Advertisement

pp 1-20 | Cite as

Mesenchymal Stem Cells as Regulators of Carcinogenesis

  • Taha Bartu Hayal
  • Binnur Kıratlı
  • Hatice Burcu Şişli
  • Fikrettin Şahin
  • Ayşegül DoğanEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series

Abstract

Mesenchymal Stem Cells (MSCs) are adult stem cells; isolated from various body parts including bone marrow, adipose tissue and dental tissue, have been characterized well and used in regenerative medicine applications. The promising potential of MSCs makes them great candidates in many disorders. It has been well known in the literature that MSCs interact with cancer cells and regulate the carcinogenesis process at different stages. The dual role of MSCs in cancer progression should be clearly identified at the physiological and molecular level to identify clinical potential in cancer treatment. The promoting or suppressive role of MSCs in cancer is controlled by various growth factors, cytokines and chemokines which affect the cell proliferation, angiogenesis and metastasis. Although many studies have been conducted to explore MSC-cancer cell interactions, it is still unclear how MSCs communicate with cancer cells and tumor microenvironment. Further studies are required to investigate secreted factors and paracrine effects, tumor stroma environment, molecular regulators and downstream pathways that are involved in MSC-cancer interaction loop. MSC type, cancer type and stage specific phenotypic and transcriptomic profile changes should be identified in detail to improve clinical use of MSCs in cancer either as a target or as a tool.

In the current book chapter, we review the literature to summarize current information about the MSC-cancer cell interactions in terms of soluble factors, angiogenesis, metastasis and drug resistance. The role of MSCs in tumor progression or suppression was discussed based on the current literature.

Keywords

Cancer therapy Carcinogenesis Mesenchymal stem cells Metastasis Paracrine interactions 

Abbreviations

ALL

Acute Lymphoblastic Leukemia

Ang-1

Angiopoietin

ASNS

Asparagine Synthetase

CAFs

Cancer Associated Fibroblasts

CCL2

CC Chemokine Ligand 2

CCL5 or RANTES

Chemokine ligand 5

CCR5

CC Chemokine Receptor 5

CML

Chronic Myeloid Leukemia

CSCs

Cancer Stem Cells

CXCL12

Chemokine Ligand 12

CXCL16

CXC Chemokine Ligand 16

CXCR4

CXC Chemokine Receptor 4

CXCR6

CXC Chemokine Receptor 6

EGF

Epidermal Growth Factor

EMT

Epithelial to Mesenchymal Transition

ERK

Extracellular Signal-Regulated Kinase

ERK1/2

Extracellular Signal Regulated Kinase 1/2

ET-1

Endothelin-1

EVs

Extracellular Vesicles

HGF

Hepatocyte Growth Factor

IGF-2

Insulin-like Growth Factor-2

IL-6

Interleukin 6

IL-8

Interleukin 8

LOX

Lysyl Oxidase

MAPK

Mitogen-Activated Protein Kinases

MMP-1

Matrix Metalloproteinase-1

MMP9

Matrix Metalloproteinase 9

MMPs

Matrix Metalloproteinases

MSCs

Mesenchymal Stem Cells

NK

Natural Killer

PDGF

Platelet- Derived Growth Factors

Tregs

Regulatory T Cell

VEGF

Vascular Endothelial Growth Factor

α-SMA

α-Smooth Muscle Actin

References

  1. Alcayaga-Miranda F, Varas-Godoy M, Khoury M (2016) Harnessing the Angiogenic potential of stem cell-derived exosomes for vascular regeneration. Stem Cells Int 2016:3409169.  https://doi.org/10.1155/2016/3409169CrossRefGoogle Scholar
  2. Alcolea S, Anton R, Camacho M, Soler M, Alfranca A, Aviles-Jurado FX, Redondo JM, Quer M, Leon X, Vila L (2012) Interaction between head and neck squamous cell carcinoma cells and fibroblasts in the biosynthesis of PGE2. J Lipid Res 53(4):630–642.  https://doi.org/10.1194/jlr.M019695CrossRefGoogle Scholar
  3. Al-toub M, Almusa A, Almajed M, Al-Nbaheen M, Kassem M, Aldahmash A, Alajez NM (2013) Pleiotropic effects of cancer cells’ secreted factors on human stromal (mesenchymal) stem cells. Stem Cell Res Ther 4(5):114.  https://doi.org/10.1186/scrt325CrossRefGoogle Scholar
  4. Anderson JD, Johansson HJ, Graham CS, Vesterlund M, Pham MT, Bramlett CS, Montgomery EN, Mellema MS, Bardini RL, Contreras Z, Hoon M, Bauer G, Fink KD, Fury B, Hendrix KJ, Chedin F, El-Andaloussi S, Hwang B, Mulligan MS, Lehtio J, Nolta JA (2016) Comprehensive proteomic analysis of mesenchymal stem cell exosomes reveals modulation of angiogenesis via nuclear factor-KappaB signaling. Stem Cells 34(3):601–613.  https://doi.org/10.1002/stem.2298CrossRefGoogle Scholar
  5. Ansieau S (2013) EMT in breast cancer stem cell generation. Cancer Lett 338(1):63–68.  https://doi.org/10.1016/j.canlet.2012.05.014CrossRefGoogle Scholar
  6. Balakrishnan K, Burger JA, Quiroga MP, Henneberg M, Ayres ML, Wierda WG, Gandhi V (2010) Influence of bone marrow stromal microenvironment on forodesine-induced responses in CLL primary cells. Blood 116(7):1083–1091.  https://doi.org/10.1182/blood-2009-10-246199CrossRefGoogle Scholar
  7. Barcellos-De-Souza P, Comito G, Pons-Segura C, Taddei ML, Gori V, Becherucci V, Bambi F, Margheri F, Laurenzana A, Del Rosso M, Chiarugi P (2016) Mesenchymal stem cells are recruited and activated into carcinoma-associated fibroblasts by prostate cancer microenvironment-derived TGF-beta1. Stem Cells 34(10):2536–2547.  https://doi.org/10.1002/stem.2412CrossRefGoogle Scholar
  8. Beckermann BM, Kallifatidis G, Groth A, Frommhold D, Apel A, Mattern J, Salnikov AV, Moldenhauer G, Wagner W, Diehlmann A, Saffrich R, Schubert M, Ho AD, Giese N, Buchler MW, Friess H, Buchler P, Herr I (2008) VEGF expression by mesenchymal stem cells contributes to angiogenesis in pancreatic carcinoma. Br J Cancer 99(4):622–631.  https://doi.org/10.1038/sj.bjc.6604508CrossRefGoogle Scholar
  9. Bellone G, Gramigni C, Vizio B, Mauri FA, Prati A, Solerio D, Dughera L, Ruffini E, Gasparri G, Camandona M (2010) Abnormal expression of Endoglin and its receptor complex (TGF-beta1 and TGF-beta receptor II) as early angiogenic switch indicator in premalignant lesions of the colon mucosa. Int J Oncol 37(5):1153–1165Google Scholar
  10. Biddle A, Mackenzie IC (2012) Cancer stem cells and EMT in carcinoma. Cancer Metastasis Rev 31(1–2):285–293Google Scholar
  11. Bie Q, Jin C, Zhang B, Dong H (2017) IL-17B: a new area of study in the IL-17 family. Mol Immunol 90:50–56.  https://doi.org/10.1016/j.molimm.2017.07.004CrossRefGoogle Scholar
  12. Birnbaum T, Roider J, Schankin CJ, Padovan CS, Schichor C, Goldbrunner R, Straube A (2007) Malignant gliomas actively recruit bone marrow stromal cells by secreting angiogenic cytokines. J Neuro-Oncol 83(3):241–247.  https://doi.org/10.1007/s11060-007-9332-4CrossRefGoogle Scholar
  13. Bunn RC, Fowlkes JL (2003) Insulin-like growth factor binding protein proteolysis. Trends Endocrinol Metab 14(4):176–181Google Scholar
  14. Chang YS, Ahn SY, Jeon HB, Sung DK, Kim ES, Sung SI, Yoo HS, Choi SJ, Oh WI, Park WS (2014) Critical role of vascular endothelial growth factor secreted by mesenchymal stem cells in hyperoxic lung injury. Am J Respir Cell Mol Biol 51(3):391–399.  https://doi.org/10.1165/rcmb.2013-0385OCCrossRefGoogle Scholar
  15. Chaturvedi P, Gilkes DM, Wong CC, Kshitiz LW, Zhang H, Wei H, Takano N, Schito L, Levchenko A, Semenza GL (2013) Hypoxia-inducible factor-dependent breast cancer-mesenchymal stem cell bidirectional signaling promotes metastasis. J Clin Invest 123(1):189–205.  https://doi.org/10.1172/JCI64993CrossRefGoogle Scholar
  16. Chaturvedi P, Gilkes DM, Takano N, Semenza GL (2014) Hypoxia-inducible factor-dependent signaling between triple-negative breast cancer cells and mesenchymal stem cells promotes macrophage recruitment. Proc Natl Acad Sci U S A 111(20):E2120–E2129.  https://doi.org/10.1073/pnas.1406655111CrossRefGoogle Scholar
  17. Chen X, Lin X, Zhao J, Shi W, Zhang H, Wang Y, Kan B, Du L, Wang B, Wei Y, Liu Y, Zhao X (2008) A tumor-selective biotherapy with prolonged impact on established metastases based on cytokine gene-engineered MSCs. Mol Ther 16(4):749–756.  https://doi.org/10.1038/mt.2008.3CrossRefGoogle Scholar
  18. Chen MS, Lin CY, Chiu YH, Chen CP, Tsai PJ, Wang HS (2018) IL-1beta-induced matrix Metalloprotease-1 promotes mesenchymal stem cell migration via PAR1 and G-protein-coupled signaling pathway. Stem Cells Int 2018:3524759.  https://doi.org/10.1155/2018/3524759CrossRefGoogle Scholar
  19. Clarke MR, Imhoff FM, Baird SK (2015) Mesenchymal stem cells inhibit breast cancer cell migration and invasion through secretion of tissue inhibitor of metalloproteinase-1 and -2. Mol Carcinog 54(10):1214–1219.  https://doi.org/10.1002/mc.22178CrossRefGoogle Scholar
  20. Coffelt SB, Marini FC, Watson K, Zwezdaryk KJ, Dembinski JL, Lamarca HL, Tomchuck SL, Honer Zu Bentrup K, Danka ES, Henkle SL, Scandurro AB (2009) The pro-inflammatory peptide LL-37 promotes ovarian tumor progression through recruitment of multipotent mesenchymal stromal cells. Proc Natl Acad Sci U S A 106(10):3806–3811.  https://doi.org/10.1073/pnas.0900244106CrossRefGoogle Scholar
  21. Costanza B, Umelo IA, Bellier J, Castronovo V, Turtoi A (2017) Stromal modulators of TGF-beta in Cancer. J Clin Med 6(1):7.  https://doi.org/10.3390/jcm6010007CrossRefGoogle Scholar
  22. Dar A, Kollet O, Lapidot T (2006) Mutual, reciprocal SDF-1/CXCR4 interactions between hematopoietic and bone marrow stromal cells regulate human stem cell migration and development in NOD/SCID chimeric mice. Exp Hematol 34(8):967–975.  https://doi.org/10.1016/j.exphem.2006.04.002CrossRefGoogle Scholar
  23. Darash-Yahana M, Gillespie JW, Hewitt SM, Chen YY, Maeda S, Stein I, Singh SP, Bedolla RB, Peled A, Troyer DA, Pikarsky E, Karin M, Farber JM (2009) The chemokine CXCL16 and its receptor, CXCR6, as markers and promoters of inflammation-associated cancers. PLoS One 4(8):e6695.  https://doi.org/10.1371/journal.pone.0006695CrossRefGoogle Scholar
  24. De Ugarte DA, Morizono K, Elbarbary A, Alfonso Z, Zuk PA, Zhu M, Dragoo JL, Ashjian P, Thomas B, Benhaim P, Chen I, Fraser J, Hedrick MH (2003) Comparison of multi-lineage cells from human adipose tissue and bone marrow. Cells Tissues Organs 174(3):101–109.  https://doi.org/10.1159/000071150CrossRefGoogle Scholar
  25. Deng L, Chen N, Li Y, Zheng H, Lei Q (2010) CXCR6/CXCL16 functions as a regulator in metastasis and progression of cancer. Biochim Biophys Acta 1806(1):42–49.  https://doi.org/10.1016/j.bbcan.2010.01.004CrossRefGoogle Scholar
  26. Du T, Ju G, Wu S, Cheng Z, Cheng J, Zou X, Zhang G, Miao S, Liu G, Zhu Y (2014) Microvesicles derived from human Wharton’s jelly mesenchymal stem cells promote human renal cancer cell growth and aggressiveness through induction of hepatocyte growth factor. PLoS One 9(5):e96836.  https://doi.org/10.1371/journal.pone.0096836CrossRefGoogle Scholar
  27. Du L, Han XG, Tu B, Wang MQ, Qiao H, Zhang SH, Fan QM, Tang TT (2018) CXCR1/Akt signaling activation induced by mesenchymal stem cell-derived IL-8 promotes osteosarcoma cell anoikis resistance and pulmonary metastasis. Cell Death Dis 9(7):714.  https://doi.org/10.1038/s41419-018-0745-0CrossRefGoogle Scholar
  28. Dvorak HF (1986) Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. N Engl J Med 315(26):1650–1659.  https://doi.org/10.1056/NEJM198612253152606CrossRefGoogle Scholar
  29. Dwyer RM, Potter-Beirne SM, Harrington KA, Lowery AJ, Hennessy E, Murphy JM, Barry FP, O’Brien T, Kerin MJ (2007) Monocyte chemotactic protein-1 secreted by primary breast tumors stimulates migration of mesenchymal stem cells. Clini Cancer Res 13(17):5020–5027.  https://doi.org/10.1158/1078-0432.CCR-07-0731CrossRefGoogle Scholar
  30. El-Haibi CP, Bell GW, Zhang J, Collmann AY, Wood D, Scherber CM, Csizmadia E, Mariani O, Zhu C, Campagne A, Toner M, Bhatia SN, Irimia D, Vincent-Salomon A, Karnoub AE (2012) Critical role for lysyl oxidase in mesenchymal stem cell-driven breast cancer malignancy. Proc Natl Acad Sci U S A 109(43):17460–17465.  https://doi.org/10.1073/pnas.1206653109CrossRefGoogle Scholar
  31. Erices A, Conget P, Minguell JJ (2000) Mesenchymal progenitor cells in human umbilical cord blood. Br J Haematol 109(1):235–242Google Scholar
  32. Farahmand L, Esmaeili R, Eini L, Majidzadeh AK (2018) The effect of mesenchymal stem cell-conditioned medium on proliferation and apoptosis of breast cancer cell line. J Cancer Res Ther 14(2):341–344.  https://doi.org/10.4103/0973-1482.177213CrossRefGoogle Scholar
  33. Feng B, Chen L (2009) Review of mesenchymal stem cells and tumors: executioner or coconspirator? Cancer Biother Radiopharm 24(6):717–721.  https://doi.org/10.1089/cbr.2009.0652CrossRefGoogle Scholar
  34. Fiedler J, Brill C, Blum WF, Brenner RE (2006) IGF-I and IGF-II stimulate directed cell migration of bone-marrow-derived human mesenchymal progenitor cells. Biochem Biophys Res Commun 345(3):1177–1183Google Scholar
  35. Firth SM, Baxter RC (2002) Cellular actions of the insulin-like growth factor binding proteins. Endocr Rev 23(6):824–854.  https://doi.org/10.1210/er.2001-0033CrossRefGoogle Scholar
  36. Floor S, van Staveren WC, Larsimont D, Dumont JE, Maenhaut C (2011) Cancer cells in epithelial-to-mesenchymal transition and tumor-propagating-cancer stem cells: distinct, overlapping or same populations. Oncogene 30(46):4609–4621.  https://doi.org/10.1038/onc.2011.184CrossRefGoogle Scholar
  37. Gang EJ, Jeong JA, Hong SH, Hwang SH, Kim SW, Yang IH, Ahn C, Han H, Kim H (2004) Skeletal myogenic differentiation of mesenchymal stem cells isolated from human umbilical cord blood. Stem Cells 22(4):617–624.  https://doi.org/10.1634/stemcells.22-4-617CrossRefGoogle Scholar
  38. Goustin AS, Leof EB, Shipley GD, Moses HL (1986) Growth factors and cancer. Cancer Res 46(3):1015–1029Google Scholar
  39. Gregory PA, Bert AG, Paterson EL, Barry SC, Tsykin A, Farshid G, Vadas MA, Khew-Goodall Y, Goodall GJ (2008) The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol 10(5):593–601.  https://doi.org/10.1038/ncb1722CrossRefGoogle Scholar
  40. Guan SP, Lam ATL, Newman JP, Chua KLM, Kok CYL, Chong ST, Chua MLK, Lam PYP (2018) Matrix metalloproteinase-1 facilitates MSC migration via cleavage of IGF-2/IGFBP2 complex. FEBS Open Bio 8(1):15–26.  https://doi.org/10.1002/2211-5463.12330CrossRefGoogle Scholar
  41. Gutova M, Najbauer J, Frank RT, Kendall SE, Gevorgyan A, Metz MZ, Guevorkian M, Edmiston M, Zhao D, Glackin CA, Kim SU, Aboody KS (2008) Urokinase plasminogen activator and urokinase plasminogen activator receptor mediate human stem cell tropism to malignant solid tumors. Stem Cells 26(6):1406–1413.  https://doi.org/10.1634/stemcells.2008-0141CrossRefGoogle Scholar
  42. Hall B, Andreeff M, Marini F (2007) The participation of mesenchymal stem cells in tumor stroma formation and their application as targeted-gene delivery vehicles. Handb Exp Pharmacol 180:263–283.  https://doi.org/10.1007/978-3-540-68976-8_12CrossRefGoogle Scholar
  43. Halper J (2010) Growth factors as active participants in carcinogenesis: a perspective. Vet Pathol 47(1):77–97.  https://doi.org/10.1177/0300985809352981CrossRefGoogle Scholar
  44. Ho IA, Chan KY, Ng WH, Guo CM, Hui KM, Cheang P, Lam PY (2009) Matrix metalloproteinase 1 is necessary for the migration of human bone marrow-derived mesenchymal stem cells toward human glioma. Stem Cells 27(6):1366–1375.  https://doi.org/10.1002/stem.50CrossRefGoogle Scholar
  45. Ho IA, Toh HC, Ng WH, Teo YL, Guo CM, Hui KM, Lam PY (2013) Human bone marrow-derived mesenchymal stem cells suppress human glioma growth through inhibition of angiogenesis. Stem Cells 31(1):146–155.  https://doi.org/10.1002/stem.1247CrossRefGoogle Scholar
  46. Ho IA, Yulyana Y, Sia KC, Newman JP, Guo CM, Hui KM, Lam PY (2014) Matrix metalloproteinase-1-mediated mesenchymal stem cell tumor tropism is dependent on crosstalk with stromal derived growth factor 1/C-X-C chemokine receptor 4 axis. FASEB J 28(10):4359–4368.  https://doi.org/10.1096/fj.14-252551CrossRefGoogle Scholar
  47. Hogan NM, Dwyer RM, Joyce MR, Kerin MJ (2012) Mesenchymal stem cells in the colorectal tumor microenvironment: recent progress and implications. Int J Cancer 131(1):1–7.  https://doi.org/10.1002/ijc.27458CrossRefGoogle Scholar
  48. Hong D, Liu T, Huang W, Liao Y, Wang L, Zhang Z, Chen H, Zhang X, Xiang Q (2018) Gremlin1 delivered by mesenchymal stromal cells promoted epithelial-mesenchymal transition in human esophageal squamous cell carcinoma. Cell Physiol Biochem 47(5):1785–1799.  https://doi.org/10.1159/000491060CrossRefGoogle Scholar
  49. Huang CY, Fong YC, Lee CY, Chen MY, Tsai HC, Hsu HC, Tang CH (2009) CCL5 increases lung cancer migration via PI3K, Akt and NF-kappaB pathways. Biochem Pharmacol 77(5):794–803.  https://doi.org/10.1016/j.bcp.2008.11.014CrossRefGoogle Scholar
  50. Huang YL, Qiu RF, Mai WY, Kuang J, Cai XY, Dong YG, Hu YZ, Song YB, Cai AP, Jiang ZG (2012) Effects of insulin-like growth factor-1 on the properties of mesenchymal stem cells in vitro. J Zhejiang Univ Sci B 13(1):20–28.  https://doi.org/10.1631/jzus.B1100117CrossRefGoogle Scholar
  51. Huang WH, Chang MC, Tsai KS, Hung MC, Chen HL, Hung SC (2013) Mesenchymal stem cells promote growth and angiogenesis of tumors in mice. Oncogene 32(37):4343–4354.  https://doi.org/10.1038/onc.2012.458CrossRefGoogle Scholar
  52. Hung SC, Deng WP, Yang WK, Liu RS, Lee CC, Su TC, Lin RJ, Yang DM, Chang CW, Chen WH, Wei HJ, Gelovani JG (2005) Mesenchymal stem cell targeting of microscopic tumors and tumor stroma development monitored by noninvasive in vivo positron emission tomography imaging. Clin Cancer Res 11(21):7749–7756.  https://doi.org/10.1158/1078-0432.CCR-05-0876CrossRefGoogle Scholar
  53. Igura K, Zhang X, Takahashi K, Mitsuru A, Yamaguchi S, Takashi TA (2004) Isolation and characterization of mesenchymal progenitor cells from chorionic villi of human placenta. Cytotherapy 6(6):543–553Google Scholar
  54. Ishikawa M, Inoue T, Shirai T, Takamatsu K, Kunihiro S, Ishii H, Nishikata T (2014) Simultaneous expression of cancer stem cell-like properties and cancer-associated fibroblast-like properties in a primary culture of breast cancer cells. Cancers 6(3):1570–1578.  https://doi.org/10.3390/cancers6031570CrossRefGoogle Scholar
  55. Iwamoto S, Mihara K, Downing JR, Pui CH, Campana D (2007) Mesenchymal cells regulate the response of acute lymphoblastic leukemia cells to asparaginase. J Clin Invest 117(4):1049–1057.  https://doi.org/10.1172/JCI30235CrossRefGoogle Scholar
  56. Ji R, Zhang B, Zhang X, Xue J, Yuan X, Yan Y, Wang M, Zhu W, Qian H, Xu W (2015) Exosomes derived from human mesenchymal stem cells confer drug resistance in gastric cancer. Cell Cycle 14(15):2473–2483.  https://doi.org/10.1080/15384101.2015.1005530CrossRefGoogle Scholar
  57. Jin L, Tabe Y, Konoplev S, Xu Y, Leysath CE, Lu H, Kimura S, Ohsaka A, Rios MB, Calvert L, Kantarjian H, Andreeff M, Konopleva M (2008) CXCR4 up-regulation by imatinib induces chronic myelogenous leukemia (CML) cell migration to bone marrow stroma and promotes survival of quiescent CML cells. Mol Cancer Ther 7(1):48–58.  https://doi.org/10.1158/1535-7163.MCT-07-0042CrossRefGoogle Scholar
  58. Jing Y, Han Z, Liu Y, Sun K, Zhang S, Jiang G, Li R, Gao L, Zhao X, Wu D, Cai X, Wu M, Wei L (2012) Mesenchymal stem cells in inflammation microenvironment accelerates hepatocellular carcinoma metastasis by inducing epithelial-mesenchymal transition. PLoS One 7(8):e43272.  https://doi.org/10.1371/journal.pone.0043272CrossRefGoogle Scholar
  59. Joyce JA, Pollard JW (2009) Microenvironmental regulation of metastasis. Nat Rev Cancer 9(4):239–252.  https://doi.org/10.1038/nrc2618CrossRefGoogle Scholar
  60. Jung Y, Kim JK, Shiozawa Y, Wang J, Mishra A, Joseph J, Berry JE, McGee S, Lee E, Sun H, Wang J, Jin T, Zhang H, Dai J, Krebsbach PH, Keller ET, Pienta KJ, Taichman RS (2013) Recruitment of mesenchymal stem cells into prostate tumours promotes metastasis. Nat Commun 4:1795.  https://doi.org/10.1038/ncomms2766CrossRefGoogle Scholar
  61. Junttila MR, de Sauvage FJ (2013) Influence of tumour micro-environment heterogeneity on therapeutic response. Nature 501(7467):346–354.  https://doi.org/10.1038/nature12626CrossRefGoogle Scholar
  62. Kallifatidis G, Beckermann BM, Groth A, Schubert M, Apel A, Khamidjanov A, Ryschich E, Wenger T, Wagner W, Diehlmann A, Saffrich R, Krause U, Eckstein V, Mattern J, Chai M, Schutz G, Ho AD, Gebhard MM, Buchler MW, Friess H, Buchler P, Herr I (2008) Improved lentiviral transduction of human mesenchymal stem cells for therapeutic intervention in pancreatic cancer. Cancer Gene Ther 15(4):231–240.  https://doi.org/10.1038/sj.cgt.7701097CrossRefGoogle Scholar
  63. Kalluri R (2016) The biology and function of fibroblasts in cancer. Nat Rev Cancer 16(9):582–598.  https://doi.org/10.1038/nrc.2016.73CrossRefGoogle Scholar
  64. Karnoub AE, Dash AB, Vo AP, Sullivan A, Brooks MW, Bell GW, Richardson AL, Polyak K, Tubo R, Weinberg RA (2007) Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature 449(7162):557–563.  https://doi.org/10.1038/nature06188CrossRefGoogle Scholar
  65. Kim DS, Kim JH, Lee JK, Choi SJ, Kim JS, Jeun SS, Oh W, Yang YS, Chang JW (2009) Overexpression of CXC chemokine receptors is required for the superior glioma-tracking property of umbilical cord blood-derived mesenchymal stem cells. Stem Cells Dev 18(3):511–519.  https://doi.org/10.1089/scd.2008.0050CrossRefGoogle Scholar
  66. Kinnaird T, Stabile E, Burnett MS, Shou M, Lee CW, Barr S, Fuchs S, Epstein SE (2004) Local delivery of marrow-derived stromal cells augments collateral perfusion through paracrine mechanisms. Circulation 109(12):1543–1549.  https://doi.org/10.1161/01.CIR.0000124062.31102.57CrossRefGoogle Scholar
  67. Klopp AH, Spaeth EL, Dembinski JL, Woodward WA, Munshi A, Meyn RE, Cox JD, Andreeff M, Marini FC (2007) Tumor irradiation increases the recruitment of circulating mesenchymal stem cells into the tumor microenvironment. Cancer Res 67(24):11687–11695.  https://doi.org/10.1158/0008-5472.CAN-07-1406CrossRefGoogle Scholar
  68. Kuvaja P, Hulkkonen S, Pasanen I, Soini Y, Lehtonen S, Talvensaari-Mattila A, Paakko P, Kaakinen M, Autio-Harmainen H, Hurskainen T, Lehenkari P, Turpeenniemi-Hujanen T (2012) Tumor tissue inhibitor of metalloproteinases-1 (TIMP-1) in hormone-independent breast cancer might originate in stromal cells, and improves stratification of prognosis together with nodal status. Exp Cell Res 318(10):1094–1103.  https://doi.org/10.1016/j.yexcr.2012.03.009CrossRefGoogle Scholar
  69. Lazennec G, Lam PY (2016) Recent discoveries concerning the tumor – mesenchymal stem cell interactions. Biochim Biophys Acta 1866(2):290–299.  https://doi.org/10.1016/j.bbcan.2016.10.004CrossRefGoogle Scholar
  70. Lee HY, Hong IS (2017) Double-edged sword of mesenchymal stem cells: cancer-promoting versus therapeutic potential. Cancer Sci 108(10):1939–1946.  https://doi.org/10.1111/cas.13334CrossRefGoogle Scholar
  71. Lee JK, Park SR, Jung BK, Jeon YK, Lee YS, Kim MK, Kim YG, Jang JY, Kim CW (2013a) Exosomes derived from mesenchymal stem cells suppress angiogenesis by down-regulating VEGF expression in breast cancer cells. PLoS One 8(12):e84256.  https://doi.org/10.1371/journal.pone.0084256CrossRefGoogle Scholar
  72. Lee MJ, Heo SC, Shin SH, Kwon YW, Do EK, Suh DS, Yoon MS, Kim JH (2013b) Oncostatin M promotes mesenchymal stem cell-stimulated tumor growth through a paracrine mechanism involving periostin and TGFBI. Int J Biochem Cell Biol 45(8):1869–1877.  https://doi.org/10.1016/j.biocel.2013.05.027CrossRefGoogle Scholar
  73. Lee DE, Ayoub N, Agrawal DK (2016) Mesenchymal stem cells and cutaneous wound healing: novel methods to increase cell delivery and therapeutic efficacy. Stem Cell Res Ther 7:37.  https://doi.org/10.1186/s13287-016-0303-6CrossRefGoogle Scholar
  74. Lejmi E, Perriraz N, Clement S, Morel P, Baertschiger R, Christofilopoulos P, Meier R, Bosco D, Buhler LH, Gonelle-Gispert C (2015) Inflammatory chemokines MIP-1delta and MIP-3alpha are involved in the migration of multipotent mesenchymal stromal cells induced by hepatoma cells. Stem Cells Dev 24(10):1223–1235.  https://doi.org/10.1089/scd.2014.0176CrossRefGoogle Scholar
  75. Li Y, Yu X, Lin S, Li X, Zhang S, Song YH (2007) Insulin-like growth factor 1 enhances the migratory capacity of mesenchymal stem cells. Biochem Biophys Res Commun 356(3):780–784.  https://doi.org/10.1016/j.bbrc.2007.03.049CrossRefGoogle Scholar
  76. Li GC, Ye QH, Xue YH, Sun HJ, Zhou HJ, Ren N, Jia HL, Shi J, Wu JC, Dai C, Dong QZ, Qin LX (2010) Human mesenchymal stem cells inhibit metastasis of a hepatocellular carcinoma model using the MHCC97-H cell line. Cancer Sci 101(12):2546–2553.  https://doi.org/10.1111/j.1349-7006.2010.01738.xCrossRefGoogle Scholar
  77. Li HJ, Reinhardt F, Herschman HR, Weinberg RA (2012) Cancer-stimulated mesenchymal stem cells create a carcinoma stem cell niche via prostaglandin E2 signaling. Cancer Discov 2(9):840–855.  https://doi.org/10.1158/2159-8290.CD-12-0101CrossRefGoogle Scholar
  78. Lin SY, Yang J, Everett AD, Clevenger CV, Koneru M, Mishra PJ, Kamen B, Banerjee D, Glod J (2008) The isolation of novel mesenchymal stromal cell chemotactic factors from the conditioned medium of tumor cells. Exp Cell Res 314(17):3107–3117.  https://doi.org/10.1016/j.yexcr.2008.07.028CrossRefGoogle Scholar
  79. Lis R, Touboul C, Mirshahi P, Ali F, Mathew S, Nolan DJ, Maleki M, Abdalla SA, Raynaud CM, Querleu D, Al-Azwani E, Malek J, Mirshahi M, Rafii A (2011) Tumor associated mesenchymal stem cells protects ovarian cancer cells from hyperthermia through CXCL12. Int J Cancer 128(3):715–725.  https://doi.org/10.1002/ijc.25619CrossRefGoogle Scholar
  80. Lu Y, Wang J, Xu Y, Koch AE, Cai Z, Chen X, Galson DL, Taichman RS, Zhang J (2008) CXCL16 functions as a novel chemotactic factor for prostate cancer cells in vitro. Mol Cancer Res 6(4):546–554.  https://doi.org/10.1158/1541-7786.MCR-07-0277CrossRefGoogle Scholar
  81. Ma M, Chen S, Liu Z, Xie H, Deng H, Shang S, Wang X, Xia M, Zuo C (2017) miRNA-221 of exosomes originating from bone marrow mesenchymal stem cells promotes oncogenic activity in gastric cancer. OncoTargets Ther 10:4161–4171.  https://doi.org/10.2147/OTT.S143315CrossRefGoogle Scholar
  82. Mansoori B, Mohammadi A, Davudian S, Shirjang S, Baradaran B (2017) The different mechanisms of Cancer drug resistance: a brief review. Adv Pharm Bull 7(3):339–348.  https://doi.org/10.15171/apb.2017.041CrossRefGoogle Scholar
  83. Mao Q, Zhang Y, Fu X, Xue J, Guo W, Meng M, Zhou Z, Mo X, Lu Y (2013) A tumor hypoxic niche protects human colon cancer stem cells from chemotherapy. J Cancer Res Clin Oncol 139(2):211–222.  https://doi.org/10.1007/s00432-012-1310-3CrossRefGoogle Scholar
  84. Martin FT, Dwyer RM, Kelly J, Khan S, Murphy JM, Curran C, Miller N, Hennessy E, Dockery P, Barry FP, O’Brien T, Kerin MJ (2010) Potential role of mesenchymal stem cells (MSCs) in the breast tumour microenvironment: stimulation of epithelial to mesenchymal transition (EMT). Breast Cancer Res Treat 124(2):317–326.  https://doi.org/10.1007/s10549-010-0734-1CrossRefGoogle Scholar
  85. McGrail DJ, Ghosh D, Quach ND, Dawson MR (2012) Differential mechanical response of mesenchymal stem cells and fibroblasts to tumor-secreted soluble factors. PLoS One 7(3):e33248.  https://doi.org/10.1371/journal.pone.0033248CrossRefGoogle Scholar
  86. Melzer C, Yang Y, Hass R (2016) Interaction of MSC with tumor cells. Cell Commun Signal 14(1):20Google Scholar
  87. Menon LG, Picinich S, Koneru R, Gao H, Lin SY, Koneru M, Mayer-Kuckuk P, Glod J, Banerjee D (2007) Differential gene expression associated with migration of mesenchymal stem cells to conditioned medium from tumor cells or bone marrow cells. Stem Cells 25(2):520–528.  https://doi.org/10.1634/stemcells.2006-0257CrossRefGoogle Scholar
  88. Mi Z, Bhattacharya SD, Kim VM, Guo H, Talbot LJ, Kuo PC (2011) Osteopontin promotes CCL5-mesenchymal stromal cell-mediated breast cancer metastasis. Carcinogenesis 32(4):477–487.  https://doi.org/10.1093/carcin/bgr009CrossRefGoogle Scholar
  89. Munoz JL, Bliss SA, Greco SJ, Ramkissoon SH, Ligon KL, Rameshwar P (2013) Delivery of functional anti-miR-9 by mesenchymal stem cell-derived exosomes to glioblastoma multiforme cells conferred chemosensitivity. Mol Ther Nucleic Acids 2:e126.  https://doi.org/10.1038/mtna.2013.60CrossRefGoogle Scholar
  90. Nakamizo A, Marini F, Amano T, Khan A, Studeny M, Gumin J, Chen J, Hentschel S, Vecil G, Dembinski J, Andreeff M, Lang FF (2005) Human bone marrow-derived mesenchymal stem cells in the treatment of gliomas. Cancer Res 65(8):3307–3318.  https://doi.org/10.1158/0008-5472.CAN-04-1874CrossRefGoogle Scholar
  91. Nwabo Kamdje AH, Kamga PT, Simo RT, Vecchio L, Seke Etet PF, Muller JM, Bassi G, Lukong E, Goel RK, Amvene JM, Krampera M (2017) Mesenchymal stromal cells’ role in tumor microenvironment: involvement of signaling pathways. Cancer Biol Med 14(2):129–141.  https://doi.org/10.20892/j.issn.2095-3941.2016.0033CrossRefGoogle Scholar
  92. Orecchioni S, Gregato G, Martin-Padura I, Reggiani F, Braidotti P, Mancuso P, Calleri A, Quarna J, Marighetti P, Aldeni C, Pruneri G, Martella S, Manconi A, Petit JY, Rietjens M, Bertolini F (2013) Complementary populations of human adipose CD34+ progenitor cells promote growth, angiogenesis, and metastasis of breast cancer. Cancer Res 73(19):5880–5891.  https://doi.org/10.1158/0008-5472.CAN-13-0821CrossRefGoogle Scholar
  93. Oswald J, Boxberger S, Jorgensen B, Feldmann S, Ehninger G, Bornhauser M, Werner C (2004) Mesenchymal stem cells can be differentiated into endothelial cells in vitro. Stem Cells 22(3):377–384.  https://doi.org/10.1634/stemcells.22-3-377CrossRefGoogle Scholar
  94. Papaccio F, Paino F, Regad T, Papaccio G, Desiderio V, Tirino V (2017) Concise review: cancer cells, cancer stem cells, and mesenchymal stem cells: influence in cancer development. Stem Cells Transl Med 6(12):2115–2125.  https://doi.org/10.1002/sctm.17-0138CrossRefGoogle Scholar
  95. Park SM, Gaur AB, Lengyel E, Peter ME (2008) The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2. Genes Dev 22(7):894–907.  https://doi.org/10.1101/gad.1640608CrossRefGoogle Scholar
  96. Paunescu V, Bojin FM, Tatu CA, Gavriliuc OI, Rosca A, Gruia AT, Tanasie G, Bunu C, Crisnic D, Gherghiceanu M, Tatu FR, Tatu CS, Vermesan S (2011) Tumour-associated fibroblasts and mesenchymal stem cells: more similarities than differences. J Cell Mol Med 15(3):635–646.  https://doi.org/10.1111/j.1582-4934.2010.01044.xCrossRefGoogle Scholar
  97. Peng Y, Li Z, Li Z (2013) GRP78 secreted by tumor cells stimulates differentiation of bone marrow mesenchymal stem cells to cancer-associated fibroblasts. Biochem Biophys Res Commun 440(4):558–563.  https://doi.org/10.1016/j.bbrc.2013.09.108CrossRefGoogle Scholar
  98. Pietras K, Ostman A (2010) Hallmarks of cancer: interactions with the tumor stroma. Exp Cell Res 316(8):1324–1331.  https://doi.org/10.1016/j.yexcr.2010.02.045CrossRefGoogle Scholar
  99. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284(5411):143–147Google Scholar
  100. Proulx-Bonneau S, Guezguez A, Annabi B (2011) A concerted HIF-1alpha/MT1-MMP signalling axis regulates the expression of the 3BP2 adaptor protein in hypoxic mesenchymal stromal cells. PLoS One 6(6):e21511.  https://doi.org/10.1371/journal.pone.0021511CrossRefGoogle Scholar
  101. Rasanen K, Vaheri A (2010) Activation of fibroblasts in cancer stroma. Exp Cell Res 316(17):2713–2722.  https://doi.org/10.1016/j.yexcr.2010.04.032CrossRefGoogle Scholar
  102. Ridge SM, Sullivan FJ, Glynn SA (2017) Mesenchymal stem cells: key players in cancer progression. Mol Cancer 16(1):31.  https://doi.org/10.1186/s12943-017-0597-8CrossRefGoogle Scholar
  103. Ries C, Egea V, Karow M, Kolb H, Jochum M, Neth P (2007) MMP-2, MT1-MMP, and TIMP-2 are essential for the invasive capacity of human mesenchymal stem cells: differential regulation by inflammatory cytokines. Blood 109(9):4055–4063.  https://doi.org/10.1182/blood-2006-10-051060CrossRefGoogle Scholar
  104. Ritter E, Perry A, Yu J, Wang T, Tang L, Bieberich E (2008) Breast cancer cell-derived fibroblast growth factor 2 and vascular endothelial growth factor are chemoattractants for bone marrow stromal stem cells. Ann Surg 247(2):310–314.  https://doi.org/10.1097/SLA.0b013e31816401d5CrossRefGoogle Scholar
  105. Ritter A, Friemel A, Fornoff F, Adjan M, Solbach C, Yuan J, Louwen F (2015) Characterization of adipose-derived stem cells from subcutaneous and visceral adipose tissues and their function in breast cancer cells. Oncotarget 6(33):34475–34493.  https://doi.org/10.18632/oncotarget.5922CrossRefGoogle Scholar
  106. Schichor C, Birnbaum T, Etminan N, Schnell O, Grau S, Miebach S, Aboody K, Padovan C, Straube A, Tonn JC, Goldbrunner R (2006) Vascular endothelial growth factor a contributes to glioma-induced migration of human marrow stromal cells (hMSC). Exp Neurol 199(2):301–310.  https://doi.org/10.1016/j.expneurol.2005.11.027CrossRefGoogle Scholar
  107. Shabbir A, Cox A, Rodriguez-Menocal L, Salgado M, Van Badiavas E (2015) Mesenchymal stem cell exosomes induce proliferation and migration of Normal and chronic wound fibroblasts, and enhance angiogenesis in vitro. Stem Cells Dev 24(14):1635–1647.  https://doi.org/10.1089/scd.2014.0316CrossRefGoogle Scholar
  108. Shangguan L, Ti X, Krause U, Hai B, Zhao Y, Yang Z, Liu F (2012) Inhibition of TGF-beta/Smad signaling by BAMBI blocks differentiation of human mesenchymal stem cells to carcinoma-associated fibroblasts and abolishes their protumor effects. Stem Cells 30(12):2810–2819.  https://doi.org/10.1002/stem.1251CrossRefGoogle Scholar
  109. Shinagawa K, Kitadai Y, Tanaka M, Sumida T, Kodama M, Higashi Y, Tanaka S, Yasui W, Chayama K (2010) Mesenchymal stem cells enhance growth and metastasis of colon cancer. Int J Cancer 127(10):2323–2333.  https://doi.org/10.1002/ijc.25440CrossRefGoogle Scholar
  110. Spaeth EL, Dembinski JL, Sasser AK, Watson K, Klopp A, Hall B, Andreeff M, Marini F (2009) Mesenchymal stem cell transition to tumor-associated fibroblasts contributes to fibrovascular network expansion and tumor progression. PLoS One 4(4):e4992.  https://doi.org/10.1371/journal.pone.0004992CrossRefGoogle Scholar
  111. Stefani FR, Eberstal S, Vergani S, Kristiansen TA, Bengzon J (2018) Low-dose irradiated mesenchymal stromal cells break tumor defensive properties in vivo. Int J Cancer 143(9):2200–2212.  https://doi.org/10.1002/ijc.31599CrossRefGoogle Scholar
  112. Studeny M, Marini FC, Champlin RE, Zompetta C, Fidler IJ, Andreeff M (2002) Bone marrow-derived mesenchymal stem cells as vehicles for interferon-beta delivery into tumors. Cancer Res 62(13):3603–3608Google Scholar
  113. Sun L, Wang Q, Chen B, Zhao Y, Shen B, Wang X, Zhu M, Li Z, Zhao X, Xu C, Chen Z, Wang M, Xu W, Zhu W (2018) Human gastric Cancer mesenchymal stem cell-derived IL15 contributes to tumor cell epithelial-mesenchymal transition via upregulation tregs ratio and PD-1 expression in CD4(+)T cell. Stem Cells Dev 27(17):1203–1214.  https://doi.org/10.1089/scd.2018.0043CrossRefGoogle Scholar
  114. Sung FL, Cui Y, Hui EP, Li L, Loh TK, Tao Q, Chan AT (2014) Silencing of hypoxia-inducible tumor suppressor lysyl oxidase gene by promoter methylation activates carbonic anhydrase IX in nasopharyngeal carcinoma. Am J Cancer Res 4(6):789–800Google Scholar
  115. Tsai MS, Lee JL, Chang YJ, Hwang SM (2004) Isolation of human multipotent mesenchymal stem cells from second-trimester amniotic fluid using a novel two-stage culture protocol. Hum Reprod 19(6):1450–1456.  https://doi.org/10.1093/humrep/deh279CrossRefGoogle Scholar
  116. Tsai KS, Yang SH, Lei YP, Tsai CC, Chen HW, Hsu CY, Chen LL, Wang HW, Miller SA, Chiou SH, Hung MC, Hung SC (2011) Mesenchymal stem cells promote formation of colorectal tumors in mice. Gastroenterology 141(3):1046–1056.  https://doi.org/10.1053/j.gastro.2011.05.045CrossRefGoogle Scholar
  117. Uccelli A, Moretta L, Pistoia V (2008) Mesenchymal stem cells in health and disease. Nat Rev Immunol 8(9):726–736.  https://doi.org/10.1038/nri2395CrossRefGoogle Scholar
  118. Uchibori R, Tsukahara T, Mizuguchi H, Saga Y, Urabe M, Mizukami H, Kume A, Ozawa K (2013) NF-kappaB activity regulates mesenchymal stem cell accumulation at tumor sites. Cancer Res 73(1):364–372.  https://doi.org/10.1158/0008-5472.CAN-12-0088CrossRefGoogle Scholar
  119. Vallabhaneni KC, Penfornis P, Dhule S, Guillonneau F, Adams KV, Mo YY, Xu R, Liu Y, Watabe K, Vemuri MC, Pochampally R (2015) Extracellular vesicles from bone marrow mesenchymal stem/stromal cells transport tumor regulatory microRNA, proteins, and metabolites. Oncotarget 6(7):4953–4967.  https://doi.org/10.18632/oncotarget.3211CrossRefGoogle Scholar
  120. van Driel WJ, Koole SN, Sikorska K, Schagen Van Leeuwen JH, Schreuder HWR, Hermans RHM, de Hingh I, van der Velden J, Arts HJ, Massuger L, Aalbers AGJ, Verwaal VJ, Kieffer JM, Van de Vijver KK, van Tinteren H, Aaronson NK, Sonke GS (2018) Hyperthermic intraperitoneal chemotherapy in ovarian Cancer. N Engl J Med 378(3):230–240.  https://doi.org/10.1056/NEJMoa1708618CrossRefGoogle Scholar
  121. Vartanian A, Karshieva S, Dombrovsky V, Belyavsky A (2016) Melanoma educates mesenchymal stromal cells towards vasculogenic mimicry. Oncol Lett 11(6):4264–4268.  https://doi.org/10.3892/ol.2016.4523CrossRefGoogle Scholar
  122. Ventura A, Jacks T (2009) MicroRNAs and cancer: short RNAs go a long way. Cell 136(4):586–591.  https://doi.org/10.1016/j.cell.2009.02.005CrossRefGoogle Scholar
  123. Vianello F, Villanova F, Tisato V, Lymperi S, Ho KK, Gomes AR, Marin D, Bonnet D, Apperley J, Lam EW, Dazzi F (2010) Bone marrow mesenchymal stromal cells non-selectively protect chronic myeloid leukemia cells from imatinib-induced apoptosis via the CXCR4/CXCL12 axis. Haematologica 95(7):1081–1089.  https://doi.org/10.3324/haematol.2009.017178CrossRefGoogle Scholar
  124. Wang J, Lu Y, Wang J, Koch AE, Zhang J, Taichman RS (2008a) CXCR6 induces prostate cancer progression by the AKT/mammalian target of rapamycin signaling pathway. Cancer Res 68(24):10367–10376.  https://doi.org/10.1158/0008-5472.CAN-08-2780CrossRefGoogle Scholar
  125. Wang Y, Crisostomo PR, Wang M, Markel TA, Novotny NM, Meldrum DR (2008b) TGF-alpha increases human mesenchymal stem cell-secreted VEGF by MEK- and PI3-K- but not JNK- or ERK-dependent mechanisms. Am J Physiol Regul Integr Comp Physiol 295(4):R1115–R1123.  https://doi.org/10.1152/ajpregu.90383.2008CrossRefGoogle Scholar
  126. Wang J, Hendrix A, Hernot S, Lemaire M, De Bruyne E, Van Valckenborgh E, Lahoutte T, De Wever O, Vanderkerken K, Menu E (2014) Bone marrow stromal cell-derived exosomes as communicators in drug resistance in multiple myeloma cells. Blood 124(4):555–566.  https://doi.org/10.1182/blood-2014-03-562439CrossRefGoogle Scholar
  127. Wang HH, Cui YL, Zaorsky NG, Lan J, Deng L, Zeng XL, Wu ZQ, Tao Z, Guo WH, Wang QX, Zhao LJ, Yuan ZY, Lu Y, Wang P, Meng MB (2016) Mesenchymal stem cells generate pericytes to promote tumor recurrence via vasculogenesis after stereotactic body radiation therapy. Cancer Lett 375(2):349–359.  https://doi.org/10.1016/j.canlet.2016.02.033CrossRefGoogle Scholar
  128. Wang J, Yang W, Wang T, Chen X, Wang J, Zhang X, Cai C, Zhong B, Wu J, Chen Z, Xiang AP, Huang W (2018) Mesenchymal stromal cells-derived beta2-microglobulin promotes epithelial-mesenchymal transition of esophageal squamous cell carcinoma cells. Sci Rep 8(1):5422.  https://doi.org/10.1038/s41598-018-23651-5CrossRefGoogle Scholar
  129. Witsch E, Sela M, Yarden Y (2010) Roles for growth factors in cancer progression. Physiology (Bethesda) 25(2):85–101.  https://doi.org/10.1152/physiol.00045.2009CrossRefGoogle Scholar
  130. Wu S, Ju GQ, Du T, Zhu YJ, Liu GH (2013) Microvesicles derived from human umbilical cord Wharton’s jelly mesenchymal stem cells attenuate bladder tumor cell growth in vitro and in vivo. PLoS One 8(4):e61366.  https://doi.org/10.1371/journal.pone.0061366CrossRefGoogle Scholar
  131. Xu YP, Zhao XQ, Sommer K, Moubayed P (2003) Correlation of matrix metalloproteinase-2, −9, tissue inhibitor-1 of matrix metalloproteinase and CD44 variant 6 in head and neck cancer metastasis. J Zhejiang Univ Sci 4(4):491–501Google Scholar
  132. Xu WT, Bian ZY, Fan QM, Li G, Tang TT (2009) Human mesenchymal stem cells (hMSCs) target osteosarcoma and promote its growth and pulmonary metastasis. Cancer Lett 281(1):32–41.  https://doi.org/10.1016/j.canlet.2009.02.022CrossRefGoogle Scholar
  133. Xu S, Menu E, De Becker A, Van Camp B, Vanderkerken K, Van Riet I (2012) Bone marrow-derived mesenchymal stromal cells are attracted by multiple myeloma cell-produced chemokine CCL25 and favor myeloma cell growth in vitro and in vivo. Stem Cells 30(2):266–279.  https://doi.org/10.1002/stem.787CrossRefGoogle Scholar
  134. Xu G, Guo Y, Seng Z, Cui G, Qu J (2015) Bone marrow-derived mesenchymal stem cells co-expressing interleukin-18 and interferon-beta exhibit potent antitumor effect against intracranial glioma in rats. Oncol Rep 34(4):1915–1922.  https://doi.org/10.3892/or.2015.4174CrossRefGoogle Scholar
  135. Xu H, Zhou Y, Li W, Zhang B, Zhang H, Zhao S, Zheng P, Wu H, Yang J (2018) Tumor-derived mesenchymal-stem-cell-secreted IL-6 enhances resistance to cisplatin via the STAT3 pathway in breast cancer. Oncol Lett 15(6):9142–9150.  https://doi.org/10.3892/ol.2018.8463CrossRefGoogle Scholar
  136. Xue Z, Wu X, Chen X, Liu Y, Wang X, Wu K, Nie Y, Fan D (2015) Mesenchymal stem cells promote epithelial to mesenchymal transition and metastasis in gastric cancer though paracrine cues and close physical contact. J Cell Biochem 116(4):618–627.  https://doi.org/10.1002/jcb.25013CrossRefGoogle Scholar
  137. Yagi H, Kitagawa Y (2013) The role of mesenchymal stem cells in cancer development. Front Genet 4:261.  https://doi.org/10.3389/fgene.2013.00261CrossRefGoogle Scholar
  138. Yan XL, Jia YL, Chen L, Zeng Q, Zhou JN, Fu CJ, Chen HX, Yuan HF, Li ZW, Shi L, Xu YC, Wang JX, Zhang XM, He LJ, Zhai C, Yue W, Pei XT (2013) Hepatocellular carcinoma-associated mesenchymal stem cells promote hepatocarcinoma progression: role of the S100A4-miR155-SOCS1-MMP9 axis. Hepatology 57(6):2274–2286.  https://doi.org/10.1002/hep.26257CrossRefGoogle Scholar
  139. Ye H, Cheng J, Tang Y, Liu Z, Xu C, Liu Y, Sun Y (2012) Human bone marrow-derived mesenchymal stem cells produced TGFbeta contributes to progression and metastasis of prostate cancer. Cancer Investig 30(7):513–518.  https://doi.org/10.3109/07357907.2012.692171CrossRefGoogle Scholar
  140. Yi D, Xiang W, Zhang Q, Cen Y, Su Q, Zhang F, Lu Y, Zhao H, Fu P (2018) Human glioblastoma-derived mesenchymal stem cell to pericytes transition and angiogenic capacity in glioblastoma microenvironment. Cellular Physiol Biochem 46(1):279–290.  https://doi.org/10.1159/000488429CrossRefGoogle Scholar
  141. Yu Z, Pestell TG, Lisanti MP, Pestell RG (2012) Cancer stem cells. Int J Biochem Cell Biol 44(12):2144–2151.  https://doi.org/10.1016/j.biocel.2012.08.022CrossRefGoogle Scholar
  142. Zhang W (2008) Mesenchymal stem cells in cancer: friends or foes. Cancer Biol Ther 7(2):252–254Google Scholar
  143. Zhao W, Zhang X, Zang L, Zhao P, Chen Y, Wang X (2018) ILK promotes angiogenic activity of mesenchymal stem cells in multiple myeloma. Oncol Lett 16(1):1101–1106.  https://doi.org/10.3892/ol.2018.8711CrossRefGoogle Scholar
  144. Zheng W, Seftor EA, Meininger CJ, Hendrix MJ, Tomanek RJ (2001) Mechanisms of coronary angiogenesis in response to stretch: role of VEGF and TGF-beta. Am J Phys Heart Circ Phys 280(2):H909–H917.  https://doi.org/10.1152/ajpheart.2001.280.2.H909CrossRefGoogle Scholar
  145. Zhong W, Tong Y, Li Y, Yuan J, Hu S, Hu T, Song G (2017) Mesenchymal stem cells in inflammatory microenvironment potently promote metastatic growth of cholangiocarcinoma via activating Akt/NF-kappaB signaling by paracrine CCL5. Oncotarget 8(43):73693–73704.  https://doi.org/10.18632/oncotarget.17793CrossRefGoogle Scholar
  146. Zhu W, Huang L, Li Y, Zhang X, Gu J, Yan Y, Xu X, Wang M, Qian H, Xu W (2012) Exosomes derived from human bone marrow mesenchymal stem cells promote tumor growth in vivo. Cancer Lett 315(1):28–37.  https://doi.org/10.1016/j.canlet.2011.10.002CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Taha Bartu Hayal
    • 1
  • Binnur Kıratlı
    • 1
  • Hatice Burcu Şişli
    • 1
  • Fikrettin Şahin
    • 1
  • Ayşegül Doğan
    • 1
    Email author
  1. 1.Department of Genetics and Bioengineering, Faculty of EngineeringYeditepe UniversityİstanbulTurkey

Personalised recommendations