Advertisement

Immunomodulatory Behavior of Mesenchymal Stem Cells

  • Pakize Neslihan TaşlıEmail author
  • Batuhan Turhan Bozkurt
  • Oğuz Kaan Kırbaş
  • Ayşen Aslı Deniz-Hızlı
  • Fikrettin Şahin
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1119)

Abstract

The use of Mesenchymal Stem Cells (MSCs) in the treatment of diseases where immunomodulation impacts therapy is increasing steadily. Recent studies aim to achieve effective use of MSCs in treatment of Graft versus Host Disease (GvHD), Crohn’s disease and organ transplantations. The molecular mechanisms governing immunomodulatory properties of MSCs have not been fully understood, although current studies are indicating progress. Especially, in vitro studies and animal models provide a major contribution to our knowledge in clinical use of MSCs. The immunosuppressive and immune-enhancer properties of MSCs are –typically- determined with respect to type and concentrations of soluble molecules found in their physiological environment. In mammals the immune system protects the organism -not only- from certain microorganisms, but also from any entity that it recognizes as foreign, including its own cells when it is received as a threat. This protection can sometimes occur by increasing the number of immune cells and sometimes by suppressing a pathologically hyper-induced immunological response. In particular, realization of the bi-directional effect of MSCs on immune cells has placed substantial emphasis on this area of research. This chapter focuses on the interaction of MSCs with the immune cells, the bilateral role of these interactions, and whether studies that aim to understand these interactions can yield promising results in terms of developing improved use of MSCs in treatment.

Keywords

GvHD Immonology Immunomodulation Immunosuppression Mesenchymal Stem Cells T cells 

Abbrevations

AIDS

Acquired Immunodeficiency Syndrome

APC

Antigen Presenting Cells

CD

Cluster of Differentiation

ConA

Concanavalin A

GvHD

Graft Versus Host Disease

MHC II

Major Histocompatibility Complex class II

MSCs

Mesenchymal Stem Cells

NK

Natural Killer (NK)

NO

Nitric Oxide (NO)

iNOS

Nitric Oxide Synthase

IDO

Indoleamine 2,3-Dioxygenase

IL

Interleukin

IFNγ

Interpheron γ

PBMCs

Peripheral Blood Mononuclear Cells

TLR

Toll-like receptors

TNFα

Tumor Necrosis Factor α

References

  1. Adamiak M, Abdelbaset-Ismail A, Moore JBT, Zhao J, Abdel-Latif A, Wysoczynski M, Ratajczak MZ (2017) Inducible Nitric Oxide Synthase (iNOS) is a novel negative regulator of hematopoietic stem/progenitor cell trafficking. Stem Cell Rev 13(1):92–103.  https://doi.org/10.1007/s12015-016-9693-1 CrossRefPubMedGoogle Scholar
  2. Albersen M, Berkers J, Dekoninck P, Deprest J, Lue TF, Hedlund P, Lin CS, Bivalacqua TJ, Van Poppel H, De Ridder D, Van der Aa F (2013) Expression of a distinct set of chemokine receptors in adipose tissue-derived stem cells is responsible for in vitro migration toward chemokines appearing in the major pelvic ganglion following cavernous nerve injury. Sex Med 1(1):3–15.  https://doi.org/10.1002/sm2.1 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Ankrum JA, Ong JF, Karp JM (2014) Mesenchymal stem cells: immune evasive, not immune privileged. Nat Biotechnol 32(3):252–260.  https://doi.org/10.1038/nbt.2816 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Armant MA, Fenton MJ (2002) Toll-like receptors: a family of pattern-recognition receptors in mammals. Genome Biol 3(8):REVIEWS3011CrossRefGoogle Scholar
  5. Baek SJ, Kang SK, Ra JC (2011) In vitro migration capacity of human adipose tissue-derived mesenchymal stem cells reflects their expression of receptors for chemokines and growth factors. Exp Mol Med 43(10):596–603.  https://doi.org/10.3858/emm.2011.43.10.069 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Baldari S, Di Rocco G, Piccoli M, Pozzobon M, Muraca M, Toietta G (2017) Challenges and strategies for improving the regenerative effects of mesenchymal stromal cell-based therapies. Int J Mol Sci 18(10):2087.  https://doi.org/10.3390/ijms18102087 CrossRefPubMedCentralGoogle Scholar
  7. Belkaid Y, Hand TW (2014) Role of the microbiota in immunity and inflammation. Cell 157(1):121–141.  https://doi.org/10.1016/j.cell.2014.03.011 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Bruna F, Contador D, Conget P, Erranz B, Sossa CL, Arango-Rodriguez ML (2016) Regenerative potential of mesenchymal stromal cells: age-related changes. Stem Cells Int 2016:1461648.  https://doi.org/10.1155/2016/1461648 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Caplan AI, Hariri R (2015) Body management: mesenchymal stem cells control the internal regenerator. Stem Cells Transl Med 4(7):695–701.  https://doi.org/10.5966/sctm.2014-0291 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Castillo M, Liu K, Bonilla L, Rameshwar P (2007) The immune properties of mesenchymal stem cells. Int J Biomed Sci 3(2):76–80PubMedPubMedCentralGoogle Scholar
  11. Chailyan A, Marcatili P, Tramontano A (2011) The association of heavy and light chain variable domains in antibodies: implications for antigen specificity. FEBS J 278(16):2858–2866.  https://doi.org/10.1111/j.1742-4658.2011.08207.x CrossRefPubMedPubMedCentralGoogle Scholar
  12. Chaplin DD (2010) Overview of the immune response. J Allergy Clin Immunol 125(2 Suppl 2):S3–S23.  https://doi.org/10.1016/j.jaci.2009.12.980 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Chhabra P, Linden J, Lobo P, Okusa MD, Brayman KL (2012) The immunosuppressive role of adenosine A2A receptors in ischemia reperfusion injury and islet transplantation. Curr Diabetes Rev 8(6):419–433CrossRefGoogle Scholar
  14. Conway T, Cohen PS (2015) Commensal and Pathogenic Escherichia coli Metabolism in the Gut. Microbiol Spectr 3(3).  https://doi.org/10.1128/microbiolspec.MBP-0006-2014
  15. Croitoru-Lamoury J, Lamoury FM, Caristo M, Suzuki K, Walker D, Takikawa O, Taylor R, Brew BJ (2011) Interferon-gamma regulates the proliferation and differentiation of mesenchymal stem cells via activation of indoleamine 2,3 dioxygenase (IDO). PLoS One 6(2):e14698.  https://doi.org/10.1371/journal.pone.0014698 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Dai WJ, Gottstein B (1999) Nitric oxide-mediated immunosuppression following murine Echinococcus multilocularis infection. Immunology 97(1):107–116CrossRefGoogle Scholar
  17. Damjanov I, Andrews PW (2016) Teratomas produced from human pluripotent stem cells xenografted into immunodeficient mice – a histopathology atlas. Int J Dev Biol 60(10–11-12):337–419.  https://doi.org/10.1387/ijdb.160274id CrossRefPubMedPubMedCentralGoogle Scholar
  18. Dantzer R, Wollman EE (2003) Relationships between the brain and the immune system. J Soc Biol 197(2):81–88CrossRefGoogle Scholar
  19. Deakin CT, Alexander IE, Kerridge I (2009) Accepting risk in clinical research: is the gene therapy field becoming too risk-averse? Mol Ther 17(11):1842–1848.  https://doi.org/10.1038/mt.2009.223 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Dimarino AM, Caplan AI, Bonfield TL (2013) Mesenchymal stem cells in tissue repair. Front Immunol 4:201.  https://doi.org/10.3389/fimmu.2013.00201 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Fracchiolla NS, Fattizzo B, Cortelezzi A (2017) Mesenchymal stem cells in myeloid malignancies: a focus on immune escaping and therapeutic implications. Stem Cells Int 2017:6720594.  https://doi.org/10.1155/2017/6720594 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Frese L, Dijkman PE, Hoerstrup SP (2016) Adipose tissue-derived stem cells in regenerative medicine. Transfus Med Hemother 43(4):268–274.  https://doi.org/10.1159/000448180 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Gao F, Chiu SM, Motan DA, Zhang Z, Chen L, Ji HL, Tse HF, Fu QL, Lian Q (2016) Mesenchymal stem cells and immunomodulation: current status and future prospects. Cell Death Dis 7:e2062.  https://doi.org/10.1038/cddis.2015.327 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Gu Y, Zhao W, Meng F, Qu B, Zhu X, Sun Y, Shu Y, Xu Q (2010) Sunitinib impairs the proliferation and function of human peripheral T cell and prevents T-cell-mediated immune response in mice. Clin Immunol 135(1):55–62.  https://doi.org/10.1016/j.clim.2009.11.013 CrossRefPubMedGoogle Scholar
  25. Haddad R, Saldanha-Araujo F (2014) Mechanisms of T-cell immunosuppression by mesenchymal stromal cells: what do we know so far? Biomed Res Int 2014:216806.  https://doi.org/10.1155/2014/216806 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Herberts CA, Kwa MS, Hermsen HP (2011) Risk factors in the development of stem cell therapy. J Transl Med 9:29.  https://doi.org/10.1186/1479-5876-9-29 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Hirschi KK, Li S, Roy K (2014) Induced pluripotent stem cells for regenerative medicine. Annu Rev Biomed Eng 16:277–294.  https://doi.org/10.1146/annurev-bioeng-071813-105108 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Hocking AM (2015) The role of chemokines in mesenchymal stem cell homing to wounds. Adv Wound Care 4(11):623–630.  https://doi.org/10.1089/wound.2014.0579 CrossRefGoogle Scholar
  29. Holzemer A, Garcia-Beltran WF, Altfeld M (2017) Natural killer cell interactions with classical and non-classical human leukocyte antigen class I in HIV-1 infection. Front Immunol 8:1496.  https://doi.org/10.3389/fimmu.2017.01496 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Honczarenko M, Le Y, Swierkowski M, Ghiran I, Glodek AM, Silberstein LE (2006) Human bone marrow stromal cells express a distinct set of biologically functional chemokine receptors. Stem Cells 24(4):1030–1041.  https://doi.org/10.1634/stemcells.2005-0319 CrossRefPubMedGoogle Scholar
  31. Iwasaki A, Medzhitov R (2010) Regulation of adaptive immunity by the innate immune system. Science 327(5963):291–295.  https://doi.org/10.1126/science.1183021 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Iwasaki A, Medzhitov R (2015) Control of adaptive immunity by the innate immune system. Nat Immunol 16(4):343–353.  https://doi.org/10.1038/ni.3123 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Jaffer U, Wade RG, Gourlay T (2010) Cytokines in the systemic inflammatory response syndrome: a review. HSR Proc Intensive Care Cardiovasc Anesth 2(3):161–175PubMedPubMedCentralGoogle Scholar
  34. Janssens S, Beyaert R (2003) Role of toll-like receptors in pathogen recognition. Clin Microbiol Rev 16(4):637–646CrossRefGoogle Scholar
  35. Kalinina NI, Sysoeva VY, Rubina KA, Parfenova YV, Tkachuk VA (2011) Mesenchymal stem cells in tissue growth and repair. Acta Nat 3(4):30–37Google Scholar
  36. Kholodenko IV, Konieva AA, Kholodenko RV, Yarygin KN (2013) Molecular mechanisms of migration and homing of intravenously transplanted mesenchymal. Stem Cells 2:2Google Scholar
  37. Kim H, Han JW, Lee JY, Choi YJ, Sohn YD, Song M, Yoon YS (2015) Diabetic mesenchymal stem cells are ineffective for improving limb ischemia due to their impaired Angiogenic capability. Cell Transplant 24(8):1571–1584.  https://doi.org/10.3727/096368914X682792 CrossRefPubMedGoogle Scholar
  38. Klinker MW, Wei CH (2015) Mesenchymal stem cells in the treatment of inflammatory and autoimmune diseases in experimental animal models. World J Stem Cells 7(3):556–567.  https://doi.org/10.4252/wjsc.v7.i3.556 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Kollar K, Cook MM, Atkinson K, Brooke G (2009) Molecular mechanisms involved in mesenchymal stem cell migration to the site of acute myocardial infarction. Int J Cell biol 2009:904682.  https://doi.org/10.1155/2009/904682 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Kovach TK, Dighe AS, Lobo PI, Cui Q (2015) Interactions between MSCs and immune cells: implications for bone healing. J Immunol Res 2015:752510.  https://doi.org/10.1155/2015/752510 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Kyurkchiev D, Bochev I, Ivanova-Todorova E, Mourdjeva M, Oreshkova T, Belemezova K, Kyurkchiev S (2014) Secretion of immunoregulatory cytokines by mesenchymal stem cells. World J Stem Cells 6(5):552–570.  https://doi.org/10.4252/wjsc.v6.i5.552 CrossRefPubMedPubMedCentralGoogle Scholar
  42. La Rosa C, Diamond DJ (2012) The immune response to human CMV. Future Virol 7(3):279–293.  https://doi.org/10.2217/fvl.12.8 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Leibacher J, Henschler R (2016) Biodistribution, migration and homing of systemically applied mesenchymal stem/stromal cells. Stem Cell Res Ther 7:7.  https://doi.org/10.1186/s13287-015-0271-2 CrossRefPubMedPubMedCentralGoogle Scholar
  44. Leon BM, Maddox TM (2015) Diabetes and cardiovascular disease: epidemiology, biological mechanisms, treatment recommendations and future research. World J Diabetes 6(13):1246–1258.  https://doi.org/10.4239/wjd.v6.i13.1246 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Lewis K (2000) Programmed death in bacteria. Microbiol Mol Biol Rev 64(3):503–514CrossRefGoogle Scholar
  46. Li L, Chen X, Wang WE, Zeng C (2016) How to improve the survival of transplanted mesenchymal stem cell in ischemic heart? Stem Cells Int 2016:9682757.  https://doi.org/10.1155/2016/9682757 CrossRefPubMedGoogle Scholar
  47. Li W, Ren G, Huang Y, Su J, Han Y, Li J, Chen X, Cao K, Chen Q, Shou P, Zhang L, Yuan ZR, Roberts AI, Shi S, Le AD, Shi Y (2012) Mesenchymal stem cells: a double-edged sword in regulating immune responses. Cell Death Differ 19(9):1505–1513.  https://doi.org/10.1038/cdd.2012.26 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Liaskou E, Wilson DV, Oo YH (2012) Innate immune cells in liver inflammation. Mediat Inflamm 2012:949157.  https://doi.org/10.1155/2012/949157 CrossRefGoogle Scholar
  49. Lim JY, Im KI, Lee ES, Kim N, Nam YS, Jeon YW, Cho SG (2016) Enhanced immunoregulation of mesenchymal stem cells by IL-10-producing type 1 regulatory T cells in collagen-induced arthritis. Sci Rep 6:26851.  https://doi.org/10.1038/srep26851 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Ma OK, Chan KH (2016) Immunomodulation by mesenchymal stem cells: interplay between mesenchymal stem cells and regulatory lymphocytes. World J Stem Cells 8(9):268–278.  https://doi.org/10.4252/wjsc.v8.i9.268 CrossRefPubMedPubMedCentralGoogle Scholar
  51. Ma S, Xie N, Li W, Yuan B, Shi Y, Wang Y (2014) Immunobiology of mesenchymal stem cells. Cell Death Differ 21(2):216–225.  https://doi.org/10.1038/cdd.2013.158 CrossRefPubMedGoogle Scholar
  52. Mantegazza AR, Magalhaes JG, Amigorena S, Marks MS (2013) Presentation of phagocytosed antigens by MHC class I and II. Traffic 14(2):135–152.  https://doi.org/10.1111/tra.12026 CrossRefPubMedGoogle Scholar
  53. Maxson S, Lopez EA, Yoo D, Danilkovitch-Miagkova A, Leroux MA (2012) Concise review: role of mesenchymal stem cells in wound repair. Stem Cells Transl Med 1(2):142–149.  https://doi.org/10.5966/sctm.2011-0018 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Mbongue JC, Nicholas DA, Torrez TW, Kim NS, Firek AF, Langridge WH (2015) The role of Indoleamine 2, 3-Dioxygenase in immune suppression and autoimmunity. Vaccines (Basel) 3(3):703–729.  https://doi.org/10.3390/vaccines3030703 CrossRefGoogle Scholar
  55. Miyamura K (2016) Insurance approval of mesenchymal stem cell for acute GVHD in Japan: need of follow up for some remaining concerns. Int J Hematol 103(2):155–164.  https://doi.org/10.1007/s12185-015-1930-x CrossRefPubMedGoogle Scholar
  56. Moffett JR, Namboodiri MA (2003) Tryptophan and the immune response. Immunol Cell Biol 81(4):247–265.  https://doi.org/10.1046/j.1440-1711.2003.t01-1-01177.x CrossRefPubMedGoogle Scholar
  57. Mogensen TH (2009) Pathogen recognition and inflammatory signaling in innate immune defenses. Clin Microbiol Rev 22(2):240–273.  https://doi.org/10.1128/CMR.00046-08 Table of ContentsCrossRefPubMedPubMedCentralGoogle Scholar
  58. Naaldijk Y, Johnson AA, Ishak S, Meisel HJ, Hohaus C, Stolzing A (2015) Migrational changes of mesenchymal stem cells in response to cytokines, growth factors, hypoxia, and aging. Exp Cell Res 338(1):97–104.  https://doi.org/10.1016/j.yexcr.2015.08.019 CrossRefPubMedGoogle Scholar
  59. Nevruz O, Avcu F, Ural AU, Pekel A, Dirican B, Safali M, Akdag E, Beyzadeoglu M, Ide T, Sengul A (2013) Immunosuppressive effects of multipotent mesenchymal stromal cells on graft-versus-host disease in rats following allogeneic bone marrow transplantation. Turk J Haematol 30(3):256–262.  https://doi.org/10.4274/Tjh.2013.0032 CrossRefPubMedPubMedCentralGoogle Scholar
  60. Nicholson LB (2016) The immune system. Essays Biochem 60(3):275–301.  https://doi.org/10.1042/EBC20160017 CrossRefPubMedPubMedCentralGoogle Scholar
  61. Nitzsche F, Muller C, Lukomska B, Jolkkonen J, Deten A, Boltze J (2017) Concise review: MSC adhesion Cascade-insights into homing and Transendothelial migration. Stem Cells 35(6):1446–1460.  https://doi.org/10.1002/stem.2614 CrossRefPubMedGoogle Scholar
  62. Obar JJ, Lefrancois L (2010) Memory CD8+ T cell differentiation. Ann N Y Acad Sci 1183:251–266.  https://doi.org/10.1111/j.1749-6632.2009.05126.x CrossRefPubMedPubMedCentralGoogle Scholar
  63. Oh T, Fakurnejad S, Sayegh ET, Clark AJ, Ivan ME, Sun MZ, Safaee M, Bloch O, James CD, Parsa AT (2014) Immunocompetent murine models for the study of glioblastoma immunotherapy. J Transl Med 12:107.  https://doi.org/10.1186/1479-5876-12-107 CrossRefPubMedPubMedCentralGoogle Scholar
  64. Okoye AA, Picker LJ (2013) CD4(+) T-cell depletion in HIV infection: mechanisms of immunological failure. Immunol Rev 254(1):54–64.  https://doi.org/10.1111/imr.12066 CrossRefPubMedPubMedCentralGoogle Scholar
  65. Oliveira MS, Barreto-Filho JB (2015) Placental-derived stem cells: culture, differentiation and challenges. World J Stem Cells 7(4):769–775.  https://doi.org/10.4252/wjsc.v7.i4.769 CrossRefPubMedPubMedCentralGoogle Scholar
  66. Parekkadan B, Milwid JM (2010) Mesenchymal stem cells as therapeutics. Annu Rev Biomed Eng 12:87–117.  https://doi.org/10.1146/annurev-bioeng-070909-105309 CrossRefPubMedPubMedCentralGoogle Scholar
  67. Paust S, Senman B, von Andrian UH (2010) Adaptive immune responses mediated by natural killer cells. Immunol Rev 235(1):286–296.  https://doi.org/10.1111/j.0105-2896.2010.00906.x CrossRefPubMedPubMedCentralGoogle Scholar
  68. Pearl JI, Kean LS, Davis MM, Wu JC (2012) Pluripotent stem cells: immune to the immune system? Sci Transl Med 4(164):164ps125.  https://doi.org/10.1126/scitranslmed.3005090 CrossRefGoogle Scholar
  69. Qi K, Li N, Zhang Z, Melino G (2018) Tissue regeneration: the crosstalk between mesenchymal stem cells and immune response. Cell Immunol 326:86–93.  https://doi.org/10.1016/j.cellimm.2017.11.010 CrossRefPubMedGoogle Scholar
  70. Ren Y, Tang J, Mok MY, Chan AW, Wu A, Lau CS (2003) Increased apoptotic neutrophils and macrophages and impaired macrophage phagocytic clearance of apoptotic neutrophils in systemic lupus erythematosus. Arthritis Rheum 48(10):2888–2897.  https://doi.org/10.1002/art.11237 CrossRefPubMedGoogle Scholar
  71. Rivera-Cruz CM, Shearer JJ, Figueiredo Neto M, Figueiredo ML (2017) The Immunomodulatory effects of mesenchymal stem cell polarization within the tumor microenvironment niche. Stem Cells Int 2017:4015039.  https://doi.org/10.1155/2017/4015039 CrossRefPubMedPubMedCentralGoogle Scholar
  72. Rizk M, Monaghan M, Shorr R, Kekre N, Bredeson CN, Allan DS (2016) Heterogeneity in studies of mesenchymal stromal cells to treat or prevent graft-versus-host disease: a scoping review of the evidence. Biol Blood Marrow Transplant 22(8):1416–1423.  https://doi.org/10.1016/j.bbmt.2016.04.010 CrossRefPubMedGoogle Scholar
  73. Ryan JM, Barry FP, Murphy JM, Mahon BP (2005) Mesenchymal stem cells avoid allogeneic rejection. J Inflamm (Lond) 2:8.  https://doi.org/10.1186/1476-9255-2-8 CrossRefGoogle Scholar
  74. Sanford JA, Gallo RL (2013) Functions of the skin microbiota in health and disease. Semin Immunol 25(5):370–377.  https://doi.org/10.1016/j.smim.2013.09.005 CrossRefPubMedPubMedCentralGoogle Scholar
  75. Schwartz MA (2010) Integrins and extracellular matrix in mechanotransduction. Cold Spring Harb Perspect Biol 2(12):a005066.  https://doi.org/10.1101/cshperspect.a005066 CrossRefPubMedPubMedCentralGoogle Scholar
  76. Selders GS, Fetz AE, Radic MZ, Bowlin GL (2017) An overview of the role of neutrophils in innate immunity, inflammation and host-biomaterial integration. Regen Biomater 4(1):55–68.  https://doi.org/10.1093/rb/rbw041 CrossRefPubMedPubMedCentralGoogle Scholar
  77. Shi Y, Su J, Roberts AI, Shou P, Rabson AB, Ren G (2012) How mesenchymal stem cells interact with tissue immune responses. Trends Immunol 33(3):136–143.  https://doi.org/10.1016/j.it.2011.11.004 CrossRefPubMedPubMedCentralGoogle Scholar
  78. Simon AK, Hollander GA, McMichael A (2015) Evolution of the immune system in humans from infancy to old age. Proc Biol Sci 282(1821):20143085.  https://doi.org/10.1098/rspb.2014.3085 CrossRefPubMedPubMedCentralGoogle Scholar
  79. Soliman H, Mediavilla-Varela M, Antonia S (2010) Indoleamine 2,3-dioxygenase: is it an immune suppressor? Cancer J 16(4):354–359.  https://doi.org/10.1097/PPO.0b013e3181eb3343 CrossRefPubMedGoogle Scholar
  80. Spiering MJ (2015) Primer on the immune system. Alcohol Res 37(2):171–175PubMedPubMedCentralGoogle Scholar
  81. Steinman L (2004) Elaborate interactions between the immune and nervous systems. Nat Immunol 5(6):575–581.  https://doi.org/10.1038/ni1078 CrossRefPubMedGoogle Scholar
  82. Su Z, Yang Z, Xu Y, Chen Y, Yu Q (2015) Apoptosis, autophagy, necroptosis, and cancer metastasis. Mol Cancer 14:48.  https://doi.org/10.1186/s12943-015-0321-5 CrossRefPubMedPubMedCentralGoogle Scholar
  83. Sullivan KM, Shah A, Sarantopoulos S, Furst DE (2016) Review: hematopoietic stem cell transplantation for scleroderma: effective Immunomodulatory therapy for patients with pulmonary involvement. Arthritis Rheumatol 68(10):2361–2371.  https://doi.org/10.1002/art.39748 CrossRefPubMedPubMedCentralGoogle Scholar
  84. Tejedo JR, Tapia-Limonchi R, Mora-Castilla S, Cahuana GM, Hmadcha A, Martin F, Bedoya FJ, Soria B (2010) Low concentrations of nitric oxide delay the differentiation of embryonic stem cells and promote their survival. Cell Death Dis 1:e80.  https://doi.org/10.1038/cddis.2010.57 CrossRefPubMedPubMedCentralGoogle Scholar
  85. Tokalov SV, Gruner S, Schindler S, Wolf G, Baumann M, Abolmaali N (2007) Age-related changes in the frequency of mesenchymal stem cells in the bone marrow of rats. Stem Cells Dev 16(3):439–446.  https://doi.org/10.1089/scd.2006.0078 CrossRefPubMedGoogle Scholar
  86. Tribble GD, Lamont RJ (2010) Bacterial invasion of epithelial cells and spreading in periodontal tissue. Periodontol 2000 52(1):68–83.  https://doi.org/10.1111/j.1600-0757.2009.00323.x CrossRefPubMedPubMedCentralGoogle Scholar
  87. Ullah I, Subbarao RB, Rho GJ (2015) Human mesenchymal stem cells – current trends and future prospective. Biosci Rep 35(2):e00191.  https://doi.org/10.1042/BSR20150025 CrossRefPubMedPubMedCentralGoogle Scholar
  88. Wang L, Zhang H, Guan L, Zhao S, Gu Z, Wei H, Gao Z, Wang F, Yang N, Luo L, Li Y, Wang L, Liu D, Gao C (2016) Mesenchymal stem cells provide prophylaxis against acute graft-versus-host disease following allogeneic hematopoietic stem cell transplantation: a meta-analysis of animal models. Oncotarget 7(38):61764–61774.  https://doi.org/10.18632/oncotarget.11238 CrossRefPubMedPubMedCentralGoogle Scholar
  89. Wang L, Zhao Y, Shi S (2012) Interplay between mesenchymal stem cells and lymphocytes: implications for immunotherapy and tissue regeneration. J Dent Res 91(11):1003–1010.  https://doi.org/10.1177/0022034512460404 CrossRefPubMedPubMedCentralGoogle Scholar
  90. Werner BC, Li X, Shen FH (2014) Stem cells in preclinical spine studies. Spine J 14(3):542–551.  https://doi.org/10.1016/j.spinee.2013.08.031 CrossRefPubMedGoogle Scholar
  91. Wu Y, Chen L, Scott PG, Tredget EE (2007) Mesenchymal stem cells enhance wound healing through differentiation and angiogenesis. Stem Cells 25(10):2648–2659.  https://doi.org/10.1634/stemcells.2007-0226 CrossRefPubMedGoogle Scholar
  92. Xiao J, Yang R, Biswas S, Qin X, Zhang M, Deng W (2015) Mesenchymal stem cells and induced pluripotent stem cells as therapies for multiple sclerosis. Int J Mol Sci 16(5):9283–9302.  https://doi.org/10.3390/ijms16059283 CrossRefPubMedPubMedCentralGoogle Scholar
  93. Yamasaki K, Gallo RL (2008) Antimicrobial peptides in human skin disease. Eur J Dermatol 18(1):11–21.  https://doi.org/10.1684/ejd.2008.0304 CrossRefPubMedGoogle Scholar
  94. Yoo HS, Lee K, Na K, Zhang YX, Lim HJ, Yi T, Song SU, Jeon MS (2017) Mesenchymal stromal cells inhibit CD25 expression via the mTOR pathway to potentiate T-cell suppression. Cell Death Dis 8(2):e2632.  https://doi.org/10.1038/cddis.2017.45 CrossRefPubMedPubMedCentralGoogle Scholar
  95. Yu QC, Song W, Wang D, Zeng YA (2016) Identification of blood vascular endothelial stem cells by the expression of protein C receptor. Cell Res 26(10):1079–1098.  https://doi.org/10.1038/cr.2016.85 CrossRefPubMedPubMedCentralGoogle Scholar
  96. Zachar L, Bacenkova D, Rosocha J (2016) Activation, homing, and role of the mesenchymal stem cells in the inflammatory environment. J Inflamm Res 9:231–240.  https://doi.org/10.2147/JIR.S121994 CrossRefPubMedPubMedCentralGoogle Scholar
  97. Zhang JM, An J (2007) Cytokines, inflammation, and pain. Int Anesthesiol Clin 45(2):27–37.  https://doi.org/10.1097/AIA.0b013e318034194e CrossRefPubMedPubMedCentralGoogle Scholar
  98. Zhang Z, Feng R, Niu L, Huang S, Deng W, Shi B, Yao G, Chen W, Tang X, Gao X, Feng X, Sun L (2017) Human umbilical cord mesenchymal stem cells inhibit T Follicular helper cell expansion through the activation of iNOS in Lupus-Prone B6.MRL-Fas(lpr) mice. Cell Transplant 26(6):1031–1042.  https://doi.org/10.3727/096368917X694660 CrossRefPubMedPubMedCentralGoogle Scholar
  99. Zhao W, Liu Y, Cahill CM, Yang W, Rogers JT, Huang X (2009) The role of T cells in osteoporosis, an update. Int J Clin Exp Pathol 2(6):544–552PubMedPubMedCentralGoogle Scholar
  100. Zomer HD, Vidane AS, Goncalves NN, Ambrosio CE (2015) Mesenchymal and induced pluripotent stem cells: general insights and clinical perspectives. Stem Cells Cloning 8:125–134.  https://doi.org/10.2147/SCCAA.S88036 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Pakize Neslihan Taşlı
    • 1
    • 2
    Email author
  • Batuhan Turhan Bozkurt
    • 1
  • Oğuz Kaan Kırbaş
    • 1
  • Ayşen Aslı Deniz-Hızlı
    • 3
  • Fikrettin Şahin
    • 1
  1. 1.Department of Genetics and Bioengineering, Faculty of Engineering and ArchitectureYeditepe UniversityIstanbulTurkey
  2. 2.Genetics and Bioengineering Department, Faculty of Engineering and ArchitectureYeditepe University KayisdagiIstanbulTurkey
  3. 3.Health Institutes of TurkeyTurkish Cancer InstituteIstanbulTurkey

Personalised recommendations