Advertisement

pp 1-22 | Cite as

Shaping Microbiota During the First 1000 Days of Life

  • Marta Selma-Royo
  • Maria Tarrazó
  • Izaskun García-Mantrana
  • Carlos Gómez-Gallego
  • Seppo Salminen
  • Maria Carmen ColladoEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series

Abstract

The data obtained in prior studies suggest that early microbial exposition begins prior to conception and gestation. Given that the host-microbe interaction is shaped by the immune system response, it is important to understand the key immune system-microbiota relationship during the period from conception to the first years of life. The present work summarizes the available evidence concerning early microbiota exposure within the male and the female reproductive tracts at the point of conception and during gestation, focusing on the potential impact on infant development during the first 1000 days of life. Furthermore, we conclude that some dietary strategies including specific probiotics could become potentially valuable tools to modulate the gut microbiota during this early critical window of opportunity for targeted health outcomes throughout the entire lifespan.

Keywords

Diet Gestation Health Meconium Microbiota Placenta Probiotics Semen Vagina 

Notes

Acknowledgements

Authors would like to acknowledge the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (ERC Starting Grant, project no. 639226). MSR would acknowledge the support from ACIF program of Generalitat Valenciana with European Social Fund (ESF).

Conflicts of Interest

The authors declare that there are no conflicts of interest associated with the publication of this paper.

References

  1. Aagaard K, Riehle K, Ma J et al (2012) A metagenomic approach to characterization of the vaginal microbiome signature in pregnancy. PLoS One 7:e36466.  https://doi.org/10.1371/journal.pone.0036466CrossRefGoogle Scholar
  2. Aagaard K, Ma J, Antony KM et al (2014) The placenta harbors a unique microbiome. Sci Transl Med 6:237ra65–237ra65.  https://doi.org/10.1126/scitranslmed.3008599CrossRefGoogle Scholar
  3. Adriaens LM, Alessandri R, Spörri S et al (2009) Does pregnancy have an impact on the subgingival microbiota? J Periodontol 80:72–81.  https://doi.org/10.1902/jop.2009.080012CrossRefGoogle Scholar
  4. Agosti M, Tandoi F, Morlacchi L, Bossi A (2017) Nutritional and metabolic programming during the first thousand days of life. La Pediatr Medica e Chir 39:157.  https://doi.org/10.4081/pmc.2017.157CrossRefGoogle Scholar
  5. Amarasekara R, Jayasekara RW, Senanayake H, Dissanayake VHW (2015) Microbiome of the placenta in pre-eclampsia supports the role of bacteria in the multifactorial cause of pre-eclampsia. J Obstet Gynaecol Res 41:662–669.  https://doi.org/10.1111/jog.12619CrossRefGoogle Scholar
  6. Angelopoulou A, Field D, Ryan CA et al (2018) The microbiology and treatment of human mastitis. Med Microbiol Immunol 207:83–94Google Scholar
  7. Antony KM, Ma J, Mitchell KB et al (2015) The preterm placental microbiome varies in association with excess maternal gestational weight gain. Am J Obstet Gynecol 212:653.e1–653.e16.  https://doi.org/10.1016/j.ajog.2014.12.041CrossRefGoogle Scholar
  8. Ardissone AN, De La Cruz DM, Davis-Richardson AG et al (2014) Meconium microbiome analysis identifies bacteria correlated with premature birth. PLoS One 9:e90784.  https://doi.org/10.1371/journal.pone.0090784CrossRefGoogle Scholar
  9. Asnicar F, Manara S, Zolfo M et al (2017) Studying Vertical Microbiome Transmission from Mothers to Infants by Strain-Level Metagenomic Profiling. mSystems 2:e00164–e00116.  https://doi.org/10.1128/mSystems.00164-16CrossRefGoogle Scholar
  10. Avershina E, Angell IL, Simpson M et al (2018) Low maternal microbiota sharing across gut, breast milk and vagina, as revealed by 16s rRNA gene and reduced metagenomic sequencing. Genes (Basel) 9:231.  https://doi.org/10.3390/genes9050231CrossRefGoogle Scholar
  11. Bäckhed F, Roswall J, Peng Y et al (2015) Dynamics and stabilization of the human gut microbiome during the first year of life. Cell Host Microbe 17:690–703.  https://doi.org/10.1016/j.chom.2015.04.004CrossRefGoogle Scholar
  12. Barak S, Oettinger-Barak O, Machtei EE et al (2007) Evidence of periopathogenic microorganisms in placentas of women with preeclampsia. J Periodontol 78:670–676.  https://doi.org/10.1902/jop.2007.060362CrossRefGoogle Scholar
  13. Barrett HL, Gomez-Arango LF, Wilkinson SA et al (2018) A vegetarian diet is a major determinant of gut microbiota composition in early pregnancy. Nutrients 10:890.  https://doi.org/10.3390/nu10070890CrossRefGoogle Scholar
  14. Bassols J, Serino M, Carreras-Badosa G et al (2016) Gestational diabetes is associated with changes in placental microbiota and microbiome. Pediatr Res 80:777–784.  https://doi.org/10.1038/pr.2016.155CrossRefGoogle Scholar
  15. Benner M, Ferwerda G, Joosten I, van der Molen RG (2018) How uterine microbiota might be responsible for a receptive, fertile endometrium. Hum Reprod Update 24:393–415.  https://doi.org/10.1093/humupd/dmy012CrossRefGoogle Scholar
  16. Bennett P (2017) The impact of the vaginal microbiome on preterm labour. Placenta 57:233–234.  https://doi.org/10.1016/j.placenta.2017.07.046CrossRefGoogle Scholar
  17. Borgo PV, Rodrigues VAA, Feitosa ACR et al (2014) Association between periodontal condition and subgingival microbiota in women during pregnancy: a longitudinal study. J Appl Oral Sci 22:528–533.  https://doi.org/10.1590/1678-775720140164CrossRefGoogle Scholar
  18. Bretelle F, Rozenberg P, Pascal A et al (2015) High atopobium vaginae and gardnerella vaginalis vaginal loads are associated with preterm birth. Clin Infect Dis 60:860–867.  https://doi.org/10.1093/cid/ciu966CrossRefGoogle Scholar
  19. Cacho NT, Lawrence RM (2017) Innate immunity and breast milk. Front Immunol 8:584Google Scholar
  20. Cao B, Mysorekar IU (2014) Intracellular bacteria in placental basal plate localize to extravillous trophoblasts. Placenta 35:139–142.  https://doi.org/10.1016/j.placenta.2013.12.007CrossRefGoogle Scholar
  21. Chang Y-S, Trivedi MK, Jha A et al (2016) Synbiotics for prevention and treatment of atopic dermatitis. JAMA Pediatr 170:236.  https://doi.org/10.1001/jamapediatrics.2015.3943CrossRefGoogle Scholar
  22. Chen C, Song X, Wei W et al (2017) The microbiota continuum along the female reproductive tract and its relation to uterine-related diseases. Nat Commun 8:875.  https://doi.org/10.1038/s41467-017-00901-0CrossRefGoogle Scholar
  23. Chen H, Luo T, Chen T, Wang G (2018) Seminal bacterial composition in patients with obstructive and non-obstructive azoospermia. Exp Ther Med 15:2884–2890.  https://doi.org/10.3892/etm.2018.5778CrossRefGoogle Scholar
  24. Chong C, Bloomfield F, O’Sullivan J (2018) Factors affecting gastrointestinal microbiome development in neonates. Nutrients 10:274.  https://doi.org/10.3390/nu10030274CrossRefGoogle Scholar
  25. Chu DM, Antony KM, Ma J et al (2016) The early infant gut microbiome varies in association with a maternal high-fat diet. Genome Med 8:77.  https://doi.org/10.1186/s13073-016-0330-zCrossRefGoogle Scholar
  26. Chu DM, Ma J, Prince AL et al (2017) Maturation of the infant microbiome community structure and function across multiple body sites and in relation to mode of delivery. Nat Med 23:314–326.  https://doi.org/10.1038/nm.4272CrossRefGoogle Scholar
  27. Clemente JC, Ursell LK, Parfrey LW, Knight R (2012) The impact of the gut microbiota on human health: an integrative view. Cell 148:1258–1270.  https://doi.org/10.1016/j.cell.2012.01.035CrossRefGoogle Scholar
  28. Collado MC, Isolauri E, Laitinen K, Salminen S (2008) Distinct composition of gut microbiota during pregnancy in overweight and normal-weight women. Am J Clin Nutr 88:894–899Google Scholar
  29. Collado MC, Isolauri E, Laitinen K, Salminen S (2010) Effect of mother’s weight on infant’s microbiota acquisition, composition, and activity during early infancy: a prospective follow-up study initiated in early pregnancy. Am J Clin Nutr 92:1023–1030.  https://doi.org/10.3945/ajcn.2010.29877CrossRefGoogle Scholar
  30. Collado MC, Rautava S, Aakko J et al (2016) Human gut colonization may be initiated in utero by distinct microbial communities in the placenta and amniotic fluid. Sci Rep 6:23129.  https://doi.org/10.1038/srep23129CrossRefGoogle Scholar
  31. Combs CA, Gravett M, Garite TJ et al (2014) Amniotic fluid infection, inflammation, and colonization in preterm labor with intact membranes. Am J Obstet Gynecol 210:125.e1–125.e15.  https://doi.org/10.1016/j.ajog.2013.11.032CrossRefGoogle Scholar
  32. Dallanora S, Medeiros de Souza Y, Deon RG et al (2018) Do probiotics effectively ameliorate glycemic control during gestational diabetes? A systematic review. Arch Gynecol Obstet 298:1–9Google Scholar
  33. Dardmeh F, Alipour H, Gazerani P et al (2017) Lactobacillus rhamnosus PB01 (DSM 14870) supplementation affects markers of sperm kinematic parameters in a diet-induced obesity mice model. PLoS One 12:e0185964.  https://doi.org/10.1371/journal.pone.0185964CrossRefGoogle Scholar
  34. Davis NM, Proctor D, Holmes SP et al (2017) Simple statistical identification and removal of contaminant sequences in marker-gene and metagenomics data. bioRxiv:221499.  https://doi.org/10.1101/221499
  35. de Andrés J, Jiménez E, Chico-Calero I et al (2018) Physiological translocation of lactic acid bacteria during pregnancy contributes to the composition of the milk microbiota in mice. Nutrients 10:14.  https://doi.org/10.3390/nu10010014CrossRefGoogle Scholar
  36. de Goffau MC, Lager S, Salter SJ et al (2018) Recognizing the reagent microbiome. Nat Microbiol 3:851–853.  https://doi.org/10.1038/s41564-018-0202-yCrossRefGoogle Scholar
  37. Deshpande G, Athalye-Jape G, Patole S (2018) Para-probiotics for preterm neonates—the next frontier. Nutrients 10:871.  https://doi.org/10.3390/nu10070871CrossRefGoogle Scholar
  38. DiGiulio DB (2012) Diversity of microbes in amniotic fluid. Semin Fetal Neonatal Med 17:2–11Google Scholar
  39. DiGiulio DB, Romero R, Amogan HP et al (2008) Microbial prevalence, diversity and abundance in amniotic fluid during preterm labor: a molecular and culture-based investigation. PLoS One 3:e3056.  https://doi.org/10.1371/journal.pone.0003056CrossRefGoogle Scholar
  40. DiGiulio DB, Romero R, Kusanovic JP et al (2010) Prevalence and diversity of microbes in the amniotic fluid, the fetal inflammatory response, and pregnancy outcome in women with preterm pre-labor rupture of membranes. Am J Reprod Immunol 64:38–57.  https://doi.org/10.1111/j.1600-0897.2010.00830.xCrossRefGoogle Scholar
  41. DiGiulio DB, Callahan BJ, McMurdie PJ et al (2015) Temporal and spatial variation of the human microbiota during pregnancy. Proc Natl Acad Sci 112:11060–11065.  https://doi.org/10.1073/pnas.1502875112CrossRefGoogle Scholar
  42. Dimova T, Terzieva A, Djerov L et al (2017) Mother-to-newborn transmission of mycobacterial L-forms and Vδ2 T-cell response in placentobiome of BCG-vaccinated pregnant women. Sci Rep 7:1–11.  https://doi.org/10.1038/s41598-017-17644-zCrossRefGoogle Scholar
  43. Dominguez-Bello MG, Costello EK, Contreras M et al (2010) Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc Natl Acad Sci 107:11971–11975.  https://doi.org/10.1073/pnas.1002601107CrossRefGoogle Scholar
  44. Dong XD, Li XR, Luan JJ et al (2015) Bacterial communities in neonatal feces are similar to mothers’ placentae. Can J Infect Dis Med Microbiol 26:90–94.  https://doi.org/10.1155/2015/737294CrossRefGoogle Scholar
  45. Donnet-Hughes A, Perez PF, Doré J et al (2010) Potential role of the intestinal microbiota of the mother in neonatal immune education. Proc Nutr Soc 69:407–415Google Scholar
  46. Doyle RM, Alber DG, Jones HE et al (2014) Term and preterm labour are associated with distinct microbial community structures in placental membranes which are independent of mode of delivery. Placenta 35:1099–1101.  https://doi.org/10.1016/j.placenta.2014.10.007CrossRefGoogle Scholar
  47. Doyle RM, Harris K, Kamiza S et al (2017) Bacterial communities found in placental tissues are associated with severe chorioamnionitis and adverse birth outcomes. PLoS One 12:1–23.  https://doi.org/10.1371/journal.pone.0180167CrossRefGoogle Scholar
  48. Duranti S, Lugli GA, Mancabelli L et al (2017) Maternal inheritance of bifidobacterial communities and bifidophages in infants through vertical transmission. Microbiome 5:66.  https://doi.org/10.1186/s40168-017-0282-6CrossRefGoogle Scholar
  49. Dzidic M, Boix-Amorós A, Selma-Royo M et al (2018) Gut microbiota and mucosal immunity in the neonate. Med Sci 6:56.  https://doi.org/10.3390/medsci6030056CrossRefGoogle Scholar
  50. Fardini Y, Chung P, Dumm R et al (2010) Transmission of diverse oral bacteria to murine placenta: evidence for the oral microbiome as a potential source of intrauterine infection. Infect Immun 78:1789–1796.  https://doi.org/10.1128/IAI.01395-09CrossRefGoogle Scholar
  51. Farr A, Kiss H, Holzer I et al (2015) Effect of asymptomatic vaginal colonization with Candida albicans on pregnancy outcome. Acta Obstet Gynecol Scand 94:989–996.  https://doi.org/10.1111/aogs.12697CrossRefGoogle Scholar
  52. Franasiak JM, Scott RT (2017) Endometrial microbiome. Curr Opin Obstet Gynecol 29:146–152Google Scholar
  53. Fujiwara N, Tsuruda K, Iwamoto Y et al (2017) Significant increase of oral bacteria in the early pregnancy period in Japanese women. J Investig Clin Dent 8:e12189.  https://doi.org/10.1111/jicd.12189CrossRefGoogle Scholar
  54. Gajer P, Brotman RM, Bai G et al (2012) Temporal dynamics of the human vaginal microbiota. Sci Transl Med 4:132ra52–132ra52.  https://doi.org/10.1126/scitranslmed.3003605CrossRefGoogle Scholar
  55. Garcia-Larsen V, Ierodiakonou D, Jarrold K et al (2018) Diet during pregnancy and infancy and risk of allergic or autoimmune disease: A systematic review and meta-analysis. PLoS Med 15:e1002507.  https://doi.org/10.1371/journal.pmed.1002507CrossRefGoogle Scholar
  56. García-Mantrana I, Bertua B, Martínez-Costa C, Collado MC (2016) Perinatal nutrition: How to take care of the gut microbiota? Clin Nutr Exp 6:3–16.  https://doi.org/10.1016/j.yclnex.2016.02.002CrossRefGoogle Scholar
  57. Gensollen T, Iyer SS, Kasper DL, Blumberg RS (2016) How colonization by microbiota in early life shapes the immune system. Science (80- .) 352:539–544Google Scholar
  58. Gilboa Y, Bar-Hava I, Fisch B et al (2005) Does intravaginal probiotic supplementation increase the pregnancy rate in IVF-embryo transfer cycles? Reprod Biomed Online 11:71–75.  https://doi.org/10.1016/S1472-6483(10)61301-6CrossRefGoogle Scholar
  59. Goldenberg J, Lytvyn L, Steurich J et al (2015) Probiotics for the prevention of pediatric antibiotic- associated diarrhea (Review). Cochrane Database Syst Rev 12:CD004827.  https://doi.org/10.1002/14651858.CD004827.pub4CrossRefGoogle Scholar
  60. Goldenberg JZ, Yap C, Lytvyn L et al (2017) Probiotics for the prevention of clostridium difficile-associated diarrhea in adults and children. Cochrane Database Syst Rev 12:CD006095.  https://doi.org/10.1002/14651858.CD006095.pub4CrossRefGoogle Scholar
  61. Gomez de Agüero M, Ganal-Vonarburg SC, Fuhrer T et al (2016) The maternal microbiota drives early postnatal innate immune development. Science:80–) 351Google Scholar
  62. Gomez-Arango LF, Barrett HL, McIntyre HD et al (2017a) Antibiotic treatment at delivery shapes the initial oral microbiome in neonates. Sci Rep 7:43481.  https://doi.org/10.1038/srep43481CrossRefGoogle Scholar
  63. Gomez-Arango LF, Barrett HL, McIntyre HD et al (2017b) Contributions of the maternal oral and gut microbiome to placental microbial colonization in overweight and obese pregnant women. Sci Rep 7:1–10.  https://doi.org/10.1038/s41598-017-03066-4CrossRefGoogle Scholar
  64. Gomez-Gallego C, Garcia-Mantrana I, Salminen S, Collado MC (2016) The human milk microbiome and factors influencing its composition and activity. Semin Fetal Neonatal Med 21:400–405.  https://doi.org/10.1016/j.siny.2016.05.003CrossRefGoogle Scholar
  65. Gosalbes MJ, Llop S, Vallès Y et al (2013) Meconium microbiota types dominated by lactic acid or enteric bacteria are differentially associated with maternal eczema and respiratory problems in infants. Clin Exp Allergy 43:198–211.  https://doi.org/10.1111/cea.12063CrossRefGoogle Scholar
  66. Gosalbes MJ, Vallès Y, Jiménez-Hernández N et al (2016) High frequencies of antibiotic resistance genes in infants’ meconium and early fecal samples. J Dev Orig Health Dis 7:35–44.  https://doi.org/10.1017/S2040174415001506CrossRefGoogle Scholar
  67. Graf D, Di Cagno R, Fåk F et al (2015) Contribution of diet to the composition of the human gut microbiota. Microb Ecol Heal Dis 26:26164.  https://doi.org/10.3402/mehd.v26.26164CrossRefGoogle Scholar
  68. Guaraldi F, Salvatori G (2012) Effect of breast and formula feeding on gut microbiota shaping in newborns. Front Cell Infect Microbiol 2:94.  https://doi.org/10.3389/fcimb.2012.00094CrossRefGoogle Scholar
  69. Gueimonde L, Vesterlund S, García-Pola MJ et al (2016) Supplementation of xylitol-containing chewing gum with probiotics: a double blind, randomised pilot study focusing on saliva flow and saliva properties. Food Funct 7:1601–1609.  https://doi.org/10.1039/c5fo01497bCrossRefGoogle Scholar
  70. Hansen R, Scott KP, Khan S et al (2015) First-pass meconium samples from healthy term vaginally-delivered neonates: an analysis of the microbiota. PLoS One 10:e0133320.  https://doi.org/10.1371/journal.pone.0133320CrossRefGoogle Scholar
  71. Hanson L, Vandevusse L, Duster M et al (2014) Feasibility of oral prenatal probiotics against maternal group B streptococcus vaginal and rectal colonization. JOGNN – J Obstet Gynecol Neonatal Nurs 43:294–304.  https://doi.org/10.1111/1552-6909.12308CrossRefGoogle Scholar
  72. Haque MM, Merchant M, Kumar PN et al (2017) First-trimester vaginal microbiome diversity: a potential indicator of preterm delivery risk. Sci Rep 7:16145.  https://doi.org/10.1038/s41598-017-16352-yCrossRefGoogle Scholar
  73. He Y, Liu S, Leone S, Newburg DS (2014) Human colostrum oligosaccharides modulate major immunologic pathways of immature human intestine. Mucosal Immunol 7:1326–1339.  https://doi.org/10.1038/mi.2014.20CrossRefGoogle Scholar
  74. Ho M, Chang YY, Chang WC et al (2016) Oral lactobacillus rhamnosus GR-1 and lactobacillus reuteri RC-14 to reduce group B streptococcus colonization in pregnant women: a randomized controlled trial. Taiwan J Obstet Gynecol 55:515–518.  https://doi.org/10.1016/j.tjog.2016.06.003CrossRefGoogle Scholar
  75. Homayouni A, Bastani P, Ziyadi S et al (2014) Effects of probiotics on the recurrence of bacterial vaginosis: a review. J Low Genit Tract Dis 18:79–86Google Scholar
  76. Hou D, Zhou X, Zhong X et al (2013) Microbiota of the seminal fluid from healthy and infertile men. Fertil Steril 100:1261–1269.e3.  https://doi.org/10.1016/j.fertnstert.2013.07.1991CrossRefGoogle Scholar
  77. Hu J, Nomura Y, Bashir A et al (2013) Diversified microbiota of meconium is affected by maternal diabetes status. PLoS One 8:e78257.  https://doi.org/10.1371/journal.pone.0078257CrossRefGoogle Scholar
  78. Huang R, Ning H, Shen M et al (2017) Probiotics for the treatment of atopic dermatitis in children: a systematic review and meta-analysis of randomized controlled trials. Front Cell Infect Microbiol 7:392.  https://doi.org/10.3389/fcimb.2017.00392CrossRefGoogle Scholar
  79. Hyman RW, Fukushima M, Jiang H et al (2014) Diversity of the vaginal microbiome correlates with preterm birth. Reprod Sci 21:32–40.  https://doi.org/10.1177/1933719113488838CrossRefGoogle Scholar
  80. Inatomi T, Otomaru K (2018) Effect of dietary probiotics on the semen traits and antioxidative activity of male broiler breeders. Sci Rep 8:5874.  https://doi.org/10.1038/s41598-018-24345-8CrossRefGoogle Scholar
  81. Jakobsson HE, Abrahamsson TR, Jenmalm MC et al (2014) Decreased gut microbiota diversity, delayed bacteroidetes colonization and reduced Th1 responses in infants delivered by caesarean section. Gut 63:559–566.  https://doi.org/10.1136/gutjnl-2012-303249CrossRefGoogle Scholar
  82. Jarde A, Lewis-Mikhael A-M, Moayyedi P et al (2018) Pregnancy outcomes in women taking probiotics or prebiotics: a systematic review and meta-analysis. BMC Pregnancy Childbirth 18:14.  https://doi.org/10.1186/s12884-017-1629-5CrossRefGoogle Scholar
  83. Jiménez E, Marín ML, Martín R et al (2008) Is meconium from healthy newborns actually sterile? Res Microbiol 159:187–193.  https://doi.org/10.1016/j.resmic.2007.12.007CrossRefGoogle Scholar
  84. Koleva PT, Kim J-S, Scott JA, Kozyrskyj AL (2015) Microbial programming of health and disease starts during fetal life. Birth Defects Res Part C Embryo Today Rev 105:265–277.  https://doi.org/10.1002/bdrc.21117CrossRefGoogle Scholar
  85. Koren O, Goodrich JK, Cullender TC et al (2012) Host remodeling of the gut microbiome and metabolic changes during pregnancy. Cell 150:470–480.  https://doi.org/10.1016/j.cell.2012.07.008CrossRefGoogle Scholar
  86. Kuperman AA, Koren O (2016) Antibiotic use during pregnancy: how bad is it? BMC Med 14:91.  https://doi.org/10.1186/s12916-016-0636-0CrossRefGoogle Scholar
  87. Lai A, Elfeky O, Rice GE, Salomon C (2018) Optimized specific isolation of placenta-derived exosomes from maternal circulation. Methods Mol Biol (Clifton, N.J.) 1710:131–138Google Scholar
  88. Laitinen K, Poussa T, Isolauri E, Nutrition, Allergy, Mucosal Immunology and Intestinal Microbiota Group (2009) Probiotics and dietary counselling contribute to glucose regulation during and after pregnancy: a randomised controlled trial. Br J Nutr 101:1679–1687.  https://doi.org/10.1017/S0007114508111461CrossRefGoogle Scholar
  89. Lannon SMR, Adams Waldorf KM, Fiedler T et al (2018) Parallel detection of lactobacillus and bacterial vaginosis-associated bacterial DNA in the chorioamnion and vagina of pregnant women at term. J Matern Neonatal Med:1–9Google Scholar
  90. Lauder AP, Roche AM, Sherrill-Mix S et al (2016) Comparison of placenta samples with contamination controls does not provide evidence for a distinct placenta microbiota. Microbiome 4:29.  https://doi.org/10.1186/s40168-016-0172-3CrossRefGoogle Scholar
  91. Leon LJ, Doyle R, Diez-Benavente E et al (2018) Enrichment of clinically relevant organisms in spontaneous preterm-delivered placentas and reagent contamination across all clinical groups in a large pregnancy cohort in the United Kingdom. Appl Environ Microbiol 84.  https://doi.org/10.1128/AEM.00483-18
  92. Liao GJW, Gronowski AM, Zhao Z (2014) Non-invasive prenatal testing using cell-free fetal DNA in maternal circulation. Clin Chim Acta 428:44–50Google Scholar
  93. Lim ES, Rodriguez C, Holtz LR (2018) Amniotic fluid from healthy term pregnancies does not harbor a detectable microbial community. Microbiome 6:87.  https://doi.org/10.1186/s40168-018-0475-7CrossRefGoogle Scholar
  94. Lundgren SN, Madan JC, Emond JA et al (2018) Maternal diet during pregnancy is related with the infant stool microbiome in a delivery mode-dependent manner. Microbiome 6:109.  https://doi.org/10.1186/s40168-018-0490-8CrossRefGoogle Scholar
  95. Ma J, Prince AL, Bader D et al (2014) High-fat maternal diet during pregnancy persistently alters the offspring microbiome in a primate model. Nat Commun 5:3889.  https://doi.org/10.1038/ncomms4889CrossRefGoogle Scholar
  96. MacIntyre DA, Chandiramani M, Lee YS et al (2015) The vaginal microbiome during pregnancy and the postpartum period in a European population. Sci Rep 5:8988.  https://doi.org/10.1038/srep08988CrossRefGoogle Scholar
  97. Madan JC, Hoen AG, Lundgren SN et al (2016) Association of cesarean delivery and formula supplementation with the intestinal microbiome of 6-week-old infants. JAMA Pediatr 170:212–219.  https://doi.org/10.1001/jamapediatrics.2015.3732CrossRefGoogle Scholar
  98. Magon N, Kumar P (2012) Hormones in pregnancy. Niger Med J 53:179.  https://doi.org/10.4103/0300-1652.107549CrossRefGoogle Scholar
  99. Mandal S, Godfrey KM, McDonald D et al (2016) Fat and vitamin intakes during pregnancy have stronger relations with a pro-inflammatory maternal microbiota than does carbohydrate intake. Microbiome 4:55.  https://doi.org/10.1186/s40168-016-0200-3CrossRefGoogle Scholar
  100. Mändar R, Punab M, Borovkova N et al (2015) Complementary seminovaginal microbiome in couples. Res Microbiol 166:440–447.  https://doi.org/10.1016/j.resmic.2015.03.009CrossRefGoogle Scholar
  101. Mändar R, Punab M, Korrovits P et al (2017) Seminal microbiome in men with and without prostatitis. Int J Urol 24:211–216.  https://doi.org/10.1111/iju.13286CrossRefGoogle Scholar
  102. Maretti C, Cavallini G (2017) The association of a probiotic with a prebiotic (Flortec, Bracco) to improve the quality/quantity of spermatozoa in infertile patients with idiopathic oligoasthenoteratospermia: a pilot study. Andrology 5:439–444.  https://doi.org/10.1111/andr.12336CrossRefGoogle Scholar
  103. Martín R, Jiménez E, Heilig H et al (2009) Isolation of bifidobacteria from breast milk and assessment of the bifidobacterial population by PCR-denaturing gradient gel electrophoresis and quantitative real-time PCR. Appl Environ Microbiol 75:965–969.  https://doi.org/10.1128/AEM.02063-08CrossRefGoogle Scholar
  104. Martinez KA, Romano-Keeler J, Zackular JP et al (2018) Bacterial DNA is present in the fetal intestine and overlaps with that in the placenta in mice. PLoS One 13:e0197439.  https://doi.org/10.1371/journal.pone.0197439CrossRefGoogle Scholar
  105. Mastromarino P, Hemalatha R, Barbonetti A et al (2014) Biological control of vaginosis to improve reproductive health. Indian J Med Res 140:91–97Google Scholar
  106. Mendling W (2016) Vaginal microbiota. Adv Exp Med Biol:83–93Google Scholar
  107. Milani C, Duranti S, Bottacini F et al (2017) The first microbial colonizers of the human gut: composition, activities, and health implications of the infant gut microbiota. Microbiol Mol Biol Rev 81:e00036–e00017.  https://doi.org/10.1128/MMBR.00036-17CrossRefGoogle Scholar
  108. Miles SM, Hardy BL, Merrell DS (2017) Investigation of the microbiota of the reproductive tract in women undergoing a total hysterectomy and bilateral salpingo-oopherectomy. Fertil Steril 107:813–820.e1.  https://doi.org/10.1016/j.fertnstert.2016.11.028CrossRefGoogle Scholar
  109. Moles L, Gómez M, Heilig H et al (2013) Bacterial diversity in meconium of preterm neonates and evolution of their fecal microbiota during the first month of life. PLoS One 8:e66986.  https://doi.org/10.1371/journal.pone.0066986CrossRefGoogle Scholar
  110. Monteiro C, Marques PI, Cavadas B et al (2018) Characterization of microbiota in male infertility cases uncovers differences in seminal hyperviscosity and oligoasthenoteratozoospermia possibly correlated with increased prevalence of infectious bacteria. Am J Reprod Immunol 79:e12838.  https://doi.org/10.1111/aji.12838CrossRefGoogle Scholar
  111. Moreno I, Franasiak JM (2017) Endometrial microbiota—new player in town. Fertil Steril 108:32–39Google Scholar
  112. Moreno I, Codoñer FM, Vilella F et al (2016) Evidence that the endometrial microbiota has an effect on implantation success or failure. Am J Obstet Gynecol 215:684–703Google Scholar
  113. Moretti E, Capitani S, Figura N et al (2009) The presence of bacteria species in semen and sperm quality. J Assist Reprod Genet 26:47–56.  https://doi.org/10.1007/s10815-008-9283-5CrossRefGoogle Scholar
  114. Mueller NT, Whyatt R, Hoepner L et al (2015) Prenatal exposure to antibiotics, cesarean section and risk of childhood obesity. Int J Obes 39:665–670.  https://doi.org/10.1038/ijo.2014.180.PrenatalCrossRefGoogle Scholar
  115. Mueller NT, Shin H, Pizoni A et al (2016) Birth mode-dependent association between pre-pregnancy maternal weight status and the neonatal intestinal microbiome. Sci Rep 6:23133.  https://doi.org/10.1038/srep23133CrossRefGoogle Scholar
  116. Nagpal R, Tsuji H, Takahashi T et al (2016) Sensitive quantitative analysis of the meconium bacterial microbiota in healthy term infants born vaginally or by cesarean section. Front Microbiol 7:1997.  https://doi.org/10.3389/fmicb.2016.01997CrossRefGoogle Scholar
  117. Nash MJ, Frank DN, Friedman JE (2017) Early microbes modify immune system development and metabolic homeostasis—the “restaurant” hypothesis revisited. Front Endocrinol (Lausanne) 8:349.  https://doi.org/10.3389/fendo.2017.00349CrossRefGoogle Scholar
  118. Nogacka A, Salazar N, Suárez M et al (2017) Impact of intrapartum antimicrobial prophylaxis upon the intestinal microbiota and the prevalence of antibiotic resistance genes in vaginally delivered full-term neonates. Microbiome 5:1–10.  https://doi.org/10.1186/s40168-017-0313-3CrossRefGoogle Scholar
  119. Nogacka AM, Salazar N, Arboleya S et al (2018) Early microbiota, antibiotics and health. Cell Mol Life Sci 75:83–91.  https://doi.org/10.1007/s00018-017-2670-2CrossRefGoogle Scholar
  120. Nordqvist M, Jacobsson B, Brantsæter A-L et al (2018) Timing of probiotic milk consumption during pregnancy and effects on the incidence of preeclampsia and preterm delivery: a prospective observational cohort study in Norway. BMJ Open 8:e018021.  https://doi.org/10.1136/bmjopen-2017-018021CrossRefGoogle Scholar
  121. Nuriel-Ohayon M, Neuman H, Koren O (2016) Microbial changes during pregnancy, birth, and infancy. Front Microbiol 7:1031Google Scholar
  122. Offenbacher S, Boggess KA, Murtha AP et al (2006) Progressive periodontal disease and risk of very preterm delivery. Obstet Gynecol 107:29–36.  https://doi.org/10.1097/01.AOG.0000190212.87012.96CrossRefGoogle Scholar
  123. Okesene-Gafa KA, Brown J, Mccowan L, Crowther CA (2018) Probiotics for treating women with gestational diabetes for improving maternal and fetal health and well-being. Cochrane Database Syst Rev 2018.  https://doi.org/10.1002/14651858.CD012970
  124. Olsen P, Williamson M, Traynor V, Georgiou C (2018) The impact of oral probiotics on vaginal group B Streptococcal colonization rates in pregnant women: A pilot randomised control study. Women Birth 31:31–37.  https://doi.org/10.1016/j.wombi.2017.06.012CrossRefGoogle Scholar
  125. Onderdonk AB, Delaney ML, DuBois AM et al (2008a) Detection of bacteria in placental tissues obtained from extremely low gestational age neonates. Am J Obstet Gynecol 198:110.e1.  https://doi.org/10.1016/j.ajog.2007.05.044CrossRefGoogle Scholar
  126. Onderdonk AB, Hecht JL, McElrath TF et al (2008b) Colonization of second-trimester placenta parenchyma. Am J Obstet Gynecol 199:1–10.  https://doi.org/10.1016/j.ajog.2007.11.068CrossRefGoogle Scholar
  127. Othman M, Neilson JP, Alfirevic Z. Probiotics for preventing preterm labour. Cochrane Database Syst Rev. 2007 Jan 24;(1):CD005941. Review. PMID: 17253567Google Scholar
  128. Païssé S, Valle C, Servant F et al (2016) Comprehensive description of blood microbiome from healthy donors assessed by 16S targeted metagenomic sequencing. Transfusion 56:1138–1147.  https://doi.org/10.1111/trf.13477CrossRefGoogle Scholar
  129. Pannaraj PS, Li F, Cerini C et al (2017) Association between breast milk bacterial communities and establishment and development of the infant gut microbiome. JAMA Pediatr 171:647–654.  https://doi.org/10.1001/jamapediatrics.2017.0378CrossRefGoogle Scholar
  130. Pannaraj PS, Ly M, Cerini C et al (2018) Shared and distinct features of human milk and infant stool viromes. Front Microbiol 9:1162.  https://doi.org/10.3389/fmicb.2018.01162CrossRefGoogle Scholar
  131. Parnell LA, Briggs CM, Cao B et al (2017) Microbial communities in placentas from term normal pregnancy exhibit spatially variable profiles. Sci Rep 7:1–11.  https://doi.org/10.1038/s41598-017-11514-4CrossRefGoogle Scholar
  132. Patel RM, Underwood MA (2018) Probiotics and necrotizing enterocolitis. Semin Pediatr Surg 27:39–46.  https://doi.org/10.1053/j.sempedsurg.2017.11.008CrossRefGoogle Scholar
  133. Pelzer ES, Willner D, Buttini M et al (2018) The fallopian tube microbiome: implications for reproductive health. Oncotarget 9:21541–21551.  https://doi.org/10.18632/oncotarget.25059CrossRefGoogle Scholar
  134. Perez-Muñoz ME, Arrieta MC, Ramer-Tait AE, Walter J (2017) A critical assessment of the “sterile womb” and “in utero colonization” hypotheses: Implications for research on the pioneer infant microbiome. Microbiome 5:48Google Scholar
  135. Petrova MI, Lievens E, Malik S et al (2015) Lactobacillus species as biomarkers and agents that can promote various aspects of vaginal health. Front Physiol 6:81Google Scholar
  136. Power ML, Quaglieri C, Schulkin J (2017) Reproductive microbiomes: a new thread in the microbial network. Reprod Sci 24:1482–1492Google Scholar
  137. Prince AL, Antony KM, Chu DM, Aagaard KM (2014) The microbiome, parturition, and timing of birth: more questions than answers. J Reprod Immunol 104-105:12–19.  https://doi.org/10.1016/j.jri.2014.03.006CrossRefGoogle Scholar
  138. Prince AL, Ma J, Kannan PS et al (2016) The placental membrane microbiome is altered among subjects with spontaneous preterm birth with and without chorioamnionitis. Am J Obstet Gynecol 214:627.e1–627.e16.  https://doi.org/10.1016/j.ajog.2016.01.193CrossRefGoogle Scholar
  139. Rautava S, Luoto R, Salminen S, Isolauri E (2012) Microbial contact during pregnancy, intestinal colonization and human disease. Nat Rev Gastroenterol Hepatol 9:565–576Google Scholar
  140. Ravel J, Gajer P, Abdo Z et al (2011) Vaginal microbiome of reproductive-age women. Proc Natl Acad Sci 108:4680–4687.  https://doi.org/10.1073/pnas.1002611107CrossRefGoogle Scholar
  141. Rehbinder EM, Lødrup Carlsen KC, Staff AC et al (2018) Is amniotic fluid of women with uncomplicated term pregnancies free of bacteria? Am J Obstet Gynecol 0:289.e1.  https://doi.org/10.1016/j.ajog.2018.05.028CrossRefGoogle Scholar
  142. Reid JNS, Bisanz JE, Monachese M et al (2013) The rationale for probiotics improving reproductive health and pregnancy outcome. Am J Reprod Immunol 69:558–566.  https://doi.org/10.1111/aji.12086CrossRefGoogle Scholar
  143. Rescigno M, Rotta G, Valzasina B, Ricciardi-Castagnoli P (2001) Dendritic cells shuttle microbes across gut epithelial monolayers. Immunobiology 204:572–581.  https://doi.org/10.1078/0171-2985-00094CrossRefGoogle Scholar
  144. Riskin A, Almog M, Peri R et al (2012) Changes in immunomodulatory constituents of human milk in response to active infection in the nursing infant. Pediatr Res 71:220–225.  https://doi.org/10.1038/pr.2011.34CrossRefGoogle Scholar
  145. Rodríguez JM, Murphy K, Stanton C et al (2015) The composition of the gut microbiota throughout life, with an emphasis on early life. Microb Ecol Health Dis 26:26050.  https://doi.org/10.3402/mehd.v26.26050CrossRefGoogle Scholar
  146. Romero R, Hassan SS, Gajer P et al (2014) The composition and stability of the vaginal microbiota of normal pregnant women is different from that of non-pregnant women. Microbiome 2:4.  https://doi.org/10.1186/2049-2618-2-4CrossRefGoogle Scholar
  147. Santacruz A, Collado MC, García-Valdés L et al (2010) Gut microbiota composition is associated with body weight, weight gain and biochemical parameters in pregnant women. Br J Nutr 104:83–92.  https://doi.org/10.1017/S0007114510000176CrossRefGoogle Scholar
  148. Schlagenhauf U, Jakob L, Eigenthaler M et al (2016) Regular consumption of Lactobacillus reuteri-containing lozenges reduces pregnancy gingivitis: an RCT. J Clin Periodontol 43:948–954.  https://doi.org/10.1111/jcpe.12606CrossRefGoogle Scholar
  149. Scholl T (2008) Maternal nutrition before and during pregnancy. Nestle Nutr Workshop Ser 61:79–86. Pediatric Program. Karger PublishersGoogle Scholar
  150. Seval MM, Karabulut HG, Tükün A, Koç A (2015) Cell free fetal DNA in the plasma of pregnant women with preeclampsia. Clin Exp Obstet Gynecol 42:787–791Google Scholar
  151. Shi YC, Guo H, Chen J et al (2018) Initial meconium microbiome in Chinese neonates delivered naturally or by cesarean section. Sci Rep 8:3255.  https://doi.org/10.1038/s41598-018-21657-7CrossRefGoogle Scholar
  152. Sirota I, Zarek SM, Segars JH (2014) Potential influence of the microbiome on infertility and assisted reproductive technology. Semin Reprod Med 32:35–42.  https://doi.org/10.1055/s-0033-1361821CrossRefGoogle Scholar
  153. Sisti G, Kanninen TT, Witkin SS (2016) Maternal immunity and pregnancy outcome: Focus on preconception and autophagy. Genes Immun 17:1–7Google Scholar
  154. Stapleton AE, Au-Yeung M, Hooton TM et al (2011) Randomized, placebo-controlled phase 2 trial of a lactobacillus crispatus probiotic given intravaginally for prevention of recurrent urinary tract infection. Clin Infect Dis 52:1212–1217.  https://doi.org/10.1093/cid/cir183CrossRefGoogle Scholar
  155. Steel JH, Malatos S, Kennea N et al (2005) Bacteria and inflammatory cells in fetal membranes do not always cause preterm labor. Pediatr Res 57:404–411.  https://doi.org/10.1203/01.PDR.0000153869.96337.90CrossRefGoogle Scholar
  156. Stokholm J, Schjørring S, Eskildsen CE et al (2014) Antibiotic use during pregnancy alters the commensal vaginal microbiota. Clin Microbiol Infect 20:629–635.  https://doi.org/10.1111/1469-0691.12411CrossRefGoogle Scholar
  157. Stout MJ, Conlon B, Landeau M et al (2013) Identification of intracellular bacteria in the basal plate of the human placenta in term and preterm gestations. Am J Obstet Gynecol 208:226.e1–226.e7.  https://doi.org/10.1016/j.ajog.2013.01.018CrossRefGoogle Scholar
  158. Stout MJ, Zhou Y, Wylie KM et al (2017) Early pregnancy vaginal microbiome trends and preterm birth. Am J Obstet Gynecol 217:356.e1–356.e18.  https://doi.org/10.1016/j.ajog.2017.05.030CrossRefGoogle Scholar
  159. Sung V, Cabana MD (2017) Probiotics for colic—is the gut responsible for infant crying after all? J Pediatr 191:6–8Google Scholar
  160. Sung V, D’Amico F, Cabana MD et al (2018) Lactobacillus reuteri to treat infant colic: a meta-analysis. Pediatrics 141:e20171811.  https://doi.org/10.1542/peds.2017-1811CrossRefGoogle Scholar
  161. Szajewska H, Canani RB, Guarino A et al (2016) Probiotics for the prevention of antibiotic-associated diarrhea in children. J Pediatr Gastroenterol Nutr 62:495–506Google Scholar
  162. Taglauer ES, Wilkins-Haug L, Bianchi DW (2014) Review: cell-free fetal DNA in the maternal circulation as an indication of placental health and disease. Placenta 35:S64–S68Google Scholar
  163. Tamburini S, Shen N, Wu HC, Clemente JC (2016) The microbiome in early life: implications for health outcomes. Nat Med 22:713–722.  https://doi.org/10.1038/nm.4142CrossRefGoogle Scholar
  164. Tao X, Franasiak J, Zhan Y et al (2017) Characterizing the endometrial microbiome by analyzing the ultra-low bacteria from embryo transfer catheter tips in IVF cycles: next generation sequencing (NGS) analysis of the 16S ribosomal gene. Hum Microbiome J 3:15–21Google Scholar
  165. Taylor BL, Woodfall GE, Sheedy KE et al (2017) Effect of probiotics on metabolic outcomes in pregnant women with gestational diabetes: a systematic review and meta-analysis of randomized controlled trials. Nutrients 9:461Google Scholar
  166. Toiviainen A, Jalasvuori H, Lahti E et al (2015) Impact of orally administered lozenges with lactobacillus rhamnosus GG and bifidobacterium animalis subsp. lactis BB-12 on the number of salivary mutans streptococci, amount of plaque, gingival inflammation and the oral microbiome in healthy adults. Clin Oral Investig 19:77–83.  https://doi.org/10.1007/s00784-014-1221-6CrossRefGoogle Scholar
  167. Tuominen H, Rautava S, Syrjänen S et al (2018) HPV infection and bacterial microbiota in the placenta, uterine cervix and oral mucosa. Sci Rep 8:1–11.  https://doi.org/10.1038/s41598-018-27980-3CrossRefGoogle Scholar
  168. Turfkruyer M, Verhasselt V (2015) Breast milk and its impact on maturation of the neonatal immune system. Curr Opin Infect Dis 28:199–206Google Scholar
  169. Urushiyama D, Suda W, Ohnishi E et al (2017) Microbiome profile of the amniotic fluid as a predictive biomarker of perinatal outcome. Sci Rep 7:12171.  https://doi.org/10.1038/s41598-017-11699-8CrossRefGoogle Scholar
  170. Valcarce DG, Genovés S, Riesco MF et al (2017) Probiotic administration improves sperm quality in asthenozoospermic human donors. Benef Microbes 8:193–206.  https://doi.org/10.3920/BM2016.0122CrossRefGoogle Scholar
  171. Van Boeckel SR, Davidson DJ, Norman JE, Stock SJ (2018) Cell-free fetal DNA and spontaneous preterm birth. Reproduction 155:R137–R145Google Scholar
  172. van den Akker CHP, van Goudoever JB, Szajewska H et al (2018) Probiotics for preterm infants. J Pediatr Gastroenterol Nutr 67(1):103.  https://doi.org/10.1097/MPG.0000000000001897CrossRefGoogle Scholar
  173. Vander Haar EL, So J, Gyamfi-Bannerman C, Han YW (2018) Fusobacterium nucleatum and adverse pregnancy outcomes: epidemiological and mechanistic evidence. Anaerobe 50:55–59.  https://doi.org/10.1016/J.ANAEROBE.2018.01.008CrossRefGoogle Scholar
  174. Verdu EF, Hayes CL, O’ Mahony SM (2016) Importance of the microbiota in early life and influence on future health. In: The Gut-brain axis dietary, probiotic, and prebiotic interventions on the microbiota. Elsevier, Amsterdam, pp 159–184Google Scholar
  175. Wahlqvist ML, Krawetz SA, Rizzo NS et al (2015) Early-life influences on obesity: from preconception to adolescence. Ann N Y Acad Sci 1347:1–28.  https://doi.org/10.1111/nyas.12778CrossRefGoogle Scholar
  176. Wang X, Buhimschi CS, Temoin S et al (2013) Comparative microbial analysis of paired amniotic fluid and cord blood from pregnancies complicated by preterm birth and early-onset neonatal sepsis. PLoS One 8:e56131.  https://doi.org/10.1371/journal.pone.0056131CrossRefGoogle Scholar
  177. Wang J, Zheng J, Shi W, Du N, Xu X, Zhang Y et al (2018) Dysbiosis of maternal and neonatal microbiota associated with gestational diabetes mellitus. Gut:1–12.  https://doi.org/10.1136/gutjnl-2018-315988Google Scholar
  178. Weng SL, Chiu CM, Lin FM et al (2014) Bacterial communities in semen from men of infertile couples: metagenomic sequencing reveals relationships of seminal microbiota to semen quality. PLoS One 9:e110152.  https://doi.org/10.1371/journal.pone.0110152CrossRefGoogle Scholar
  179. Wickens KL, Barthow CA, Murphy R et al (2017) Early pregnancy probiotic supplementation with Lactobacillus rhamnosus HN001 may reduce the prevalence of gestational diabetes mellitus: A randomised controlled trial. Br J Nutr 117:804–813.  https://doi.org/10.1017/S0007114517000289CrossRefGoogle Scholar
  180. Witkin SS (2018) Vaginal microbiome studies in pregnancy must also analyze host factors. BJOG An Int J Obstet Gynaecol.  https://doi.org/10.1111/1471-0528.15300Google Scholar
  181. Younes JA, Lievens E, Hummelen R et al (2018) Women and their microbes: the unexpected friendship. Trends Microbiol 26:16–32Google Scholar
  182. Zheng J, Xiao X, Zhang Q et al (2015) The placental microbiome varies in association with low birth weight in full-term neonates. Nutrients 7:6924–6937.  https://doi.org/10.3390/nu7085315CrossRefGoogle Scholar
  183. Zheng J, Xiao X, Zhang Q et al (2017a) The placental microbiota is altered among subjects with gestational diabetes mellitus: a spilot study. Front Physiol 8:1–12.  https://doi.org/10.3389/fphys.2017.00675CrossRefGoogle Scholar
  184. Zheng J, Xiao X-H, Zhang Q et al (2017b) Correlation of placental microbiota with fetal macrosomia and clinical characteristics in mothers and newborns. Oncotarget 8:82314–82325.  https://doi.org/10.18632/oncotarget.19319CrossRefGoogle Scholar
  185. Zi MYH, Longo PL, Bueno-Silva B, Mayer MPA (2015) Mechanisms involved in the association between periodontitis and complications in pregnancy. Front Public Heal 2:290.  https://doi.org/10.3389/fpubh.2014.00290CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Marta Selma-Royo
    • 1
  • Maria Tarrazó
    • 2
  • Izaskun García-Mantrana
    • 1
  • Carlos Gómez-Gallego
    • 3
    • 4
  • Seppo Salminen
    • 3
  • Maria Carmen Collado
    • 1
    • 3
    Email author
  1. 1.Department of BiotechnologyInstitute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC)ValenciaSpain
  2. 2.Service of Obstetrics and GynecologyHospital Universtario Doctor PesetValenciaSpain
  3. 3.Functional Foods ForumUniversity of TurkuTurkuFinland
  4. 4.Institute of Public Health and Clinical NutritionUniversity of Eastern FinlandKuopioFinland

Personalised recommendations