Advertisement

pp 1-16 | Cite as

Sports Injuries: Diagnosis, Prevention, Stem Cell Therapy, and Medical Sport Strategy

  • Sadegh Rahim
  • Fakher RahimEmail author
  • Kiarash Shirbandi
  • Behzad Bagheban Haghighi
  • Babak Arjmand
Chapter
Part of the Advances in Experimental Medicine and Biology book series

Abstract

Sports injuries diagnosis, prevention, and treatment are the most important issues of sports medicine. Fortunately, sports injuries are often treated effectively, and people with damage recover and return to the sport in a satisfactory condition. Meanwhile, many sports injuries and complications can be prevented. In general, sports injuries include acute or chronic injuries. Given increasing in popularity, sports medicine doctors use stem cells to treat a wide variety of sports injuries, including damage to tendons, ligaments, muscles, and cartilage. Stem cell therapy to an injured area could be done through direct surgical application, stem-cell-bearing sutures, and injection. Stem cell therapy holds potential for repair and functional plasticity following sports injuries compared to traditional methods; however, the mechanism of stem cell therapy for sports injuries remains largely unknown. Medical imaging technologies provide the hope to ample the knowledge concerning basic stem cell biology in real time when transplanted into sport-induced damaged organs. Using stem cell treatment might restore continuity and regeneration and promote growth back the organ targets. Besides, using a noninvasive medical imaging method would have the long-time monitoring advantage to the stem cells transplanting individual. The multimodality imaging technique allows for studying acute pathological events following sports injuries; therefore, the use of imaging techniques in medicine permits the straight examination of dynamic regenerative events of specific stem cells following a sports injury in people.

Keywords

Medical imaging Sports injuries Stem cell therapy 

Abbreviations

ADSCs

Adipose-derived stem cells

ASC

Adult stem cells

BM-MSCs

Bone marrow-mesenchymal stem cells

CBSC

Cord blood stem cell

CUP

Protector used in martial arts

ESC

Embryonic stem cell

MSCs

Mesenchymal stem cells

PBSCs

Peripheral blood stem cells

PRP

Platelet-rich plasma

SDF

Superficial digital flexor

T-MSCs

Tonsil-derived MSCs

References

  1. Altaner, C., Altanerova, V., Cihova, M., Hunakova, L., Kaiserova, K., Klepanec, A., Vulev, I., & Madaric, J. (2013). Characterization of mesenchymal stem cells of “no-options” patients with critical limb ischemia treated by autologous bone marrow mononuclear cells. PLoS One, 8(9), e73722.Google Scholar
  2. Andrade, B. M., Baldanza, M. R., Ribeiro, K. C., Porto, A., Pecanha, R., Fortes, F. S., Zapata-Sudo, G., Campos-de-Carvalho, A. C., Goldenberg, R. C., & Werneck-de-Castro, J. P. (2015). Bone marrow mesenchymal cells improve muscle function in a skeletal muscle re-injury model. PLoS One, 10(6), e0127561.Google Scholar
  3. Anzuini, F., Battistella, A., & Izzotti, A. (2011). Physical activity and cancer prevention: A review of current evidence and biological mechanisms. Journal of Preventive Medicine and Hygiene, 52(4), 174–180.Google Scholar
  4. Ardeshiry Lajimi, A., Hagh, M. F., Saki, N., Mortaz, E., Soleimani, M., & Rahim, F. (2013). Feasibility of cell therapy in multiple sclerosis: A systematic review of 83 studies. International Journal of Hematology-Oncology and Stem Cell Research, 7(1), 15–33.Google Scholar
  5. Assessment of Acute Traumatic Injuries. Pediatric Dentistry 2016, 38(6):431–432. https://www.ncbi.nlm.nih.gov/pubmed/27931492
  6. Azizidoost, S., Babashah, S., Rahim, F., Shahjahani, M., & Saki, N. (2014). Bone marrow neoplastic niche in leukemia. Hematology, 19(4), 232–238.Google Scholar
  7. Azizidoost, S., Bavarsad, M. S., Bavarsad, M. S., Shahrabi, S., Jaseb, K., Rahim, F., Shahjahani, M., Saba, F., Ghorbani, M., & Saki, N. (2015). The role of notch signaling in bone marrow niche. Hematology, 20(2), 93–103.Google Scholar
  8. Azizidoost, S., Ahmadzadeh, A., Rahim, F., Shahjahani, M., Seghatoleslami, M., & Saki, N. (2016). Hepatic metastatic niche: From normal to pre-metastatic and metastatic niche. Tumour Biology: The Journal of The International Society for Oncodevelopmental Biology and Medicine, 37(2), 1493–1503.Google Scholar
  9. Boppart, M. D., De Lisio, M., Zou, K., & Huntsman, H. D. (2013). Defining a role for non-satellite stem cells in the regulation of muscle repair following exercise. Frontiers in Physiology, 4, 310.Google Scholar
  10. Chamberlain, C. S., Saether, E. E., Aktas, E., & Vanderby, R. (2017). Mesenchymal stem cell therapy on tendon/ligament healing. Journal of Cytokine Biology, 2(1), 112.Google Scholar
  11. Chong, A. K., Ang, A. D., Goh, J. C., Hui, J. H., Lim, A. Y., Lee, E. H., & Lim, B. H. (2007). Bone marrow-derived mesenchymal stem cells influence early tendon-healing in a rabbit achilles tendon model. The Journal of Bone and Joint Surgery. American Volume, 89(1), 74–81.Google Scholar
  12. Dashtdar, H., Murali, M. R., Abbas, A. A., Suhaeb, A. M., Selvaratnam, L., Tay, L. X., & Kamarul, T. (2015). PVA-chitosan composite hydrogel versus alginate beads as a potential mesenchymal stem cell carrier for the treatment of focal cartilage defects. Knee Surgery, Sports Traumatology, Arthroscopy: Official Journal of the ESSKA, 23(5), 1368–1377.Google Scholar
  13. Daskalopoulou, C., Stubbs, B., Kralj, C., Koukounari, A., Prince, M., & Prina, A. M. (2017). Physical activity and healthy ageing: A systematic review and meta-analysis of longitudinal cohort studies. Ageing Research Reviews, 38, 6.Google Scholar
  14. de la Garza-Rodea, A. S., van der Velde-van Dijke, I., Boersma, H., Goncalves, M. A., van Bekkum, D. W., de Vries, A. A., & Knaan-Shanzer, S. (2012). Myogenic properties of human mesenchymal stem cells derived from three different sources. Cell Transplantation, 21(1), 153–173.Google Scholar
  15. de Lazaro, I., Yilmazer, A., & Kostarelos, K. (2014). Induced pluripotent stem (iPS) cells: A new source for cell-based therapeutics? Journal of Controlled Release, 185, 37–44.Google Scholar
  16. de Oliveira, E. P., & Burini, R. C. (2009). The impact of physical exercise on the gastrointestinal tract. Current Opinion in Clinical Nutrition and Metabolic Care, 12(5), 533–538.Google Scholar
  17. Dehghanifard, A., Shahjahani, M., Galehdari, H., Rahim, F., Hamid, F., Jaseb, K., Asnafi, A. A., Jalalifar, M. A., & Saki, N. (2013). Prenatal diagnosis of different polymorphisms of beta-globin gene in Ahvaz. International Journal of Hematology-Oncology and Stem Cell Research, 7(2), 17–22.Google Scholar
  18. Dinoff, A., Herrmann, N., Swardfager, W., & Lanctot, K. L. (2017). The effect of acute exercise on blood concentrations of brain-derived neurotrophic factor in healthy adults: A meta-analysis. The European Journal of Neuroscience, 46, 1635.Google Scholar
  19. Ebrahimi, A., & Rahim, F. (2014). Recent immunomodulatory strategies in transplantation. Immunological Investigations, 43(8), 829–837.Google Scholar
  20. Ebrahimi, A., Hosseini, S. A., & Rahim, F. (2014). Immunosuppressive therapy in allograft transplantation: From novel insights and strategies to tolerance and challenges. Central-European Journal of Immunology, 39(3), 400–409.Google Scholar
  21. Fellows, C. R., Matta, C., Zakany, R., Khan, I. M., & Mobasheri, A. (2016). Adipose, bone marrow and synovial joint-derived mesenchymal stem cells for cartilage repair. Frontiers in Genetics, 7, 213.Google Scholar
  22. Ferrari, G., Cusella-De Angelis, G., Coletta, M., Paolucci, E., Stornaiuolo, A., Cossu, G., & Mavilio, F. (1998). Muscle regeneration by bone marrow-derived myogenic progenitors. Science, 279(5356), 1528–1530.Google Scholar
  23. Figueroa, D., Espinosa, M., Calvo, R., Scheu, M., Vaisman, A., Gallegos, M., & Conget, P. (2014). Anterior cruciate ligament regeneration using mesenchymal stem cells and collagen type I scaffold in a rabbit model. Knee Surgery, Sports Traumatology, Arthroscopy: Official Journal of the ESSKA, 22(5), 1196–1202.Google Scholar
  24. Gobbi, A., & Whyte, G. P. (2016). One-stage cartilage repair using a hyaluronic acid-based scaffold with activated bone marrow-derived mesenchymal stem cells compared with microfracture: Five-year follow-up. The American Journal of Sports Medicine, 44(11), 2846–2854.Google Scholar
  25. Godwin, E. E., Young, N. J., Dudhia, J., Beamish, I. C., & Smith, R. K. (2012). Implantation of bone marrow-derived mesenchymal stem cells demonstrates improved outcome in horses with overstrain injury of the superficial digital flexor tendon. Equine Veterinary Journal, 44(1), 25–32.Google Scholar
  26. Goldberg, A., Mitchell, K., Soans, J., Kim, L., & Zaidi, R. (2017). The use of mesenchymal stem cells for cartilage repair and regeneration: A systematic review. Journal of Orthopaedic Surgery and Research, 12(1), 39.Google Scholar
  27. Gronhaug, G., & Norberg, M. (2016). First overview on chronic injuries in sport climbing: Proposal for a change in reporting of injuries in climbing. BMJ Open Sport & Exercise Medicine, 2(1), e000083.Google Scholar
  28. Gulotta, L. V., Chaudhury, S., & Wiznia, D. (2012). Stem cells for augmenting tendon repair. Stem Cells International, 2012, 291431.Google Scholar
  29. Hao, Z. C., Wang, S. Z., Zhang, X. J., & Lu, J. (2016). Stem cell therapy: A promising biological strategy for tendon-bone healing after anterior cruciate ligament reconstruction. Cell Proliferation, 49(2), 154–162.Google Scholar
  30. Hatsushika, D., Muneta, T., Nakamura, T., Horie, M., Koga, H., Nakagawa, Y., Tsuji, K., Hishikawa, S., Kobayashi, E., & Sekiya, I. (2014). Repetitive allogeneic intraarticular injections of synovial mesenchymal stem cells promote meniscus regeneration in a porcine massive meniscus defect model. Osteoarthritis and Cartilage, 22(7), 941–950.Google Scholar
  31. Hwang, J. H., Kim, I. G., Piao, S., Jung, A. R., Lee, J. Y., Park, K. D., & Lee, J. Y. (2013). Combination therapy of human adipose-derived stem cells and basic fibroblast growth factor hydrogel in muscle regeneration. Biomaterials, 34(25), 6037–6045.Google Scholar
  32. Jeong, H., Lee, E. S., Jung, G., Park, J., Jeong, B., Ryu, K. H., Hwang, N. S., & Lee, H. (2016). Bioreducible-cationic poly(amido amine)s for enhanced gene delivery and osteogenic differentiation of tonsil-derived mesenchymal stem cells. Journal of Biomedical Nanotechnology, 12(5), 1023–1034.Google Scholar
  33. Kanaya, A., Deie, M., Adachi, N., Nishimori, M., Yanada, S., & Ochi, M. (2007). Intra-articular injection of mesenchymal stromal cells in partially torn anterior cruciate ligaments in a rat model. Arthroscopy: The Journal of Arthroscopic & Related Surgery: Official Publication of the Arthroscopy Association of North America and the International Arthroscopy Association, 23(6), 610–617.Google Scholar
  34. Katagiri, H., Muneta, T., Tsuji, K., Horie, M., Koga, H., Ozeki, N., Kobayashi, E., & Sekiya, I. (2013). Transplantation of aggregates of synovial mesenchymal stem cells regenerates meniscus more effectively in a rat massive meniscal defect. Biochemical and Biophysical Research Communications, 435(4), 603–609.Google Scholar
  35. Kim, H. D., Jang, H. L., Ahn, H. Y., Lee, H. K., Park, J., Lee, E. S., Lee, E. A., Jeong, Y. H., Kim, D. G., Nam, K. T., et al. (2017). Biomimetic whitlockite inorganic nanoparticles-mediated in situ remodeling and rapid bone regeneration. Biomaterials, 112, 31–43.Google Scholar
  36. Koh, R. H., Jin, Y., Kang, B. J., & Hwang, N. S. (2017). Chondrogenically primed tonsil-derived mesenchymal stem cells encapsulated in riboflavin-induced photocrosslinking collagen-hyaluronic acid hydrogel for meniscus tissue repairs. Acta Biomaterialia, 53, 318–328.Google Scholar
  37. Kreider, R. B., Kalman, D. S., Antonio, J., Ziegenfuss, T. N., Wildman, R., Collins, R., Candow, D. G., Kleiner, S. M., Almada, A. L., & Lopez, H. L. (2017). International Society of Sports Nutrition position stand: Safety and efficacy of creatine supplementation in exercise, sport, and medicine. Journal of the International Societh of Sports Nutrition, 14, 18.Google Scholar
  38. Kremer, A., Ribitsch, I., Reboredo, J., Durr, J., Egerbacher, M., Jenner, F., & Walles, H. (2017). Three-dimensional Coculture of meniscal cells and mesenchymal stem cells in collagen type I hydrogel on a small intestinal matrix-a pilot study toward equine meniscus tissue engineering. Tissue Engineering. Part A, 23(9–10), 390–402.Google Scholar
  39. LaBarge, M. A., & Blau, H. M. (2002). Biological progression from adult bone marrow to mononucleate muscle stem cell to multinucleate muscle fiber in response to injury. Cell, 111(4), 589–601.Google Scholar
  40. Lee, S. H., Kim, I. G., Jung, A. R., Shrestha, K. R., Lee, J. H., Park, K. D., Chung, B. H., Kim, S. W., Kim, K. H., & Lee, J. Y. (2014). Combined effects of brain-derived neurotrophic factor immobilized poly-lactic-co-glycolic acid membrane with human adipose-derived stem cells and basic fibroblast growth factor hydrogel on recovery of erectile dysfunction. Tissue Engineering. Part A, 20(17–18), 2446–2454.Google Scholar
  41. Lee, K. J., Clegg, P. D., Comerford, E. J., & Canty-Laird, E. G. (2017). Ligament-derived stem cells: Identification, characterisation, and therapeutic application. Stem Cells International, 2017, 1919845.Google Scholar
  42. Ma, C. L., Ma, X. T., Wang, J. J., Liu, H., Chen, Y. F., & Yang, Y. (2017). Physical exercise induces hippocampal neurogenesis and prevents cognitive decline. Behavioural Brain Research, 317, 332–339.Google Scholar
  43. Markoulaki, S., Meissner, A., & Jaenisch, R. (2008). Somatic cell nuclear transfer and derivation of embryonic stem cells in the mouse. Methods, 45(2), 101–114.Google Scholar
  44. Maugars, Y., Lalande, S., Berthelot, J. M., Potiron-Josse, M., Charlier, C., & Prost, A. (1995). Sports, bones and hormones. Multiple interactions. Presse Médicale, 24(28), 1284–1286.Google Scholar
  45. Moon, H. J., Patel, M., Chung, H., & Jeong, B. (2016). Nanocomposite versus Mesocomposite for osteogenic differentiation of tonsil-derived mesenchymal stem cells. Advanced Healthcare Materials, 5(3), 353–363.Google Scholar
  46. Moradi, L., Vasei, M., Dehghan, M. M., Majidi, M., Farzad Mohajeri, S., & Bonakdar, S. (2017). Regeneration of meniscus tissue using adipose mesenchymal stem cells-chondrocytes co-culture on a hybrid scaffold: In vivo study. Biomaterials, 126, 18–30.Google Scholar
  47. Nae, S., Bordeianu, I., Stancioiu, A. T., & Antohi, N. (2013). Human adipose-derived stem cells: Definition, isolation, tissue-engineering applications. Romanian Journal of Morphology and Embryology, 54(4), 919–924.Google Scholar
  48. Nakagawa, Y., Muneta, T., Kondo, S., Mizuno, M., Takakuda, K., Ichinose, S., Tabuchi, T., Koga, H., Tsuji, K., & Sekiya, I. (2015). Synovial mesenchymal stem cells promote healing after meniscal repair in microminipigs. Osteoarthritis and Cartilage, 23(6), 1007–1017.Google Scholar
  49. Nakamura, T., Sekiya, I., Muneta, T., & Kobayashi, E. (2013). Articular cartilage regenerative therapy with synovial mesenchymal stem cells in a pig model. Clinical Calcium, 23(12), 1741–1749.Google Scholar
  50. Nejadnik, H., Hui, J. H., Feng Choong, E. P., Tai, B. C., & Lee, E. H. (2010). Autologous bone marrow-derived mesenchymal stem cells versus autologous chondrocyte implantation: An observational cohort study. The American Journal of Sports Medicine, 38(6), 1110–1116.Google Scholar
  51. Orio, F., Muscogiuri, G., Ascione, A., Marciano, F., Volpe, A., La Sala, G., Savastano, S., Colao, A., & Palomba, S. (2013). Effects of physical exercise on the female reproductive system. Minerva Endocrinologica, 38(3), 305–319.Google Scholar
  52. Ouyang, H. W., Goh, J. C., Thambyah, A., Teoh, S. H., & Lee, E. H. (2003). Knitted poly-lactide-co-glycolide scaffold loaded with bone marrow stromal cells in repair and regeneration of rabbit Achilles tendon. Tissue Engineering, 9(3), 431–439.Google Scholar
  53. Park, M. H., Yu, Y., Moon, H. J., Ko, d. Y., Kim, H. S., Lee, H., Ryu, K. H., & Jeong, B. (2014). 3D culture of tonsil-derived mesenchymal stem cells in poly(ethylene glycol)-poly(L-alanine-co-L-phenyl alanine) thermogel. Advanced Healthcare Materials, 3(11), 1782–1791.Google Scholar
  54. Park, J., Kim, I. Y., Patel, M., Moon, H. J., Hwang, S.-J., & Jeong, B. (2015). 2D and 3D hybrid systems for enhancement of chondrogenic differentiation of tonsil-derived mesenchymal stem cells. Advanced Functional Materials, 25(17), 2573–2582.Google Scholar
  55. Pas, H., Moen, M. H., Haisma, H. J., & Winters, M. (2017). No evidence for the use of stem cell therapy for tendon disorders: A systematic review. British Journal of Sports Medicine, 51(13), 996–1002.Google Scholar
  56. Rahim, F., Allahmoradi, H., Salari, F., Shahjahani, M., Fard, A. D., Hosseini, S. A., & Mousakhani, H. (2013). Evaluation of signaling pathways involved in gamma-globin gene induction using fetal hemoglobin inducer drugs. International Journal of Hematology-Oncology and Stem Cell Research, 7(3), 41–46.Google Scholar
  57. Saeidi, S., Jaseb, K., Asnafi, A. A., Rahim, F., Pourmotahari, F., Mardaniyan, S., Yousefi, H., Alghasi, A., Shahjahani, M., & Saki, N. (2014). Immune thrombocytopenic Purpura in children and adults: A comparative retrospective study in IRAN. International Journal of Hematology-Oncology and Stem Cell Research, 8(3), 30–36.Google Scholar
  58. Saki, N., Jalalifar, M. A., Soleimani, M., Hajizamani, S., & Rahim, F. (2013). Adverse effect of high glucose concentration on stem cell therapy. International Journal of Hematology-Oncology and Stem Cell Research, 7(3), 34–40.Google Scholar
  59. Sandelin, J., Santavirta, S., Lattila, R., Vuolle, P., & Sarna, S. (1988). Sports injuries in a large urban population: Occurrence and epidemiological aspects. International Journal of Sports Medicine, 9(1), 61–66.Google Scholar
  60. Saw, K. Y., Anz, A., Siew-Yoke Jee, C., Merican, S., Ching-Soong Ng, R., Roohi, S. A., & Ragavanaidu, K. (2013). Articular cartilage regeneration with autologous peripheral blood stem cells versus hyaluronic acid: A randomized controlled trial. Arthroscopy: The Journal of Arthroscopic & Related Surgery: Official Publication of the Arthroscopy Association of North America and The International Arthroscopy Association, 29(4), 684–694.Google Scholar
  61. Shahrabi, S., Azizidoost, S., Shahjahani, M., Rahim, F., Ahmadzadeh, A., & Saki, N. (2014). New insights in cellular and molecular aspects of BM niche in chronic myelogenous leukemia. Tumour Biology, 35(11), 10627–10633.Google Scholar
  62. Shroff, G., Dhanda Titus, J., & Shroff, R. (2017). A review of the emerging potential therapy for neurological disorders: Human embryonic stem cell therapy. American Journal of Stem Cells, 6(1), 1–12.Google Scholar
  63. Silva, A., Sampaio, R., Fernandes, R., & Pinto, E. (2014). Is there a role for adult non-cultivated bone marrow stem cells in ACL reconstruction? Knee Surgery, Sports Traumatology, Arthroscopy: Official Journal of the ESSKA, 22(1), 66–71.Google Scholar
  64. Taiani, J. T., Buie, H. R., Campbell, G. M., Manske, S. L., Krawetz, R. J., Rancourt, D. E., Boyd, S. K., & Matyas, J. R. (2014). Embryonic stem cell therapy improves bone quality in a model of impaired fracture healing in the mouse; tracked temporally using in vivo micro-CT. Bone, 64, 263–272.Google Scholar
  65. Vandenberghe, A., Broeckx, S. Y., Beerts, C., Seys, B., Zimmerman, M., Verweire, I., Suls, M., & Spaas, J. H. (2015). Tenogenically induced allogeneic mesenchymal stem cells for the treatment of proximal suspensory ligament Desmitis in a horse. Frontiers in Veterinary Science, 2, 49.Google Scholar
  66. Vannini, F., Cavallo, M., Ramponi, L., Castagnini, F., Massimi, S., Giannini, S., & Buda, R. E. (2017). Return to sports after bone marrow-derived cell transplantation for osteochondral lesions of the talus. Cartilage, 8(1), 80–87.Google Scholar
  67. Wang, M., Yuan, Z., Ma, N., Hao, C., Guo, W., Zou, G., Zhang, Y., Chen, M., Gao, S., Peng, J., et al. (2017). Advances and prospects in stem cells for cartilage regeneration. Stem Cells International, 2017, 4130607.Google Scholar
  68. Watson, L., Elliman, S. J., & Coleman, C. M. (2014). From isolation to implantation: A concise review of mesenchymal stem cell therapy in bone fracture repair. Stem Cell Research & Therapy, 5(2), 51.Google Scholar
  69. Weel, H., Mallee, W. H., van Dijk, C. N., Blankevoort, L., Goedegebuure, S., Goslings, J. C., Kennedy, J. G., & Kerkhoffs, G. M. (2015). The effect of concentrated bone marrow aspirate in operative treatment of fifth metatarsal stress fractures; a double-blind randomized controlled trial. BMC Musculoskeletal Disorders, 16, 211.Google Scholar
  70. Whitehouse, M. R., Howells, N. R., Parry, M. C., Austin, E., Kafienah, W., Brady, K., Goodship, A. E., Eldridge, J. D., Blom, A. W., & Hollander, A. P. (2017). Repair of torn avascular meniscal cartilage using undifferentiated autologous mesenchymal stem cells: From in vitro optimization to a first-in-human study. Stem Cells Translational Medicine, 6(4), 1237–1248.Google Scholar
  71. Wicklin, B. (1994). Do the addicts go in for sport, too? Läkartidningen, 91(37), 3244.Google Scholar
  72. Zhang, L., Miramini, S., Richardson, M., Mendis, P., & Ebeling, P. (2017). The role of impairment of mesenchymal stem cell function in osteoporotic bone fracture healing. Australasian Physical & Engineering Sciences in Medicine, 40, 603.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Sadegh Rahim
    • 1
  • Fakher Rahim
    • 2
    • 3
    Email author
  • Kiarash Shirbandi
    • 4
  • Behzad Bagheban Haghighi
    • 5
  • Babak Arjmand
    • 6
    • 7
  1. 1.Ahvaz Jundishapur University of Medical SciencesAhvazIran
  2. 2.Department of Molecular Medicine, Health research institute, Research Center of Thalassemia & Hemoglobinopathy, Health research instituteAhvaz Jundishapur University of Medical SciencesAhvazIran
  3. 3.Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences InstituteTehran University of Medical SciencesTehranIran
  4. 4.Allied Health Sciences School, Radiology DepartmentAhvaz Jundishapur University of Medical SciencesAhvazIran
  5. 5.Orthopedic Surgery, Monfared Niaki Army HospitalAhvazIran
  6. 6.Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences InstituteTehran University of Medical SciencesTehranIran
  7. 7.Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences InstituteTehran University of Medical SciencesTehranIran

Personalised recommendations