Advertisement

Selection of Suitable Reference Genes for Quantitative Real-Time PCR Normalization in Human Stem Cell Research

  • Fatma Betül Ayanoğlu
  • Ayşe Eser Elçin
  • Yaşar Murat ElçinEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1119)

Abstract

Quantitative real-time polymerase chain reaction (qRT-PCR) is a widely utilized method for evaluating the gene expressions in stem cell research. This method enables researchers to obtain fast and precise results, but the accuracy of the data depends on certain factors, such as those associated with biological sample preparation and PCR efficiency. In order to achieve accurate and reliable results, it is of utmost importance to designate the reference genes, the expressions of which are suitable to all kinds of experimental conditions. Hence it is vital to normalize the qRT-PCR data by using the reference genes. In recent years, it has been found that the expression levels of reference genes widely used in stem cell research present a substantial amount of variation and are not necessarily suitable for normalization. This chapter at hand stresses the significance of selecting suitable reference genes from the point view of human stem cell research.

Keywords

Reference genes qRT-PCR normalization qRT-PCR Stem cells Human Housekeeping genes 

Abbreviations

18S rRNA

18S Ribosomal RNA

2-D

Two-dimensional

3-D

Three-dimensional

3′UTR

3′ untranslated region of the genes

ACTB

Actin beta

ALAS1

5′-Aminolevulinate synthase 1

ASCs

Adipose stem cells

B2M

Beta-2-microglobulin

BM-MSCs

Bone marrow-derived mesenchymal stem cells

CAPN10

Calpain 10

CASC3

Cancer susceptibility 3

CCDC108

Cilia and flagella associated protein 65

CSCs

Cancer stem cells

EF1α

Eukaryotic translation elongation factor 1 alpha 1

EID2

EP300 interacting inhibitor of differentiation 2

ESCs

Embryonic stem cells

FBXL12

F-Box and leucine rich repeat protein 12

fMSCs

Fetal tissue-derived MSCs

GADD45A

Growth arrest and DNA damage inducible alpha

GAPDH

Glyceraldehyde-3-phosphate dehydrogenase

GSCs

Gingival stem cells

GUSB

Glucuronidase beta

h

Human

HMBS

Hydroxymethylbilane synthase

HPRT1

Hypoxanthine phosphoribosyltransferase 1

HSCs

Hematopoietic stem cells

IPO8

Importin 8

iPSCs

Induced pluripotent stem cells

LTB4R2

Leukotriene B4 receptor 2

MIAMI

Marrow-isolated adult multilineage inducible

MSCs

Mesenchymal stem cells

NUBP1

Nucleotide binding protein 1

PCR

Polymerase chain reaction

PGK

Phosphoglycerate kinase

PPIA

Peptidylprolyl isomerase A

PUM1

Pumilio RNA binding family member 1

qRT-PCR

Quantitative real-time PCR

RABEP2

Rabaptin, RAB GTPase binding effector protein 2

RNF7

Ring finger protein 7

RPL13A

Ribosomal protein L13a

RPL19

Ribosomal protein 19

RPLP0

Ribosomal protein lateral stalk subunit P0

RPS18

Ribosomal protein S18

SDHA

Succinate dehydrogenase complex flavoprotein subunit A

SLC4A1AP

Solute carrier family 4 member 1 adaptor protein

SRP72

Signal recognition particle 72

TBP

TATA-box binding protein

TFRC

Transferrin receptor

TNFRSF13C

TNF receptor superfamily member 13C

UBC

Ubiquitin

VEGF

Vascular endothelial growth factor A-165

YWHAZ

Tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein zeta

ZNF324B

Zinc finger protein 324B

Notes

Competing Interests

Y.M.E. is the founder and director of Biovalda Health Technologies, Inc. (Ankara, Turkey). The authors declare no competing interests in relation to this article.

References

  1. Abbaszadegan MR, Bagheri V, Razavi MS, Momtazi AA, Sahebkar A, Gholamin M (2017) Isolation, identification, and characterization of cancer stem cells: a review. J Cell Physiol 232(8):2008–2018.  https://doi.org/10.1002/jcp.25759 CrossRefPubMedGoogle Scholar
  2. Abeyta MJ, Clark AT, Rodriguez RT, Bodnar MS, Pera RAR, Firpo MT (2004) Unique gene expression signatures of independently-derived human embryonic stem cell lines. Hum Mol Genet 13(6):601–608.  https://doi.org/10.1093/hmg/ddh068 CrossRefPubMedGoogle Scholar
  3. Aggarwal A, Jamwal M, Kumar VG, Sharma P, Sachdeva MUS, Bansal D, Malhotra P, Das R (2018) Optimal reference gene selection for expression studies in human reticulocytes. J Mol Diagn.  https://doi.org/10.1016/j.jmoldx.2018.01.009 CrossRefGoogle Scholar
  4. Amable PR, Teixeira MVT, Carias RBV, Granjeiro JM, Borojevic R (2013) Identification of appropriate reference genes for human mesenchymal cells during expansion and differentiation. PLoS One 8(9).  https://doi.org/10.1371/journal.pone.0073792 CrossRefGoogle Scholar
  5. Amini AR, Laurencin CT, Nukavarapu SP (2012) Bone tissue engineering: recent advances and challenges. Crit Rev Biomed Eng 40(5):363–408.  https://doi.org/10.1615/CritRevBiomedEng.v40.i5.10 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Amit M, Carpenter MK, Inokuma MS, Chiu CP, Harris CP, Waknitz MA, Itskovitz-Eldor J, Thomson JA (2000) Clonally derived human embryonic stem cell lines maintain pluripotency and proliferative potential for prolonged periods of culture. Dev Biol 227(2):271–278.  https://doi.org/10.1006/dbio.2000.9912 CrossRefPubMedGoogle Scholar
  7. Atala A (2017) Advancing the translation of stem cells to medicine. Stem Cells Transl Med 6(1):1–2.  https://doi.org/10.1002/sctm.16-0475 CrossRefPubMedGoogle Scholar
  8. Batzer MA, Deininger PL (2002) Alu repeats and human genomic diversity. Nat Rev Genet 3(5):370–379.  https://doi.org/10.1038/nrg798 CrossRefPubMedGoogle Scholar
  9. Baykan E, Koç A, Elçin AE, Elçin YM (2014) Evaluation of a biomimetic poly(epsilon-caprolactone)/beta-tricalcium phosphate multispiral scaffold for bone tissue engineering: in-vitro and in-vivo studies. Biointerphases 9(2):029011.  https://doi.org/10.1116/1.4870781 CrossRefPubMedGoogle Scholar
  10. Bhattacharya B, Miura T, Brandenberger R, Mejido J, Luo Y, Yang AX, Joshi BH, Ginis I, Thies RS, Amit M, Lyons I, Condie BG, Itskovitz-Eldor J, Rao MS, Puri RK (2004) Gene expression in human embryonic stem cell lines: unique molecular signature. Blood 103(8):2956–2964.  https://doi.org/10.1182/blood-2003-09-3314 CrossRefPubMedGoogle Scholar
  11. Bianco P, Cao X, Frenette PS, Mao JJ, Robey PG, Simmons PJ, Wang CY (2013) The meaning, the sense and the significance: translating the science of mesenchymal stem cells into medicine. Nat Med 19(1):35–42.  https://doi.org/10.1038/nm.3028 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Boyer LA, Lee TI, Cole MF, Johnstone SE, Levine SS, Zucker JP, Guenther MG, Kumar RM, Murray HL, Jenner RG, Gifford DK, Melton DA, Jaenisch R, Young RA (2005) Core transcriptional regulatory circuitry in human embryonic stem cells. Cell 122(6):947–956.  https://doi.org/10.1016/j.cell.2005.08.020 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Brady K, Dickinson SC, Guillot PV, Polak J, Blom AW, Kafienah W, Hollander AP (2014) Human fetal and adult bone marrow-derived mesenchymal stem cells use different signaling pathways for the initiation of chondrogenesis. Stem Cells Dev 23(5):541–554.  https://doi.org/10.1089/scd.2013.0301 CrossRefPubMedGoogle Scholar
  14. Bustin SA, Benes V, Garson J, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley G, Wittwer CT, Schjerling P, Day PJ, Abreu M, Aguado B, Beaulieu JF, Beckers A, Bogaert S, Browne JA, Carrosco-Ramiro F, Ceelen L, Ciborowski K, Cornillie P, Coulon S, Cuypers A, De Brouwer S, De Ceuninck L, De CJ, De Naeyer H, De Spiegelaere W, Deckers K, Dheedene A, Durinck K, Teixeira MF, Fieuw A, Gallup JM, Ganzalo-Flores S, Goossens K, Heindryckx F, Herring E, Hoenicka H, Icardi L, Jaggi R, Javad F, Karampelias M, Kibenge F, Kibenge M, Kumps C, Lambertz I, Lammens T, Markey A, Messiaen P, Mets E, Morais S, Mudarra-Rubio A, Nakiwala J, Nelis H, Olsvik PA, Perez-Novo C, Plusquin M, Remans T, Rihani A, Rodrigues-Santos P, Rondou P, Sanders R, Schmidt-Bleek K, Skovgaard K, Smeets K, Tabera L, Toegel S, Acker TV, den Broeck WV, der Meulen JV, Gele MV, Peer GV, Poucke MV, Roy NV, Vergult S, Wauman J, Tshuikina-Wiklander M, Willems E, Zaccara S, Zeka F, Vandesompele J (2013) The need for transparency and good practices in the qPCR literature. Nat Methods 10(11):1063–1067.  https://doi.org/10.1038/nmeth.2697 CrossRefPubMedGoogle Scholar
  15. Butte AJ, Dzau VJ, Glueck SB (2001) Further defining housekeeping, or “maintenance,” genes Focus on “A compendium of gene expression in normal human tissues”. Physiol Genomics 7(2):95–96.  https://doi.org/10.1152/physiolgenomics.2001.7.2.95 CrossRefPubMedGoogle Scholar
  16. Caplan AI (2005) Mesenchymal stem cells: cell–based reconstructive therapy in orthopedics. Tissue Eng 11(7–8):1198–1211.  https://doi.org/10.1089/ten.2005.11.1198 CrossRefPubMedGoogle Scholar
  17. Ceelen L, De Spiegelaere W, David M, De Craene J, Vinken M, Vanhaecke T, Rogiers V (2011) Critical selection of reliable reference genes for gene expression study in the HepaRG cell line. Biochem Pharmacol 81(10):1255–1261.  https://doi.org/10.1016/j.bcp.2011.03.004 CrossRefPubMedGoogle Scholar
  18. Ceelen L, De Craene J, De Spiegelaere W (2014) Evaluation of normalization strategies used in real-time quantitative PCR experiments in HepaRG cell line studies. Clin Chem 60(3):451–454.  https://doi.org/10.1373/clinchem.2013.209478 CrossRefPubMedGoogle Scholar
  19. Curtis KM, Gomez LA, Rios C, Garbayo E, Raval AP, Perez-Pinzon MA, Schiller PC (2010) EF1α and RPL13a represent normalization genes suitable for RT-qPCR analysis of bone marrow derived mesenchymal stem cells. BMC Mol Biol 11(1):61.  https://doi.org/10.1186/1471-2199-11-61 CrossRefPubMedPubMedCentralGoogle Scholar
  20. De Campos RP, Schultz IC, de Andrade Mello P, Davies S, Gasparin MS, Bertoni AP, Buffon A, Wink MR (2018) Cervical cancer stem-like cells: systematic review and identification of reference genes for gene expression. Cell Biol Int 42(2):139–152.  https://doi.org/10.1002/cbin.10878 CrossRefPubMedGoogle Scholar
  21. De Francesco F, Ricci G, D’Andrea F, Nicoletti GF, Ferraro GA (2015) Human adipose stem cells: from bench to bedside. Tissue Eng Part B Rev 21(6):572–584.  https://doi.org/10.1089/ten.TEB.2014.0608 CrossRefPubMedGoogle Scholar
  22. De Spiegelaere W, Dern-Wieloch J, Weigel R, Schumacher V, Schorle H, Nettersheim D, Bergmann M, Brehm R, Kliesch S, Vandekerckhove L, Fink C (2015) Reference gene validation for RT-qPCR, a note on different available software packages. PLoS One 10(3):e0122515.  https://doi.org/10.1371/journal.pone.0122515 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Dogan A, Parmaksiz M, Elçin AE, Elçin YM (2016) Extracellular matrix and regenerative therapies from the cardiac perspective. Stem Cell Rev Rep 12(2):202–213.  https://doi.org/10.1007/s12015-015-9641-5 CrossRefGoogle Scholar
  24. Dominici MLBK, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini FC, Krause DS, Deans RJ, Keating A, Prockop DJ, Horwitz EM (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8(4):315–317.  https://doi.org/10.1080/14653240600855905 CrossRefPubMedGoogle Scholar
  25. Draper JS, Pigott C, Thomson JA, Andrews PW (2002) Surface antigens of human embryonic stem cells: changes upon differentiation in culture. J Anat 200(3):249–258.  https://doi.org/10.1046/j.1469-7580.2002.00030.x CrossRefPubMedPubMedCentralGoogle Scholar
  26. Eisenberg E, Levanon EY (2003) Human housekeeping genes are compact. Trends Genet 19(7):362–365.  https://doi.org/10.1016/S0168-9525(03)00140-9 CrossRefPubMedGoogle Scholar
  27. Elçin YM (2004) Stem cells and tissue engineering. Adv Exp Med Biol 553:301–316. PMID: 15503465Google Scholar
  28. Elçin AE, Parmaksız M, Doğan A, Şeker Ş, Durkut S, Dalva K, Elçin YM (2017) Differential gene expression profiling of human adipose stem cells differentiating into smooth muscle-like cells by TGFb1/BMP4. Exp Cell Res 352:207–217.  https://doi.org/10.1016/j.yexcr.2017.02.006 CrossRefPubMedGoogle Scholar
  29. Enver T, Soneji S, Joshi C, Brown J, Iborra F, Orntoft T, Thykjaer T, Maltby E, Smith K, Jones RADM, Matin M, Gokhale P, Draper J, Andrews PW (2005) Cellular differentiation hierarchies in normal and culture-adapted human embryonic stem cells. Hum Mol Genet 14(21):3129–3140.  https://doi.org/10.1093/hmg/ddi345 CrossRefPubMedGoogle Scholar
  30. Fink T, Lund P, Pilgaard L, Rasmussen JG, Duroux M, Zachar V (2008) Instability of standard PCR reference genes in adipose-derived stem cells during propagation, differentiation and hypoxic exposure. BMC Mol Biol 9(1):98.  https://doi.org/10.1186/1471-2199-9-98 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Fournier BP, Ferre FC, Couty L, Lataillade JJ, Gourven M, Naveau A, Coulomb B, Lafont A, Gogly B (2010) Multipotent progenitor cells in gingival connective tissue. Tissue Eng A 16(9):2891–2899.  https://doi.org/10.1089/ten.tea.2009.0796 CrossRefGoogle Scholar
  32. Fournier BP, Larjava H, Häkkinen L (2013) Gingiva as a source of stem cells with therapeutic potential. Stem Cells Dev 22(24):3157–3177.  https://doi.org/10.1089/scd.2013.0015 CrossRefPubMedGoogle Scholar
  33. Gimble JM, Katz AJ, Bunnell BA (2007) Adipose-derived stem cells for regenerative medicine. Circ Res 100(9):1249–1260.  https://doi.org/10.1161/01.RES.0000265074.83288.09 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Gimble JM, Bunnell BA, Chiu ES, Guilak F (2011) Concise review: adipose-derived stromal vascular fraction cells and stem cells: let’s not get lost in translation. Stem Cells 29(5):749–754.  https://doi.org/10.1002/stem.629 CrossRefPubMedGoogle Scholar
  35. Han G, Wang H, Hao J (2013) Molecular mechanisms of embryonic stem cell pluripotency. In: Bhartiya D (ed) Pluripotent stem cells. Intech Open, pp 283–299.  https://doi.org/10.5772/54365 Google Scholar
  36. Holmgren G, Ghosheh N, Zeng X, Bogestål Y, Sartipy P, Synnergren J (2015) Identification of stable reference genes in differentiating human pluripotent stem cells. Physiol Genomics 47(6):232–239.  https://doi.org/10.1152/physiolgenomics.00130.2014 CrossRefPubMedGoogle Scholar
  37. Huggett J, Dheda K, Bustin S, Zumla A (2005) Real-time RT-PCR normalisation; strategies and considerations. Genes Immun 6(4):279–284.  https://doi.org/10.1038/sj.gene.6364190 CrossRefPubMedGoogle Scholar
  38. Inanc B, Elçin AE, Elçin YM (2008) Human embryonic stem cell differentiation on tissue engineering scaffolds: effects of NGF and retinoic acid induction. Tissue Eng A 14(6):955–964.  https://doi.org/10.1089/tea.2007.0213 CrossRefGoogle Scholar
  39. Iser IC, de Campos RP, Bertoni APS, Wink MR (2015) Identification of valid endogenous control genes for determining gene expression in C6 glioma cell line treated with conditioned medium from adipose-derived stem cell. Biomed Pharmacother 75:75–82.  https://doi.org/10.1016/j.biopha.2015.08.035 CrossRefPubMedGoogle Scholar
  40. Jacobi A, Rauh J, Bernstein P, Liebers C, Zou X, Stiehler M (2013) Comparative analysis of reference gene stability in human mesenchymal stromal cells during osteogenic differentiation. Biotechnol Prog 29(4):1034–1042.  https://doi.org/10.1002/btpr.1747 CrossRefPubMedGoogle Scholar
  41. Jo CH, Yoon PW, Kim H, Kang KS, Yoon KS (2013) Comparative evaluation of in vivo osteogenic differentiation of fetal and adult mesenchymal stem cell in rat critical-sized femoral defect model. Cell Tissue Res 353(1):41–52.  https://doi.org/10.1007/s00441-013-1619-5 CrossRefPubMedGoogle Scholar
  42. Kang Y, Wu Z, Cai D, Lu B (2018) Evaluation of reference genes for gene expression studies in mouse and N2a cell ischemic stroke models using quantitative real-time PCR. BMC Neurosci 19(1):3.  https://doi.org/10.1186/s12868-018-0403-6 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Kim DY, Sung JH (2017) Regulatory role of microRNAs in the proliferation and differentiation of adipose-derived stem cells. Histol Histopathol 32(1):1–10.  https://doi.org/10.14670/HH-11-798 CrossRefPubMedGoogle Scholar
  44. Lanza R, Atala A (eds) (2014) Essentials of stem cell biology, 3 rd edn. Academic Press, Elsevier, Amsterdam. ISBN-13: 978-0-12-409503-8Google Scholar
  45. Lemma S, Avnet S, Salerno M, Chano T, Baldini N (2016) Identification and validation of housekeeping genes for gene expression analysis of cancer stem cells. PLoS One 11(2).  https://doi.org/10.1371/journal.pone.0149481 CrossRefGoogle Scholar
  46. Li X, Yang Q, Bai J, Yang Y, Zhong L, Wang Y (2015) Identification of optimal reference genes for quantitative PCR studies on human mesenchymal stem cells. Mol Med Rep 11(2):1304–1311.  https://doi.org/10.3892/mmr.2014.2841 CrossRefPubMedGoogle Scholar
  47. Li X, Kim Y, Tsang EK, Davis JR, Damani FN, Chiang C, Hess GT, Zappala Z, Strober BJ, Scott AJ, Li A, Ganna A, Bassik MC, Merker JD (2017) The impact of rare variation on gene expression across tissues. Nature 550(7675):239–243.  https://doi.org/10.1038/nature24267 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Maitra A, Arking DE, Shivapurkar N, Ikeda M, Stastny V, Kassauei K, Sui G, Cutler DJ, Liu Y, Brimble SN, Noaksson K, Hyllner J, Schulz TC, Zeng X, Freed WJ, Crook J, Abraham S, Colman A, Sartipy P, Matsui SI, Carpenter M, Gazdar AF, Rao M, Chakravarti A (2005) Genomic alterations in cultured human embryonic stem cells. Nat Genet 37(10):1099–1103.  https://doi.org/10.1038/ng1631 CrossRefPubMedGoogle Scholar
  49. Mughal BB, Leemans M, Spirhanzlova P, Demeneix B, Fini JB (2018) Reference gene identification and validation for quantitative real-time PCR studies in developing Xenopus laevis. Sci Rep 8(1):496.  https://doi.org/10.1038/s41598-017-18684-1 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Neuvians TP, Gashaw I, Sauer CG, von Ostau C, Kliesch S, Bergmann M, Hacker A, Grobholz R (2005) Standardization strategy for quantitative PCR in human seminoma and normal testis. J Biotechnol 117(2):163–171.  https://doi.org/10.1016/j.jbiotec.2005.01.011 CrossRefPubMedGoogle Scholar
  51. Noaksson K, Zoric N, Zeng X, Rao MS, Hyllner J, Semb H, Kubista M, Sartipy P (2005) Monitoring differentiation of human embryonic stem cells using real-time PCR. Stem Cells 23(10):1460–1467.  https://doi.org/10.1634/stemcells.2005-0093 CrossRefPubMedGoogle Scholar
  52. Palombella S, Pirrone C, Cherubino M, Valdatta L, Bernardini G, Gornati R (2017) Identification of reference genes for qPCR analysis during hASC long culture maintenance. PLoS One 12(2).  https://doi.org/10.1371/journal.pone.0170918 CrossRefGoogle Scholar
  53. Park BS, Jang KA, Sung JH, Park JS, Kwon YH, Kim KJ, Kim WS (2008) Adipose-derived stem cells and their secretory factors as a promising therapy for skin aging. Dermatol Surg 34(10):1323–1326.  https://doi.org/10.1111/j.1524-4725.2008.34283.x CrossRefPubMedGoogle Scholar
  54. Passier R, Mummery C (2003) Origin and use of embryonic and adult stem cells in differentiation and tissue repair. Cardiovasc Res 58(2):324–335.  https://doi.org/10.1016/S0008-6363(02)00770-8 CrossRefPubMedGoogle Scholar
  55. Pfaffl MW, Tichopad A, Prgomet C, Neuvians TP (2004) Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper–Excel-based tool using pair-wise correlations. Biotechnol Lett 26(6):509–515.  https://doi.org/10.1023/B:BILE.0000019559.84305.47 CrossRefPubMedGoogle Scholar
  56. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284(5411):143–147.  https://doi.org/10.1126/science.284.5411.143 CrossRefPubMedPubMedCentralGoogle Scholar
  57. Quiroz FG, Posada OM, Gallego-Perez D, Higuita-Castro N, Sarassa C, Hansford DJ, Agudelo-Florez P, López LE (2010) Housekeeping gene stability influences the quantification of osteogenic markers during stem cell differentiation to the osteogenic lineage. Cytotechnology 62(2):109–120.  https://doi.org/10.1007/s10616-010-9265-1 CrossRefPubMedPubMedCentralGoogle Scholar
  58. Raaijmakers MH, van Emst L, de Witte T, Mensink E, Raymakers RA (2002) Quantitative assessment of gene expression in highly purified hematopoietic cells using real-time reverse transcriptase polymerase chain reaction. Exp Hematol 30(5):481–487.  https://doi.org/10.1016/S0301-472X(02)00787-7 CrossRefPubMedGoogle Scholar
  59. Radonić A, Thulke S, Mackay IM, Landt O, Siegert W, Nitsche A (2004) Guideline to reference gene selection for quantitative real-time PCR. Biochem Biophys Res Commun 313(4):856–862.  https://doi.org/10.1016/j.bbrc.2003.11.177 CrossRefPubMedGoogle Scholar
  60. Ragni E, Vigano M, Rebulla P, Giordano R, Lazzari L (2013) What is beyond a qRT-PCR study on mesenchymal stem cell differentiation properties: how to choose the most reliable housekeeping genes. J Cell Mol Med 17(1):168–180.  https://doi.org/10.1111/j.1582-4934.2012.01660.x CrossRefPubMedPubMedCentralGoogle Scholar
  61. Rauh J, Jacobi A, Stiehler M (2014) Identification of stable reference genes for gene expression analysis of three-dimensional cultivated human bone marrow-derived mesenchymal stromal cells for bone tissue engineering. Tissue Eng Part C Methods 21(2):192–206.  https://doi.org/10.1089/ten.tec.2014.0230 CrossRefPubMedPubMedCentralGoogle Scholar
  62. Rauh J, Jacobi A, Stiehler M (2015) Identification of stable reference genes for gene expression analysis of three-dimensional cultivated human bone marrow-derived mesenchymal stromal cells for bone tissue engineering. Tissue Eng Part C Methods 21(2):192–206.  https://doi.org/10.1089/ten.TEC.2014.0230 CrossRefGoogle Scholar
  63. Rebouças EDL, Costa JJDN, Passos MJ, Passos JRDS, Hurk RVD, Silva JRV (2013) Real time PCR and importance of housekeepings genes for normalization and quantification of mRNA expression in different tissues. Braz Arch Biol Technol 56(1):143–154.  https://doi.org/10.1590/S1516-89132013000100019 CrossRefGoogle Scholar
  64. Schildberg T, Rauh J, Bretschneider H, Stiehler M (2013) Identification of suitable reference genes in bone marrow stromal cells from osteoarthritic donors. Stem Cell Res 11(3):1288–1298.  https://doi.org/10.1016/j.scr.2013.08.015 CrossRefPubMedGoogle Scholar
  65. Schmittgen TD, Zakrajsek BA (2000) Effect of experimental treatment on housekeeping gene expression: validation by real-time, quantitative RT-PCR. J Biochem Biophys Methods 46(1):69–81.  https://doi.org/10.1016/S0165-022X(00)00129-9 CrossRefPubMedGoogle Scholar
  66. Studer D, Lischer S, Jochum W, Ehrbar M, Zenobi-Wong M, Maniura-Weber K (2012) Ribosomal protein l13a as a reference gene for human bone marrow-derived mesenchymal stromal cells during expansion, adipo-, chondro-, and osteogenesis. Tissue Eng Part C Methods 18(10):761–771.  https://doi.org/10.1089/ten.tec.2012.0081 CrossRefPubMedPubMedCentralGoogle Scholar
  67. Stürzenbaum SR, Kille P (2001) Control genes in quantitative molecular biological techniques: the variability of invariance. Comp Biochem Physiol B: Biochem Mol Biol 130(3):281–289.  https://doi.org/10.1016/S1096-4959(01)00440-7 CrossRefGoogle Scholar
  68. Su X, Yao X, Sun Z, Han Q, Zhao RC (2016) Optimization of reference genes for normalization of reverse transcription quantitative real-time polymerase chain reaction results in senescence study of mesenchymal stem cells. Stem Cells Dev 25(18):1355–1365.  https://doi.org/10.1089/scd.2016.0031 CrossRefPubMedGoogle Scholar
  69. Synnergren J, Giesler TL, Adak S, Tandon R, Noaksson K, Lindahl A, Nilsson P, Nelson D, Olsson B, Englund MCO, Abbot S, Sartipy P (2007) Differentiating human embryonic stem cells express a unique housekeeping gene signature. Stem Cells 25(2):473–480.  https://doi.org/10.1634/stemcells.2006-0247 CrossRefPubMedGoogle Scholar
  70. Taïhi I, Nassif A, Berbar T, Isaac J, Berdal A, Gogly B, Fournier BP (2015) Validation of housekeeping genes to study human gingival stem cells and their in vitro osteogenic differentiation using real-time RT-qPCR. Stem Cells Int 2016.  https://doi.org/10.1155/2016/6261490 CrossRefGoogle Scholar
  71. Thellin O, Zorzi W, Lakaye B, De Borman B, Coumans B, Hennen G, Grisar T, Igout A, Heinen E (1999) Housekeeping genes as internal standards: use and limits. J Biotechnol 75(2):291–295.  https://doi.org/10.1016/S0168-1656(99)00163-7 CrossRefPubMedGoogle Scholar
  72. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM (1998) Embryonic stem cell lines derived from human blastocysts. Science 282(5391):1145–1147.  https://doi.org/10.1126/science.282.5391.1145 CrossRefPubMedGoogle Scholar
  73. Tratwal J, Follin B, Ekblond A, Kastrup J, Haack-Sørensen M (2014) Identification of a common reference gene pair for qPCR in human mesenchymal stromal cells from different tissue sources treated with VEGF. BMC Mol Biol 15(1):11.  https://doi.org/10.1186/1471-2199-15-11 CrossRefPubMedPubMedCentralGoogle Scholar
  74. Uccelli A, Moretta L, Pistoia V (2008) Mesenchymal stem cells in health and disease. Nat Rev Immunol 8(9):726–736.  https://doi.org/10.1038/nri2395 CrossRefPubMedGoogle Scholar
  75. Van De Moosdijk AAA, Van Amerongen R (2016) Identification of reliable reference genes for qRT-PCR studies of the developing mouse mammary gland. Sci Rep 6(35595).  https://doi.org/10.1038/srep35595
  76. Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3(7).  https://doi.org/10.1186/gb-2002-3-7-research0034 CrossRefGoogle Scholar
  77. Vater C, Kasten P, Stiehler M (2011) Culture media for the differentiation of mesenchymal stromal cells. Acta Biomater 7(2):463–477.  https://doi.org/10.1016/j.actbio.2010.07.037 CrossRefPubMedGoogle Scholar
  78. Vossaert L, O’Leary T, Van Neste C, Heindryckx B, Vandesompele J, De Sutter P, Deforce D (2013) Reference loci for RT-qPCR analysis of differentiating human embryonic stem cells. BMC Mol Biol 14(1):21.  https://doi.org/10.1186/1471-2199-14-21 CrossRefPubMedPubMedCentralGoogle Scholar
  79. Wang Y, Han Z, Yan S, Mao A, Wang B, Ren H, Chi Y, Han Z (2010) Evaluation of suitable reference gene for real-time PCR in human umbilical cord mesenchymal stem cells with long-term in vitro expansion. In Vitro Cell Dev Biol Anim 46(7):595–599.  https://doi.org/10.1007/s11626-010-9318-y CrossRefPubMedGoogle Scholar
  80. Warrington JA, Naır A, Mahadevappa M, Tsyganskaya M (2000) Comparison of human adult and fetal expression and identification of 535 housekeeping/maintenance genes. Physiol Genomics 2(3):143–147.  https://doi.org/10.1152/physiolgenomics.2000.2.3.143 CrossRefPubMedGoogle Scholar
  81. Willems E, Mateizel I, Kemp C, Cauffman G, Sermon K, Leyns L (2006) Selection of reference genes in mouse embryos and in differentiating human and mouse ES cells. Int J Dev Biol 50(7):627–635.  https://doi.org/10.1387/ijdb.052130ew CrossRefPubMedGoogle Scholar
  82. Zhang QL, Zhu QH, Liao X, Wang XQ, Chen T, Xu HT, Wang J, Yuan ML, Chen JY (2016) Selection of reliable reference genes for normalization of quantitative RT-PCR from different developmental stages and tissues in amphioxus. Sci Rep 6(37549).  https://doi.org/10.1038/srep37549
  83. Zhao D, Cui D, Wang B, Tian F, Guo L, Yang L, Liu B, Yu X (2012) Treatment of early stage osteonecrosis of the femoral head with autologous implantation of bone marrow-derived and cultured mesenchymal stem cells. Bone 50(1):325–330.  https://doi.org/10.1016/j.bone.2011.11.002 CrossRefPubMedGoogle Scholar
  84. Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H, Alfonso ZC, Fraser JK, Benhaim P, Hedrick MH (2002) Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 13(12):4279–4295.  https://doi.org/10.1091/mbc.E02-02-0105 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Fatma Betül Ayanoğlu
    • 1
  • Ayşe Eser Elçin
    • 1
  • Yaşar Murat Elçin
    • 1
    • 2
  1. 1.Tissue Engineering, Biomaterials and Nanobiotechnology LaboratoryAnkara University Faculty of Science, and Ankara University Stem Cell InstituteAnkaraTurkey
  2. 2.Biovalda Health Technologies, Inc.AnkaraTurkey

Personalised recommendations