects of Hypericum perforatum L. on the dental pulp- and bone marrow-derived mesenchymal stem cells proliferation, osteogenic differentiation, and inflammatory response. Cells Tissues Organs 205:208–216.  https://doi.org/10.1159/000491633CrossRefGoogle Scholar
  74. Merkx MA, Maltha JC, Freihofer HP, Kuijpers-Jagtman AM (1999) Incorporation of particulated bone implants in the facial skeleton. Biomaterials 20:2029–2035Google Scholar
  75. Mita T, Furukawa-Hibi Y, Takeuchi H, Hattori H, Yamada K, Hibi H, Ueda M, Yamamoto A (2015) Conditioned medium from the stem cells of human dental pulp improves cognitive function in a mouse model of Alzheimer’s disease. Behav Brain Res 293:189–197.  https://doi.org/10.1016/j.bbr.2015.07.043CrossRefGoogle Scholar
  76. Mitsiadis TA, Orsini G, Jimenez-Rojo L (2015) Stem cell-based approaches in dentistry. Europ Cells Mat 30:248–257.  https://doi.org/10.22203/eCM.v030a17CrossRefGoogle Scholar
  77. Mitsiadis TA, Woloszyk A, Jimenez-Rojo L (2012) Nanodentistry: combining nanostructured materials and stem cells for dental tissue regeneration. Nanomed 7:1743–1753.  https://doi.org/10.2217/nnm.12.146CrossRefGoogle Scholar
  78. Miura M, Gronthos S, Zhao M, Lu B, Fisher LW, Robey PG, Shi S (2003) SHED: stem cells from human exfoliated deciduous teeth. Proc Natl Acad Sci U S A 100(10):5807–5812Google Scholar
  79. Mjor IA (2001) Pulp-dentin biology in restorative dentistry. Part 5: clinical management and tissue changes associated with wear and trauma. Quintessence Int 32(10):771–788Google Scholar
  80. Morad G, Khojasteh A (2013) Cortical tenting technique versus onlay layered technique for vertical augmentation of atrophic posterior mandibles: a split-mouth pilot study. Implant Dent 22:566–571Google Scholar
  81. Moshaverinia A, Chen C, Akiyama K, Ansari S, Xu X, Chee WW, Schriker SR, Shi S (2012) Alginate hydrogel as a promising scaffold for dental-derived stem cells: an in vitro study. J Mater Sci Mater Med 23(12):3041–3051.  https://doi.org/10.1007/s10856-012-4759-3CrossRefGoogle Scholar
  82. Moshaverinia A, Chen C, Akiyama K, Xu X, Chee WW, Schricker SR, Shi S (2013) Encapsulated dental-derived mesenchymal stem cells in an injectable and biodegradable scaffold for applications in bone tissue engineering. J Biomed Mater Res A 101(11):3285–3294.  https://doi.org/10.1002/jbm.a.34546CrossRefGoogle Scholar
  83. Moshaverinia A, Chen C, Xu X, Akiyama K, Ansari S, Zadeh HH, Shi S (2014) Bone regeneration potential of stem cells derived from periodontal ligament or gingival tissue sources encapsulated in RGD-modified alginate scaffold. Tissue Eng Part A 20(3–4):611–621.  https://doi.org/10.1089/ten.TEA.2013.0229CrossRefGoogle Scholar
  84. Moshtagh PR, Emami SH, Sharifi AM (2013) Differentiation of human adipose-derived mesenchymal stem cell into insulin-producing cells: an in vitro study. J Physiol Biochem 69:451–458Google Scholar
  85. Nakajima K, Kunimatsu R, Ando K, Ando T, Hayashi Y, Kihara T, Hiraki T, Tsuka Y, Abe T, Kaku M, Nikawa H, Takata T, Tanne K, Tanimoto K (2018) Comparison of the bone regeneration ability between stem cells from hıman exfoliated deciduous teeth, human dental pulp stem cells and human bone marrow mesenchymal stem cells. Biochem Biophys Res Commun 11(497):876–882Google Scholar
  86. Nam H, Kim GH, Bae YK, Jeong DE, Joo KM, Lee K, Lee SH (2017) Angiogenic capacity of dental pulp stem cell regulated by SDF-1α-CXCR4 Axis. Stem Cells Int.  https://doi.org/10.1155/2017/8085462Google Scholar
  87. Nemeth CL, Janebodin K, Yuan AE, Dennis JE, Reyes M, Kim D-H (2014) Enhanced chondrogenic differentiation of dental pulp stem cells using nanopatterned PEG-GelMA-HA hydrogels. Tissue Eng Part A 20:2817–2829Google Scholar
  88. Nicola F, Marques MR, Odorcyk F, Petenuzzo L, Aristimunha D, Vizuete A, Sanches EF, Pereira DP, Maurmann N, Goncalves CA, Pranke P, Netto CA (2018) Mol Neurobiol.  https://doi.org/10.1007/s12035-018-1127-4Google Scholar
  89. Niehage C, Karbanová J, Steenblock C, Corbeil D, Hoflack B (2016) Cell surface proteome of dental pulp stem cells identified by label-free mass spectrometry. PLoS One 11(8):e0159824.  https://doi.org/10.1371/journal.pone.0159824CrossRefGoogle Scholar
  90. Nito C, Sowa K, Nakajima M, Skamoto Y, Nishiyama Y, Nakamura Takkashi A, Nitahara Kasahara Y, Ueda M, Okada T, Kimura K (2018) Transplantation of human dental pulp stem cells ameliorates brain damage following acute cerebral ischemia. Biomed Pharmacother 108:1005–1014Google Scholar
  91. Nuti N, Corallo C, Chan BM, Ferrari M, Gerami-Naini B (2016) Multipotent differentiation of human dental pulp stem cells: a literature review. Stem Cell Rev 12:511–523Google Scholar
  92. Oh YH, Che ZM, Hong JC, Lee EJ, Lee SJ, Kim J (2005) Cryopreservation of human teeth for future organization of a tooth bank – a preliminary study. Cryobiology 51:322–329Google Scholar
  93. Ozaki W, Buchman SR (1998) Volume maintenance of onlay bone grafts in the craniofacial skeleton: micro-architecture versus embryologic origin. Plast Reconstr Surg 102:291–299Google Scholar
  94. Pagella P, Neto E, Lamghari M, Mitsiadis TA (2015) Investigation of orofacial stem cell niches and their innervation through microfluidic devices. Europ Cells Mat 29:213–223Google Scholar
  95. Paino F, La Noce M, Giuliani A, De Rosa A, Mazzoni S, Laino L, Amler E, Papaccio G, Desiderio V, Tirino V (2017) Human DPSCs fabricate vascularized woven bone tissue: a new tool in bone tissue engineering. Clin Sci 25(131):699–713Google Scholar
  96. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284(5411):143–147Google Scholar
  97. Polo-Corrales L, Latorre-Esteves M, Ramirez-Vick JE (2014) Scaffold design for bone regeneration. J Nanosci Nanotechnol 14(1):15–56Google Scholar
  98. Quigley HA (1996) Number of people with glaucoma worldwide. Br J Ophthalmol 80:389–393Google Scholar
  99. Rada C, Jarvis JM, Milstein C (2002) AID-GFP chimeric protein increases hypermutation of Ig genes with no evidence of nuclear localization. Proc Natl Acad Sci U S A 99(10):7003–7008.  https://doi.org/10.1073/pnas.092160999CrossRefGoogle Scholar
  100. Riccio M, Resca E, Maraldi T, Pisciotta A, Ferrari A, Bruzzesi G, De Pol A (2010) Human dental pulp stem cells produce mineralized matrix in 2D and 3D cultures. Eur J Histochem 54(4):46Google Scholar
  101. Roopashree MR, Gondhalekar RV, Shashikanth MC, George J, Thippeswamy SH, Shukla A (2010) Pathogenesis of oral lichen planus-a review. J Oral Pathol Med 39:729–734Google Scholar
  102. Sacchetti B, Funari A Michienzi S, Di Cesare S, Piersanti S, Saggio I, Tagliafico E, Ferrari S, Robey PG, Riminucci M, Bianco P (2007) Self-renewing osteoprogenitors in bone marrow sinusoids can organize a hematopoietic microenvironment. Cell 131:324–336Google Scholar
  103. Scully C, Beyli M, Ferreiro MC, Ficarra G, Gill Y, Griffiths M, Holmstrup P, Porter S, Wray D (1998) Update on oral lichen planus:etiopathogenesis and management. Crit Rev Oral Biol Med 9(1):86–122Google Scholar
  104. Seo BM, Miura M, Sonoyama W, Coppe C, Stanyon R, Shi S (2005) Recovery of stem cells from cryopreserved periodontal ligament. J Dent Res 84:907–912Google Scholar
  105. Seo BM, Sonoyama W, Yamaza T, Coppe C, Kikuiri T, Akiyama K, Lee JS, Shi S (2008) SHED repair critical-size calvarial defects in mice. Oral Dis 14(5):428–434Google Scholar
  106. Sequeira-Byron P, Fedorowicz Z, Carter B, Nasser M, Alrowaili EF (2015) Single crowns versus conventional fillings for the restoration of root-filled teeth. Cochrane Database Syst Rev 16(5):CD009109.  https://doi.org/10.1002/14651858.cd009109.pub3CrossRefGoogle Scholar
  107. Shabestari GO, Shayesteh YS, Khojasteh A, Alikhasi M, Moslemi N, Aminian A, Masaeli R, Eslami B, Treister NS (2010) Implant placement in patients with oral bisphosphonate therapy: a case series. Clin Implant Dent Relat Res 12(3):175–180.  https://doi.org/10.1111/j.1708-8208.2009.00150.xCrossRefGoogle Scholar
  108. Shayesteh YS, Khojasteh A, Siadat H, Monzavi A, Bassir SH, Hossaini M, Alikhasi A (2013) A comparative study of crestal bone loss and implant stability between osteotome and conventional implant insertion techniques: a randomized controlled clinical trial study. Clin Implant Dent Relat Res 15(3):350–357Google Scholar
  109. Soares TR, Fidalgo TK, Quirino AS, Ferreira DM, Chianca TK, Risso PA, Maia LC (2016) Is caries a risk factor for dental trauma? A systematic review and meta-analysis. Dent Traumatol 33(1):4–12.  https://doi.org/10.1111/edt.12295CrossRefGoogle Scholar
  110. Sonoyama W, Liu Y, Yamaza T, Tuan RS, Wang S, Shi S, Huang GT (2008) Characterization of the apical papilla and its residing stem cells from human immature permanent teeth: a pilot study. J Endod 34(2):166–171Google Scholar
  111. Suchanek J, Nasry SA, Soukup T (2017) The differentiation potential of human natal dental pulp stem cells into ınsulin producing cells. Folia Biol 63:132–138Google Scholar
  112. Sugerman PB, Savage NW, Walsh LJ, Zhao ZZ, Zhou XJ, Khan A, Seymour GJ, Bigby M (2002) The pathogenesis of oral lichen planus. Crit Rev Oral Biol Med 13(4):350–365Google Scholar
  113. Tatullo M, Falisi G, Amantea M, Rastelli C, Pasuano F, Marrelli M (2015a) Dental pulp stem cells and human periapical cyst mesenchymal St, em cells in bone tissue regeneration: comparison of basal and osteogenic differentiated gene expression of a newly discovered mesenchymal stem cell lineage. J Biol Regul Homeost Agents 29(3):713–718Google Scholar
  114. Tatullo M, Marrelli M, Paduano F (2015b) The regenerative medicine in oral and maxillofacial surgery: the most important innovations in the clinical application of mesenchymal stem cells. Int J Med Sci 12(1):72–77.  https://doi.org/10.7150/ijms.10706CrossRefGoogle Scholar
  115. Teti G, Salvatore V, Focaroli S, Durante S, Mazzotti A, Dicarlo M, Mattioli-Belmonte M, Orsini G (2015) In vitro osteogenic and odontogenic differentiation of human dental pulp stem cells seeded on carboxymethyl cellulose-hydroxyapatite hybrid hydrogel. Front Physiol 6:297.  https://doi.org/10.3389/fphys.2015.00297CrossRefGoogle Scholar
  116. Tirino V, Paino F, D’Aquino R, Desiderio V, De Rosa A, Papaccio G (2011) Methods for the identification, characterization and banking of human DPSCs: current strategies and perspectives. Stem Cell Rev 7:608–615Google Scholar
  117. Uccelli A, Moretta L, Pistoia V (2008) Mesenchymal stem cells in health and disease. Nat Rev Immunol 8(9):726–736Google Scholar
  118. Ullah I, Park JM, Kang YH, Byun JH, Kim DG, Kim JH, Kang DH, Rho GJ, Park BW (2017) Transplantation of human dental pulp-derived stem cells or differentiated neuronal cells from human dental pulp-derived stem cells identically enhances regeneration of the injured peripheral nerve. Stem Cells Dev 1(26):1247–1257Google Scholar
  119. Urban IA, Nagursky H, Lozada JL, Nagy K (2013) Horizontal ridge augmentation with a collagen membrane and a combination of particulated autogenous bone and anorganic bovine bone-derived mineral: a prospective case series in 25 patients. Int J Periodontics Restorative Dent 33:299–307Google Scholar
  120. von Arx T, Buser D (2006) Horizontal ridge augmentation using autogenous block grafts and the guided bone regeneration technique with collagen membranes: a clinical study with 42 patients. Clin Oral Implants Res 17:359–366Google Scholar
  121. Wang Z, Pan J, Wright JT, Bencharit S, Zhang S, Everett ET, Teixeira FB, Preisser JS (2010) Putative stem cells in human dental pulp with irreversible pulpitis: an exploratory study. J Endod 36(5):820–825.  https://doi.org/10.1016/j.joen.2010.02.003. Epub 2010 Mar 19CrossRefGoogle Scholar
  122. Werle SB, Lindemann D, Steffens D, Demarco FF, de Araujo FB, Pranke P, Casagrande L (2016) Carious deciduous teeth are a potential source for dental pulp stem cells. Clin Oral Investig 20(1):75–81.  https://doi.org/10.1007/s00784-015-1477-5CrossRefGoogle Scholar
  123. Xu J, Su Y, Hu L, Caşn A, Gu Y, Liu B, Wu R, Wang S, Wang H (2018) Effect of bone morphogenetic protein 6 on ımmnunomodulatory functions of salivary gland derived mesenchymal stem cells in Sjogren’s syndrome. Stem Cells Dev 15(27):1540–1548Google Scholar
  124. Yamada Y, Ito K, Nakamura S, Ueda M, Nagasaka T (2011) Promising cell based therapy for bone regeneration using stem cekks from deciduous teeth, dental pulp, and bone marrow. Cell Transplant 20:1003–1013Google Scholar
  125. Yamamoto T, Osako Y, Murakami M, Hayashi Y, Horibe H, Iohara K, Takeuchi N, Okuni N, Hirata H, Nakayama H, Kurita K, Nakashima M (2016) Trophic effects of dental pulp stem cells on Schwann cells in peripheral nerve regeneration. Cell Transplant 25:183–193Google Scholar
  126. Yamaza T, Alatas FS, Yuniartha R, Yamaza H, Fujiyoshi JK, Yanagi Y, Yoshimaru K, Hayashida M, Matsuura T, Aijima R, Ihara K, Ohga S, Shi S, Nonaka K, Taguchi T (2015) In vivo hepatogenic capacity and therapeutic potential of stem cells from human exfoliated deciduous teeth in liver fibrosis in mice. Stem Cell Res Ther 6(1):171.  https://doi.org/10.1186/s13287-015-0154-6CrossRefGoogle Scholar
  127. Yang B, Qiu Y, Zhou N, Ouyang H, Ding J, Cheng B, Sun J (2017) Application of stem cells in oral disease therapy: progresses and perspectives. Front Physiol.  https://doi.org/10.3389/fphys.2017.00197
  128. Zhang Q, Shi S, Liu Y, Uyanne J, Shi Y, Shi S, Le AD (2009) Mesenchymal stem cells derived from human gingiva are capable of immunomodulatory functions and ameliorate inflammation-related tissue destruction in experimental colitis. J Immunol 183(12):7787–7798.  https://doi.org/10.4049/jimmunol.0902318CrossRefGoogle Scholar
  129. Zhang YD, Chen Z, Song YQ, Liu C, Chen YP (2005) Making a tooth: growth factors, transcription factors, and stem cells. Cell Res 15(5):301–316Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Ayşegül Mendi
    • 1
    Email author
  • Hacer Ulutürk
    • 2
  • Mustafa Sancar Ataç
    • 2
  • Derviş Yılmaz
    • 2
  1. 1.Faculty of Dentistry Department of Basic SciencesGazi UniversityAnkaraTurkey
  2. 2.Faculty of Dentistry, Department of Oral and Maxillofacial SurgeryGazi UniversityAnkaraTurkey

Personalised recommendations