Advertisement

Promotion of Cell-Based Therapy: Special Focus on the Cooperation of Mesenchymal Stem Cell Therapy and Gene Therapy for Clinical Trial Studies

  • Ali Golchin
  • Mahmoud Rekabgardan
  • Ramezan Ali Taheri
  • Mohammad Reza NouraniEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1119)

Abstract

Regenerative medicine (RM) is a promising new field of medicine that has mobilized several new tools to repair or replace lost or damaged cells or tissues by stimulating natural regenerative mechanisms nearby cell and tissue-based therapy approaches. However, mesenchymal stem cell (MSC) based therapy has been shown to be safe and effective to a certain degree in multiple clinical trial studies (CTSs) of several diseases, in most MSC CTSs the efficacy of treatment has been reported low. Therefore, researchers have focused on efficacy enhancing of MSC to improve migratory and homing, survival, stemness, differentiation and other therapeutic applicable properties by using different approaches. Gene therapy is one of the experimental technique tools that uses genes to change cells for therapeutic and investigation purposes. In this study has been focused on genetically modified MSCs for use in RM with an emphasis on CTSs. We highlight the basic concept of genetic modifications and also discuss recent clinical studies aspects. Recently reviewed studies show that MSC therapy with assistant gene therapy can be used in cancer therapy, heart diseases, Fanconi anemia and several other diseases.

Keywords

Cell therapy Clinical trial studies Gene therapy Mesenchymal stem cell 

Abbreviations

MSCs

Mesenchymal stem cells

GEMSC

Gene engineering of mesenchymal stem cells

ISCT

International Society for Cellular Therapy

CTSs

Clinical trial studies

RM

Regenerative Medicine

Notes

Acknowledgments

This study was supported by Baqiyatallah University of Medical Sciences (Project No. 96-12-002137).

Conflict of Interest

The authors declare no conflict of interest.

References

  1. Alemany R (2007) Cancer selective adenoviruses. Mol Asp Med 28:42–58.  https://doi.org/10.1016/j.mam.2006.12.002 CrossRefGoogle Scholar
  2. Alonso MM, Cascallo M, Gomez-Manzano C, Jiang H, Bekele BN, Perez-Gimenez A, Lang FF, Piao Y, Alemany R, Fueyo J (2007) ICOVIR-5 shows E2F1 addiction and potent Antiglioma effect in vivo. Cancer Res 67:8255–8263.  https://doi.org/10.1158/0008-5472.CAN-06-4675 CrossRefPubMedGoogle Scholar
  3. Altanerova V, Cihova M, Babic M, Rychly B, Ondicova K, Mravec B, Altaner C (2012) Human adipose tissue-derived mesenchymal stem cells expressing yeast cytosinedeaminase::uracil phosphoribosyltransferase inhibit intracerebral rat glioblastoma. Int J Cancer 130:2455–2463.  https://doi.org/10.1002/ijc.26278 CrossRefPubMedGoogle Scholar
  4. Amano S, Li S, Gu C, Gao Y, Koizumi S, Yamamoto S, Terakawa S, Namba H (2009) Use of genetically engineered bone marrow-derived mesenchymal stem cells for glioma gene therapy. Int J Oncol 35:1265–1270PubMedGoogle Scholar
  5. Baglio SR, Rooijers K, Koppers-Lalic D, Verweij FJ, Pérez Lanzón M, Zini N, Naaijkens B, Perut F, Niessen HWM, Baldini N, Pegtel DM (2015) Human bone marrow- and adipose-mesenchymal stem cells secrete exosomes enriched in distinctive miRNA and tRNA species. Stem Cell Res Ther 6:127.  https://doi.org/10.1186/s13287-015-0116-z CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bian L, Guo Z-K, Wang H-X, Wang J-S, Wang H, Li Q-F, Yang Y-F, Xiao F-J, Wu C-T, Wang L-S (2009) In vitro and in vivo immunosuppressive characteristics of hepatocyte growth factor-modified murine mesenchymal stem cells. In Vivo 23:21–27PubMedGoogle Scholar
  7. Caplan AI, Dennis JE (2006) Mesenchymal stem cells as trophic mediators. J Cell Biochem 98:1076–1084.  https://doi.org/10.1002/jcb.20886 CrossRefPubMedGoogle Scholar
  8. Cascallo M, Alonso MM, Rojas JJ, Perez-Gimenez A, Fueyo J, Alemany R (2007) Systemic toxicity–efficacy profile of ICOVIR-5, a potent and selective oncolytic adenovirus based on the pRB pathway. Mol Ther 15:1607–1615.  https://doi.org/10.1038/sj.mt.6300239 CrossRefPubMedGoogle Scholar
  9. Cernat RI, Mihaescu T, Vornicu M, Vione D, Olariu RI, Arsene C (2011) Serum trace metal and ceruloplasmin variability in individuals treated for pulmonary tuberculosis. Int J Tuberc Lung Dis 15:1239–1245.  https://doi.org/10.5588/ijtld.10.0445 CrossRefPubMedGoogle Scholar
  10. Chakraborty S, Chopra P, Hak A, Dastidar SG, Ray A (2009) Hepatocyte growth factor is an attractive target for the treatment of pulmonary fibrosis. Expert Opin Investig Drugs 22:499–515.  https://doi.org/10.1517/13543784.2013.778972 CrossRefGoogle Scholar
  11. Chang W, Lee CY, Park J-H, Park M-S, Maeng L-S, Yoon CS, Lee MY, Hwang K-C, Chung Y-A (2013) Survival of hypoxic human mesenchymal stem cells is enhanced by a positive feedback loop involving miR-210 and hypoxia-inducible factor 1. J Vet Sci 14:69–76.  https://doi.org/10.4142/JVS.2013.14.1.69 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Chen J-J, Zhou S-H (2011) Mesenchymal stem cells overexpressing MiR-126 enhance ischemic angiogenesis via the AKT/ERK-related pathway. Cardiol J 18:675–681CrossRefGoogle Scholar
  13. Coutu DL, Cuerquis J, El Ayoubi R, Forner K-A, Roy R, François M, Griffith M, Lillicrap D, Yousefi A-M, Blostein MD, Galipeau J (2011a) Hierarchical scaffold design for mesenchymal stem cell-based gene therapy of hemophilia B. Biomaterials 32:295–305.  https://doi.org/10.1016/j.biomaterials.2010.08.094 CrossRefPubMedGoogle Scholar
  14. Coutu DL, Francois M, Galipeau J (2011b) Inhibition of cellular senescence by developmentally regulated FGF receptors in mesenchymal stem cells. Blood 117:6801–6812.  https://doi.org/10.1182/blood-2010-12-321539 CrossRefPubMedGoogle Scholar
  15. Cui L, Zhou X, Li J, Wang L, Wang J, Li Q, Chu J, Zheng L, Wu Q, Han Z, Shi Y, Han Y, Fan D (2012) Dynamic microRNA profiles of hepatic differentiated human umbilical cord lining-derived mesenchymal stem cells. PLoS One 7:e44737.  https://doi.org/10.1371/journal.pone.0044737 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Cyranoski D (2013) Stem cells reprogrammed using chemicals alone. Nature.  https://doi.org/10.1038/nature.2013.13416
  17. da Silva Meirelles L, Caplan AI, Nardi NB (2008) In search of the in vivo identity of mesenchymal stem cells. Stem Cells 26:2287–2299.  https://doi.org/10.1634/stemcells.2007-1122 CrossRefPubMedGoogle Scholar
  18. de Mayo T, Conget P, Becerra-Bayona S, Sossa CL, Galvis V, Arango-Rodríguez ML (2017) The role of bone marrow mesenchymal stromal cell derivatives in skin wound healing in diabetic mice. PLoS One 12:e0177533.  https://doi.org/10.1371/journal.pone.0177533 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini FF, Krause DDS, Deans RJR, Keating A, Prockop DDJ, Horwitz EME (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The international society for cellular therapy position statement. Cytotherapy 8:315–317.  https://doi.org/10.1080/14653240600855905 CrossRefPubMedGoogle Scholar
  20. Duan H-F, Wu C-T, Wu D-L, Lu Y, Liu H-J, Ha X-Q, Zhang Q-W, Wang H, Jia X-X, Wang L-S (2003) Treatment of myocardial ischemia with bone marrow-derived mesenchymal stem cells overexpressing hepatocyte growth factor. Mol Ther 8:467–474CrossRefGoogle Scholar
  21. Eskildsen T, Taipaleenmäki H, Stenvang J, Abdallah BM, Ditzel N, Nossent AY, Bak M, Kauppinen S, Kassem M (2011) MicroRNA-138 regulates osteogenic differentiation of human stromal (mesenchymal) stem cells in vivo. Proc Natl Acad Sci U S A 108:6139–6144.  https://doi.org/10.1073/pnas.1016758108 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Figueroa J, Phillips LM, Shahar T, Hossain A, Gumin J, Kim H, Bean AJ, Calin GA, Fueyo J, Walters ET, Kalluri R, Verhaak RG, Lang FF (2017) Exosomes from glioma-associated mesenchymal stem cells increase the Tumorigenicity of glioma stem-like cells via transfer of miR-1587. Cancer Res 77:5808–5819.  https://doi.org/10.1158/0008-5472.CAN-16-2524 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Firestein GS, Kelley WN (2017) Kelley’s textbook of rheumatology. Saunders/Elsevier, PhiladelphiaGoogle Scholar
  24. Fischer S, Marquart KF, Pieper LA, Fieder J, Gamer M, Gorr I, Schulz P, Bradl H (2017) miRNA engineering of CHO cells facilitates production of difficult-to-express proteins and increases success in cell line development. Biotechnol Bioeng 114:1495–1510.  https://doi.org/10.1002/bit.26280 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Gao F, He T, Wang H, Yu S, Yi D, Liu W, Cai Z (2007) A promising strategy for the treatment of ischemic heart disease: mesenchymal stem cell-mediated vascular endothelial growth factor gene transfer in rats. Can J Cardiol 23:891–898CrossRefGoogle Scholar
  26. García-Castro J, Alemany R, Cascalló M, Martínez-Quintanilla J, del Mar Arriero M, Lassaletta Á, Madero L, Ramírez M (2010) Treatment of metastatic neuroblastoma with systemic oncolytic virotherapy delivered by autologous mesenchymal stem cells: an exploratory study. Cancer Gene Ther 17:476–483.  https://doi.org/10.1038/cgt.2010.4 CrossRefPubMedGoogle Scholar
  27. Gazdhar A, Susuri N, Hostettler K, Gugger M, Knudsen L, Roth M, Ochs M, Geiser T (2013) HGF expressing stem cells in usual interstitial pneumonia originate from the bone marrow and are antifibrotic. PLoS One 8:e65453.  https://doi.org/10.1371/journal.pone.0065453 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Glenn JD, Whartenby KA (2014) Mesenchymal stem cells: emerging mechanisms of immunomodulation and therapy. World J Stem Cells 6:526–539.  https://doi.org/10.4252/wjsc.v6.i5.526 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Gnecchi M, He H, Noiseux N, Liang OD, Zhang L, Morello F, Mu H, Melo LG, Pratt RE, Ingwall JS, Dzau VJ (2006) Evidence supporting paracrine hypothesis for Akt-modified mesenchymal stem cell-mediated cardiac protection and functional improvement. FASEB J 20:661–669.  https://doi.org/10.1096/fj.05-5211com CrossRefPubMedGoogle Scholar
  30. Gnecchi M, Danieli P, Malpasso G, Ciuffreda MC (2016) Paracrine mechanisms of mesenchymal stem cells in tissue repair. Humana Press, New York, pp 123–146Google Scholar
  31. Golchin A, Asadpour R, Roshangar L, Jafari-Jozani R (2016) The effect of ammonium chloride concentration in in vitro maturation culture on ovine embryo development. J Reprod Infertil 17:144–150PubMedPubMedCentralGoogle Scholar
  32. Golchin A, Hosseinzadeh S, Roshangar L (2017) The role of nanomaterials in cell delivery systems. Med Mol Morphol 51:1–12.  https://doi.org/10.1007/s00795-017-0173-8 CrossRefPubMedGoogle Scholar
  33. Golchin A, Hosseinzadeh S, Ardeshirylajimi A (2018) The exosomes released from different cell types and their effects in wound healing. J Cell Biochem 119:5043–5052.  https://doi.org/10.1002/jcb.26706 CrossRefPubMedGoogle Scholar
  34. Gong M, Yu B, Wang J, Wang Y, Liu M, Paul C, Millard RW, Xiao D-S, Ashraf M, Xu M (2017) Mesenchymal stem cells release exosomes that transfer miRNAs to endothelial cells and promote angiogenesis. Oncotarget 8:45200–45212.  https://doi.org/10.18632/oncotarget.16778 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Haider HK, Jiang S, Idris NM, Ashraf M (2008) IGF-1-overexpressing mesenchymal stem cells accelerate bone marrow stem cell mobilization via paracrine activation of SDF-1/CXCR4 signaling to promote myocardial repair. Circ Res 103:1300–1308.  https://doi.org/10.1161/CIRCRESAHA.108.186742 CrossRefPubMedGoogle Scholar
  36. Han J, Zhao J, Xu J, Wen Y (2014) Mesenchymal stem cells genetically modified by lentivirus-mediated interleukin-12 inhibit malignant ascites in mice. Exp Ther Med 8:1330–1334.  https://doi.org/10.3892/etm.2014.1918 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Hass R, Kasper C, Böhm S, Jacobs R (2011) Different populations and sources of human mesenchymal stem cells (MSC): a comparison of adult and neonatal tissue-derived MSC. Cell Commun Signal 9:12.  https://doi.org/10.1186/1478-811X-9-12 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Hodgkinson CP, Gomez JA, Mirotsou M, Dzau VJ (2010) Genetic engineering of mesenchymal stem cells and its application in human disease therapy. Hum Gene Ther 21:1513–1526.  https://doi.org/10.1089/hum.2010.165 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Hong SJ, Jia S-X, Xie P, Xu W, Leung KP, Mustoe TA, Galiano RD (2013) Topically delivered adipose derived stem cells show an activated-fibroblast phenotype and enhance granulation tissue formation in skin wounds. PLoS One 8:e55640.  https://doi.org/10.1371/journal.pone.0055640 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Hori M, Juniantito V, Izawa T, Ichikawa C, Tanaka M, Tanaka K, Takenaka S, Kuwamura M, Yamate J (2013) Distribution of cells labelled by a novel somatic stem cell-recognizing antibody (A3) in pulmonary genesis and bleomycin induced pulmonary fibrosis in rats. J Comp Pathol 148:385–395.  https://doi.org/10.1016/j.jcpa.2012.09.003 CrossRefPubMedGoogle Scholar
  41. Hou P, Li Y, Zhang X, Liu C, Guan J, Li H, Zhao T, Ye J, Yang W, Liu K, Ge J, Xu J, Zhang Q, Zhao Y, Deng H (2013) Pluripotent stem cells induced from mouse somatic cells by small-molecule compounds. Science 341:651–654.  https://doi.org/10.1126/science.1239278 CrossRefPubMedGoogle Scholar
  42. Hu R, Ling W, Xu W, Han D (2014) Fibroblast-like cells differentiated from adipose-derived mesenchymal stem cells for vocal fold wound healing. PLoS One 9:e92676.  https://doi.org/10.1371/journal.pone.0092676 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Huang J, Zhang Z, Guo J, Ni A, Deb A, Zhang L, Mirotsou M, Pratt RE, Dzau VJ (2010) Genetic modification of mesenchymal stem cells overexpressing CCR1 increases cell viability, migration, engraftment, and capillary density in the injured myocardium. Circ Res 106:1753–1762.  https://doi.org/10.1161/CIRCRESAHA.109.196030 CrossRefPubMedPubMedCentralGoogle Scholar
  44. Huang F, Zhu X, Hu X-Q, Fang Z-F, Tang L, Lu X-L, Zhou S-H (2013) Mesenchymal stem cells modified with miR-126 release angiogenic factors and activate Notch ligand Delta-like-4, enhancing ischemic angiogenesis and cell survival. Int J Mol Med 31:484–492.  https://doi.org/10.3892/ijmm.2012.1200 CrossRefPubMedGoogle Scholar
  45. Karnoub AE, Dash AB, Vo AP, Sullivan A, Brooks MW, Bell GW, Richardson AL, Polyak K, Tubo R, Weinberg RA (2007) Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature 449:557–563.  https://doi.org/10.1038/nature06188 CrossRefPubMedGoogle Scholar
  46. Kim JY, Shin KK, Lee AL, Kim YS, Park HJ, Park YK, Bae YC, Jung JS (2014) MicroRNA-302 induces proliferation and inhibits oxidant-induced cell death in human adipose tissue-derived mesenchymal stem cells. Cell Death Dis 5:e1385.  https://doi.org/10.1038/cddis.2014.344 CrossRefPubMedPubMedCentralGoogle Scholar
  47. Kosaraju R, Rennert RC, Maan ZN, Duscher D, Barrera J, Whittam AJ, Januszyk M, Rajadas J, Rodrigues M, Gurtner GC (2016) Adipose-derived stem cell-seeded hydrogels increase endogenous progenitor cell recruitment and neovascularization in wounds. Tissue Eng Part A 22:295–305.  https://doi.org/10.1089/ten.tea.2015.0277 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Lai RC, Chen TS, Lim SK (2011) Mesenchymal stem cell exosome: a novel stem cell-based therapy for cardiovascular disease. Regen Med 6:481–492.  https://doi.org/10.2217/rme.11.35 CrossRefPubMedGoogle Scholar
  49. Le Blanc K, Pittenger MF (2005) Mesenchymal stem cells: progress toward promise. Cytotherapy 7:36–45.  https://doi.org/10.1080/14653240510018118 CrossRefPubMedGoogle Scholar
  50. Lee J, Elkahloun AG, Messina SA, Ferrari N, Xi D, Smith CL, Cooper R, Albert PS, Fine HA, Dembinski J, Andreeff M, Lang FF (2003) Cellular and genetic characterization of human adult bone marrow-derived neural stem-like cells: a potential antiglioma cellular vector. Cancer Res 63:8877–8889.  https://doi.org/10.1158/0008-5472.can-04-1874 CrossRefPubMedGoogle Scholar
  51. Leung CC, Yu ITS, Chen W (2012) Silicosis. Lancet 379:2008–2018.  https://doi.org/10.1016/S0140-6736(12)60235-9 CrossRefPubMedGoogle Scholar
  52. Li W, Ma N, Ong L-L, Nesselmann C, Klopsch C, Ladilov Y, Furlani D, Piechaczek C, Moebius JM, Lützow K, Lendlein A, Stamm C, Li R-K, Steinhoff G (2007) Bcl-2 engineered MSCs inhibited apoptosis and improved heart function. Stem Cells 25:2118–2127.  https://doi.org/10.1634/stemcells.2006-0771 CrossRefPubMedGoogle Scholar
  53. Li G-C, Ye Q-H, Xue Y-H, Sun H-J, Zhou H-J, Ren N, Jia H-L, Shi J, Wu J-C, Dai C, Dong Q-Z, Qin L-X (2010) Human mesenchymal stem cells inhibit metastasis of a hepatocellular carcinoma model using the MHCC97-H cell line. Cancer Sci 101:2546–2553.  https://doi.org/10.1111/j.1349-7006.2010.01738.x CrossRefPubMedGoogle Scholar
  54. Li C, Wei G, Gu Q, Wang Q, Tao S, Xu L (2015a) Proliferation and differentiation of rat osteoporosis mesenchymal stem cells (MSCs) after telomerase reverse transcriptase (TERT) transfection. Med Sci Monit 21:845–854.  https://doi.org/10.12659/MSM.893144 CrossRefPubMedPubMedCentralGoogle Scholar
  55. Li M, Zhao Y, Hao H, Dai H, Han Q, Tong C, Liu J, Han W, Fu X (2015b) Mesenchymal stem cell-conditioned medium improves the proliferation and migration of keratinocytes in a diabetes-like microenvironment. Int J Low Extrem Wounds 14:73–86.  https://doi.org/10.1177/1534734615569053 CrossRefPubMedGoogle Scholar
  56. Liang X, Zhang L, Wang S, Han Q, Zhao RC (2016) Exosomes secreted by mesenchymal stem cells promote endothelial cell angiogenesis by transferring miR-125a. J Cell Sci 129:2182–2189.  https://doi.org/10.1242/jcs.170373 CrossRefPubMedGoogle Scholar
  57. Lim S, Kim Y, Ahn Y, Jeong M, Hong M, Joo S, Nam K, Cho J, Kang P, Park J (2006) The effects of mesenchymal stem cells transduced with Akt in a porcine myocardial infarction model. Cardiovasc Res 70:530–542.  https://doi.org/10.1016/j.cardiores.2006.02.016 CrossRefPubMedGoogle Scholar
  58. Liu N, Olson EN (2010) MicroRNA regulatory networks in cardiovascular development. Dev Cell 18:510–525.  https://doi.org/10.1016/j.devcel.2010.03.010 CrossRefPubMedPubMedCentralGoogle Scholar
  59. Liu Y, Carson-Walter E, Walter KA (2014) Chemokine receptor CXCR7 is a functional receptor for CXCL12 in brain endothelial cells. PLoS One 9:e103938.  https://doi.org/10.1371/journal.pone.0103938 CrossRefPubMedPubMedCentralGoogle Scholar
  60. Liu WW, Wang HX, Yu W, Bi XY, Chen JY, Chen LZ, Ding L, Han DM, Guo ZK, Lei YX (2015) Treatment of silicosis with hepatocyte growth factor-modified autologous bone marrow stromal cells: a non-randomized study with follow-up. Genet Mol Res 14:10672–10681.  https://doi.org/10.4238/2015.September.9.7 CrossRefPubMedGoogle Scholar
  61. Lv F-J, Tuan RS, Cheung KMC, Leung VYL (2014) Concise review: the surface markers and identity of human mesenchymal stem cells. Stem Cells 32:1408–1419.  https://doi.org/10.1002/stem.1681 CrossRefPubMedGoogle Scholar
  62. Lv B, Li F, Fang J, Xu L, Sun C, Han J, Hua T, Zhang Z, Feng Z, Jiang X (2017) Hypoxia inducible factor 1α promotes survival of mesenchymal stem cells under hypoxia. Am J Transl Res 9:1521–1529PubMedPubMedCentralGoogle Scholar
  63. Ma H, Shi X, Yuan X, Ding Y (2016) IL-1β siRNA adenovirus benefits liver regeneration by improving mesenchymal stem cells survival after acute liver failure. Ann Hepatol 15:260–270.  https://doi.org/10.5604/16652681.1193723 CrossRefPubMedGoogle Scholar
  64. Ma P, Pan Y, Li W, Sun C, Liu J, Xu T, Shu Y (2017) Extracellular vesicles-mediated noncoding RNAs transfer in cancer. J Hematol Oncol 10:57.  https://doi.org/10.1186/s13045-017-0426-y CrossRefPubMedPubMedCentralGoogle Scholar
  65. Maijenburg MW, Gilissen C, Melief SM, Kleijer M, Weijer K, ten Brinke A, Roelofs H, Van Tiel CM, Veltman JA, de Vries CJM, van der Schoot CE, Voermans C (2012) Nuclear receptors Nur77 and Nurr1 modulate mesenchymal stromal cell migration. Stem Cells Dev 21:228–238.  https://doi.org/10.1089/scd.2011.0076 CrossRefPubMedGoogle Scholar
  66. Manis JP (2007) Knock out, knock in, knock down — genetically manipulated mice and the Nobel prize. N Engl J Med 357:2426–2429.  https://doi.org/10.1056/NEJMp0707712 CrossRefPubMedGoogle Scholar
  67. Maris JM, Hogarty MD, Bagatell R, Cohn SL (2007) Neuroblastoma. Lancet 369:2106–2120.  https://doi.org/10.1016/S0140-6736(07)60983-0 CrossRefPubMedGoogle Scholar
  68. Mathiyalagan P, Sahoo S (2017) Exosomes-based gene therapy for MicroRNA delivery. Methods Mol Biol 1521:139–152.  https://doi.org/10.1007/978-1-4939-6588-5_9 CrossRefPubMedPubMedCentralGoogle Scholar
  69. Meng F, Rui Y, Xu L, Wan C, Jiang X, Li G (2014) Aqp1 enhances migration of bone marrow mesenchymal stem cells through regulation of FAK and β-catenin. Stem Cells Dev 23:66–75.  https://doi.org/10.1089/scd.2013.0185 CrossRefPubMedGoogle Scholar
  70. Merten O-W, Al-Rubeai M (2011) Viral vectors for gene therapy: methods and protocols. Humana Press, TotowaCrossRefGoogle Scholar
  71. Moriyama H, Moriyama M, Isshi H, Ishihara S, Okura H, Ichinose A, Ozawa T, Matsuyama A, Hayakawa T (2014) Role of notch signaling in the maintenance of human mesenchymal stem cells under hypoxic conditions. Stem Cells Dev 23:2211–2224.  https://doi.org/10.1089/scd.2013.0642 CrossRefPubMedPubMedCentralGoogle Scholar
  72. Muñoz Ruiz M, Regueiro JR (2012) New tools in regenerative medicine: gene therapy. Adv Exp Med Biol 741:254–275CrossRefGoogle Scholar
  73. Munoz JL, Bliss SA, Greco SJ, Ramkissoon SH, Ligon KL, Rameshwar P (2013) Delivery of functional anti-miR-9 by mesenchymal stem cell–derived exosomes to glioblastoma Multiforme cells conferred chemosensitivity. Mol Ther Nucleic Acids 2:e126.  https://doi.org/10.1038/MTNA.2013.60 CrossRefPubMedPubMedCentralGoogle Scholar
  74. Nakamura Y, Ishikawa H, Kawai K, Tabata Y, Suzuki S (2013) Enhanced wound healing by topical administration of mesenchymal stem cells transfected with stromal cell-derived factor-1. Biomaterials 34:9393–9400.  https://doi.org/10.1016/j.biomaterials.2013.08.053 CrossRefPubMedGoogle Scholar
  75. Nie C, Yang D, Xu J, Si Z, Jin X, Zhang J (2011) Locally administered adipose-derived stem cells accelerate wound healing through differentiation and Vasculogenesis. Cell Transplant 20:205–216.  https://doi.org/10.3727/096368910X520065 CrossRefPubMedPubMedCentralGoogle Scholar
  76. Niess H, Bao Q, Conrad C, Zischek C, Notohamiprodjo M, Schwab F, Schwarz B, Huss R, Jauch K-W, Nelson PJ, Bruns CJ (2011) Selective targeting of genetically engineered mesenchymal stem cells to tumor stroma microenvironments using tissue-specific suicide gene expression suppresses growth of hepatocellular carcinoma. Ann Surg 254:767–775.  https://doi.org/10.1097/SLA.0b013e3182368c4f CrossRefPubMedGoogle Scholar
  77. Niess H, von Einem JC, Thomas MN, Michl M, Angele MK, Huss R, Günther C, Nelson PJ, Bruns CJ, Heinemann V (2015) Treatment of advanced gastrointestinal tumors with genetically modified autologous mesenchymal stromal cells (TREAT-ME1): study protocol of a phase I/II clinical trial. BMC Cancer 15:237.  https://doi.org/10.1186/s12885-015-1241-x CrossRefPubMedPubMedCentralGoogle Scholar
  78. Nombela-Arrieta C, Ritz J, Silberstein LE (2011) The elusive nature and function of mesenchymal stem cells. Nat Rev Mol Cell Biol 12:126–131.  https://doi.org/10.1038/nrm3049 CrossRefPubMedPubMedCentralGoogle Scholar
  79. Nowakowski A, Walczak P, Lukomska B, Janowski M (2016) Genetic engineering of mesenchymal stem cells to induce their migration and survival. Stem Cells Int 2016:4956063.  https://doi.org/10.1155/2016/4956063 CrossRefPubMedPubMedCentralGoogle Scholar
  80. Nuschke A (2014) Activity of mesenchymal stem cells in therapies for chronic skin wound healing. Organogenesis 10:29–37.  https://doi.org/10.4161/org.27405 CrossRefPubMedGoogle Scholar
  81. O’Brien KP, Khan S, Gilligan KE, Zafar H, Lalor P, Glynn C, O’Flatharta C, Ingoldsby H, Dockery P, De Bhulbh A, Schweber JR, St John K, Leahy M, Murphy JM, Gallagher WM, O’Brien T, Kerin MJ, Dwyer RM (2018) Employing mesenchymal stem cells to support tumor-targeted delivery of extracellular vesicle (EV)-encapsulated microRNA-379. Oncogene 1:2137–2149.  https://doi.org/10.1038/s41388-017-0116-9 CrossRefGoogle Scholar
  82. Otani K, Yamahara K, Ohnishi S, Obata H, Kitamura S, Nagaya N (2009) Nonviral delivery of siRNA into mesenchymal stem cells by a combination of ultrasound and microbubbles. J Control Release 133:146–153.  https://doi.org/10.1016/j.jconrel.2008.09.088 CrossRefPubMedGoogle Scholar
  83. Park JS, Suryaprakash S, Lao Y-H, Leong KW (2015) Engineering mesenchymal stem cells for regenerative medicine and drug delivery. Methods 84:3–16.  https://doi.org/10.1016/j.ymeth.2015.03.002 CrossRefPubMedPubMedCentralGoogle Scholar
  84. Pirmoradi S, Fathi E, Farahzadi R, Pilehvar-Soltanahmadi Y, Zarghami N (2017) Curcumin affects adipose tissue-derived mesenchymal stem cell aging through TERT gene expression. Drug Res (Stuttg) 68:213–221.  https://doi.org/10.1055/s-0043-119635 CrossRefGoogle Scholar
  85. Post DE, Khuri FR, Simons JW, van Meir EG (2003) Replicative oncolytic adenoviruses in multimodal Cancer regimens. Hum Gene Ther 14:933–946.  https://doi.org/10.1089/104303403766682205 CrossRefPubMedGoogle Scholar
  86. Rhee K-J, Lee J, Eom Y (2015) Mesenchymal stem cell-mediated effects of tumor support or suppression. Int J Mol Sci 16:30015–30033.  https://doi.org/10.3390/ijms161226215 CrossRefPubMedPubMedCentralGoogle Scholar
  87. Sage EK, Kolluri KK, McNulty K, Lourenco SDS, Kalber TL, Ordidge KL, Davies D, Gary Lee YC, Giangreco A, Janes SM (2014) Systemic but not topical TRAIL-expressing mesenchymal stem cells reduce tumour growth in malignant mesothelioma. Thorax 69:638–647.  https://doi.org/10.1136/thoraxjnl-2013-204110 CrossRefPubMedPubMedCentralGoogle Scholar
  88. Sage EK, Thakrar RM, Janes SM (2016) Genetically modified mesenchymal stromal cells in cancer therapy. Cytotherapy 18:1435–1445.  https://doi.org/10.1016/j.jcyt.2016.09.003 CrossRefPubMedPubMedCentralGoogle Scholar
  89. Sandhaanam SD, Pathalam G, Dorairaj S, Savariar V, Nadu T (2013) Mesenchymal stem cells (MSC): identification, proliferation and differentiation – a review article. PeerJ Prepr 148:1–13.  https://doi.org/10.7287/peerj.preprints.148v1 CrossRefGoogle Scholar
  90. Sauni R, Oksa P, Lehtimäki L, Toivio P, Palmroos P, Nieminen R, Moilanen E, Uitti J (2012) Increased alveolar nitric oxide and systemic inflammation markers in silica-exposed workers. Occup Environ Med 69:256–260.  https://doi.org/10.1136/oemed-2011-100347 CrossRefPubMedGoogle Scholar
  91. Senís E, Mockenhaupt S, Rupp D, Bauer T, Paramasivam N, Knapp B, Gronych J, Grosse S, Windisch MP, Schmidt F, Theis FJ, Eils R, Lichter P, Schlesner M, Bartenschlager R, Grimm D (2017) TALEN/CRISPR-mediated engineering of a promoterless anti-viral RNAi hairpin into an endogenous miRNA locus. Nucleic Acids Res 45:e3–e3.  https://doi.org/10.1093/nar/gkw805 CrossRefPubMedGoogle Scholar
  92. Shaer A, Azarpira N, Vahdati A, Karimi M, Shariati M (2014) miR-375 induces human decidua basalis-derived stromal cells to become insulin-producing cells. Cell Mol Biol Lett 19:483–499.  https://doi.org/10.2478/s11658-014-0207-3 CrossRefPubMedPubMedCentralGoogle Scholar
  93. Soheilifar MH, Taheri RA, Emameh RZ, Moshtaghian A, Kooshki H, Motie MR (2018) Molecular landscape in alveolar soft part sarcoma: implications for molecular targeted therapy. Biomed Pharmacother 103:889–896.  https://doi.org/10.1016/j.biopha.2018.04.117 CrossRefPubMedGoogle Scholar
  94. Squillaro T, Peluso G, Galderisi U (2016) Clinical trials with mesenchymal stem cells: an update. Cell Transplant 25:829–848.  https://doi.org/10.3727/096368915X689622 CrossRefPubMedGoogle Scholar
  95. Stintzing S, Modest DP, Rossius L, Lerch MM, von Weikersthal LF, Decker T, Kiani A, Vehling-Kaiser U, Al-Batran S-E, Heintges T, Lerchenmüller C, Kahl C, Seipelt G, Kullmann F, Stauch M, Scheithauer W, Held S, Giessen-Jung C, Moehler M, Jagenburg A, Kirchner T, Jung A, Heinemann V, FIRE-3 investigators (2016) FOLFIRI plus cetuximab versus FOLFIRI plus bevacizumab for metastatic colorectal cancer (FIRE-3): a post-hoc analysis of tumour dynamics in the final RAS wild-type subgroup of this randomised open-label phase 3 trial. Lancet Oncol 17:1426–1434.  https://doi.org/10.1016/S1470-2045(16)30269-8 CrossRefPubMedGoogle Scholar
  96. Sun Z, Li T, Wen H, Wang H, Ji W, Ma Y (2015) Immunological effect induced by mesenchymal stem cells in a rat liver transplantation model. Exp Ther Med 10:401–406.  https://doi.org/10.3892/etm.2015.2551 CrossRefPubMedPubMedCentralGoogle Scholar
  97. Tantrawatpan C, Manochantr S, Kheolamai P, U-Pratya Y, Supokawej A, Issaragrisil S (2013) Pluripotent gene expression in mesenchymal stem cells from human umbilical cord Wharton’s jelly and their differentiation potential to neural-like cells. J Med Assoc Thail 96:1208–1217Google Scholar
  98. Tsubokawa T, Yagi K, Nakanishi C, Zuka M, Nohara A, Ino H, Fujino N, Konno T, Kawashiri M, Ishibashi-Ueda H, Nagaya N, Yamagishi M (2010) Impact of anti-apoptotic and anti-oxidative effects of bone marrow mesenchymal stem cells with transient overexpression of heme oxygenase-1 on myocardial ischemia. Am J Physiol Heart Circ Physiol 298:H1320–H1329.  https://doi.org/10.1152/ajpheart.01330.2008 CrossRefPubMedGoogle Scholar
  99. von Einem JC, Peter S, Günther C, Volk H-D, Grütz G, Salat C, Stoetzer O, Nelson PJ, Michl M, Modest DP, Holch JW, Angele M, Bruns C, Niess H, Heinemann V (2017) Treatment of advanced gastrointestinal cancer with genetically modified autologous mesenchymal stem cells - TREAT-ME-1 - a phase I, first in human, first in class trial. Oncotarget 8:80156–80166.  https://doi.org/10.18632/oncotarget.20964 CrossRefGoogle Scholar
  100. Walesky C, Apte U (2015) Role of hepatocyte nuclear factor 4α (HNF4α) in cell proliferation and Cancer. Gene Expr 16:101–108.  https://doi.org/10.3727/105221615X14181438356292 CrossRefPubMedPubMedCentralGoogle Scholar
  101. Wang M, Tan J, Wang Y, Meldrum KK, Dinarello CA, Meldrum DR (2009) IL-18 binding protein-expressing mesenchymal stem cells improve myocardial protection after ischemia or infarction. Proc Natl Acad Sci 106:17499–17504.  https://doi.org/10.1073/pnas.0908924106 CrossRefPubMedGoogle Scholar
  102. Won Y-W, Patel AN, Bull DA (2014) Cell surface engineering to enhance mesenchymal stem cell migration toward an SDF-1 gradient. Biomaterials 35:5627–5635.  https://doi.org/10.1016/j.biomaterials.2014.03.070 CrossRefPubMedGoogle Scholar
  103. Wu N, Zhang Y-L, Wang H-T, Li D-W, Dai H-J, Zhang Q-Q, Zhang J, Ma Y, Xia Q, Bian J-M, Hang H-L (2016) Overexpression of hepatocyte nuclear factor 4α in human mesenchymal stem cells suppresses hepatocellular carcinoma development through Wnt/β-catenin signaling pathway downregulation. Cancer Biol Ther 17:558–565.  https://doi.org/10.1080/15384047.2016.1177675 CrossRefPubMedPubMedCentralGoogle Scholar
  104. Xie C, Xie D-Y, Lin B-L, Zhang G-L, Wang P-P, Peng L, Gao Z-L (2013) Interferon-β gene-modified human bone marrow mesenchymal stem cells attenuate hepatocellular carcinoma through inhibiting AKT/FOXO3a pathway. Br J Cancer 109:1198–1205.  https://doi.org/10.1038/bjc.2013.422 CrossRefPubMedPubMedCentralGoogle Scholar
  105. Xin H, Li Y, Buller B, Katakowski M, Zhang Y, Wang X, Shang X, Zhang ZG, Chopp M (2012) Exosome-mediated transfer of miR-133b from multipotent mesenchymal stromal cells to neural cells contributes to neurite outgrowth. Stem Cells 30:1556–1564.  https://doi.org/10.1002/stem.1129 CrossRefPubMedPubMedCentralGoogle Scholar
  106. Xu G, Jiang X-D, Xu Y, Zhang J, Huang F-H, Chen Z-Z, Zhou D-X, Shang J-H, Zou Y-X, Cai Y-Q, Kou S-B, Chen Y-Z, Xu R-X, Zeng Y-J (2009) Adenoviral-mediated interleukin-18 expression in mesenchymal stem cells effectively suppresses the growth of glioma in rats. Cell Biol Int 33:466–474.  https://doi.org/10.1016/j.cellbi.2008.07.023 CrossRefPubMedGoogle Scholar
  107. Xu J, Huang Z, Lin L, Fu M, Gao Y, Shen Y, Zou Y, Sun A, Qian J, Ge J (2014) miR-210 over-expression enhances mesenchymal stem cell survival in an oxidative stress environment through antioxidation and c-met pathway activation. Sci China Life Sci 57:989–997.  https://doi.org/10.1007/s11427-014-4725-z CrossRefPubMedGoogle Scholar
  108. Xu T-X, Zhao S-Z, Dong M, Yu X-R (2016) Hypoxia responsive miR-210 promotes cell survival and autophagy of endometriotic cells in hypoxia. Eur Rev Med Pharmacol Sci 20:399–406PubMedGoogle Scholar
  109. Yan J, Zhang C, Zhao Y, Cao C, Wu K, Zhao L, Zhang Y (2014) Non-viral oligonucleotide antimiR-138 delivery to mesenchymal stem cell sheets and the effect on osteogenesis. Biomaterials 35:7734–7749.  https://doi.org/10.1016/J.BIOMATERIALS.2014.05.089 CrossRefPubMedGoogle Scholar
  110. Yeh T-S, Dean Fang Y-H, Lu C-H, Chiu S-C, Yeh C-L, Yen T-C, Parfyonova Y, Hu Y-C (2014) Baculovirus-transduced, VEGF-expressing adipose-derived stem cell sheet for the treatment of myocardium infarction. Biomaterials 35:174–184.  https://doi.org/10.1016/j.biomaterials.2013.09.080 CrossRefPubMedGoogle Scholar
  111. Youssef A, Aboalola D, Han VKM (2017) The roles of insulin-like growth factors in mesenchymal stem cell niche. Stem Cells Int 2017:9453108–9453112.  https://doi.org/10.1155/2017/9453108 CrossRefPubMedPubMedCentralGoogle Scholar
  112. Yuan Z, Zhang J, Huang Y, Zhang Y, Liu W, Wang G, Zhang Q, Wang G, Yang Y, Li H, Chen G (2017) NRF2 overexpression in mesenchymal stem cells induces stem-cell marker expression and enhances osteoblastic differentiation. Biochem Biophys Res Commun 491:228–235.  https://doi.org/10.1016/j.bbrc.2017.07.083 CrossRefPubMedGoogle Scholar
  113. Zhang Q-Z, Su W-R, Shi S-H, Wilder-Smith P, Xiang AP, Wong A, Nguyen AL, Kwon CW, Le AD (2010) Human gingiva-derived mesenchymal stem cells elicit polarization of M2 macrophages and enhance cutaneous wound healing. Stem Cells 28:1856–1868.  https://doi.org/10.1002/stem.503 CrossRefPubMedPubMedCentralGoogle Scholar
  114. Zhang J, Hou L, Wu X, Zhao D, Wang Z, Hu H, Fu Y, He J (2016) Inhibitory effect of genetically engineered mesenchymal stem cells with Apoptin on hepatoma cells in vitro and in vivo. Mol Cell Biochem 416:193–203.  https://doi.org/10.1007/s11010-016-2707-0 CrossRefPubMedGoogle Scholar
  115. Zhou H, Wu S, Joo JY, Zhu S, Han DW, Lin T, Trauger S, Bien G, Yao S, Zhu Y, Siuzdak G, Scholer HR, Duan LDS, Zhou H, Wu S, Joo JY, Zhu S, Han DW, Lin T, Trauger S, Bien G, Yao S, Zhu Y, Siuzdak G, Schöler HR, Duan L, Ding S (2009) Generation of induced pluripotent stem cells using recombinant proteins. Cell Stem Cell 4:381–384.  https://doi.org/10.1016/j.stem.2009.04.005 CrossRefPubMedPubMedCentralGoogle Scholar
  116. Zhu Y, Feng X, Abbott J, Fang X, Hao Q, Monsel A, Qu J, Matthay MA, Lee JW (2014) Human mesenchymal stem cell microvesicles for treatment of Escherichia coli endotoxin-induced acute lung injury in mice. Stem Cells 32:116–125.  https://doi.org/10.1002/stem.1504 CrossRefPubMedPubMedCentralGoogle Scholar
  117. Zomer HD, Vidane AS, Gonçalves NN, Ambrósio CE (2015) Mesenchymal and induced pluripotent stem cells: general insights and clinical perspectives. Stem Cells Cloning Adv Appl 8:125–134.  https://doi.org/10.2147/SCCAA.S88036 CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Ali Golchin
    • 1
    • 2
  • Mahmoud Rekabgardan
    • 2
  • Ramezan Ali Taheri
    • 1
  • Mohammad Reza Nourani
    • 1
    Email author
  1. 1.Tissue Engineering and Regenerative Medicine, Nanobiotechnology Research CenterBaqiyatallah University of Medical SciencesTehranIran
  2. 2.Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in MedicineShahid-Beheshti University of Medical SciencesTehranIran

Personalised recommendations