Advertisement

Gene Therapy Strategies in Bone Tissue Engineering and Current Clinical Applications

  • Aysegul Atasoy-Zeybek
  • Gamze Torun KoseEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1119)

Abstract

Gene therapy provides a promising approach for regeneration and repair of injured bone. Application of gene therapy has displayed increased efficiency in various animal models and preclinical trials in comparison with traditional bone grafting methods. The objective of this review is to highlight fundamental principles of gene therapy strategies in bone tissue engineering and solutions of their current limitations for the healing of bone injury. Vector types are debated for the repair of defected site due to demonstration of constraints and applications of the protocols. In recent years, the combination of gene therapy strategies and bone tissue engineering has highly gained attention. We discussed viral and non-viral mediated delivery of therapeutic protein by using scaffolds for bone tissue engineering. Although pre-clinical studies have showed that gene therapy has very promising results to heal injured bone, there are several limitations regarding with the usage of gene delivery methods into clinical applications. Choice of suitable vector, selection of transgene and gene delivery protocols are the most outstanding questions. This article also addresses current state of gene delivery strategies in bone tissue engineering for their potential applications in clinical considerations.

Keywords

Bone tissue engineering Gene activated matrices Gene therapy Viral vectors 

Abbreviations

AAV

Adeno-associated virus

ASC

Adipose stem cell

BMPs

Bone morphogenetic proteins;

cDNA

Complementary deoxyribonucleic acid

COL1A1

Type I collagen

dsDNA

Double-stranded DNA

FDA

the US Food and Drug Administration

GAMs

Gene-activated matrices

GMP

Good manufacturing practice

HAP

hydroxyapatite

HIV

Human immunodeficiency virus

IGF

Insulin-like growth factor

IL-1α

Interleukin-1α

IL-1β

Interleukin-1β

IL-6

Interleukin-6

LIMP-1

LIM mineralization protein-1

MoMLV

Moloney murine leukemia virus

MSCs

Mesenchymal stem cells

OPG

Osteoprotegerin

PDGF

Platelet-derived growth factor

PEG

Poly (ethylene glycol)

PLGA

Poly (lactide-co-glycolic acid)

PTH

Parathyroid hormone

RANKL

Receptor activator of nuclear factor kappa-B ligand

Runx2

Runt related transcription factor 2

SCID

X-linked severe combined immunodeficiency disease

ssDNA

Single stranded-DNA

TGF- β

Transforming growth factor-β

TNFα

Tumor necrosis factor-α

VEGF

Vascular endothelial growth factor

References

  1. Atasoy A, Kose GT (2016) Biology of cancellous bone graft materials and their usage for bone regeneration. JSM Biotechnol Bioeng 3(2):1051Google Scholar
  2. Balmayor RE, van Griensven M (2015) Gene therapy for bone engineering. Front Bioeng Biotechnol 3:9.  https://doi.org/10.3389/fbioe.2015.00009CrossRefPubMedPubMedCentralGoogle Scholar
  3. Baltzer A, Lieberman J (2004) Regional gene therapy to enhance bone repair. Gene Ther 11:344–350.  https://doi.org/10.1038/sj.gt.3302195CrossRefPubMedGoogle Scholar
  4. Baltzer A, Lattermann C, Whalen J, Wooley P, Weiss K, Grimm M et al (2000) Genetic enhancement of fracture repair: healing of an experimental segmental defect by adenoviral transfer of the BMP-2 gene. Gene Ther 7(9):734–739.  https://doi.org/10.1038/sj.gt.3301166CrossRefPubMedGoogle Scholar
  5. Baltzer A, Whalen JD, Wooley P, Latterman C, Truchan LM, Robbins PD, Evans CH (2001) Gene therapy for osteoporosis: evaluation in a murine ovariectomy model. Gene Ther 8(23):1770–1776.  https://doi.org/10.1038/sj.gt.3301594CrossRefPubMedGoogle Scholar
  6. Barquinero J, Eixarch H, Pérez-Melgosa M (2004) Retroviral vectors: new applications for an old tool. Gene Ther 11:3–9.  https://doi.org/10.1038/sj.gt.3302363CrossRefGoogle Scholar
  7. Betz OB, Betz VM, Nazarian A, Egermann M, Gerstenfeld LC, Einhorn TA et al (2007a) Delayed administration of adenoviral BMP-2 vector improves the formation of bone in osseous defects. Gene Ther 14(13):1039–1044.  https://doi.org/10.1038/sj.gt.3302956CrossRefPubMedGoogle Scholar
  8. Betz VM, Betz OB, Glatt V, Gerstenfeld LC, Einhorn TA, Bouxsein ML et al (2007b) Healing of segmental bone defects by direct percutaneous gene delivery: effect of vector dose. Hum Gene Ther 18(10):907–915.  https://doi.org/10.1089/hum.2007.077CrossRefPubMedGoogle Scholar
  9. Bleiziffer O, Eriksson E, Yao F, Horch RE, Kneser U (2007) Gene transfer strategies in tissue engineering. J Cell Mol Med 11(2):206–223.  https://doi.org/10.1111/j.1582-4934.2007.00027.xCrossRefPubMedPubMedCentralGoogle Scholar
  10. Bolon B, Carter C, Daris M, Morony S, Capparelli C, Hsieh A et al (2001) Adenoviral delivery of osteoprotegerin ameliorates bone resorption in a mouse ovariectomy model of osteoporosis. Mol Ther 3(2):197–205.  https://doi.org/10.1006/mthe.2001.0245CrossRefPubMedGoogle Scholar
  11. Bonadio J, Smiley E, Patil P, Goldstein S (1999) Localized, direct plasmid gene delivery in vivo: prolonged therapy results in reproducible tissue regeneration. Nat Med 5(7):753–759.  https://doi.org/10.1038/10473CrossRefPubMedGoogle Scholar
  12. Bosch P, Musgrave DS, Lee JY, Cummins J, Shuler T, Ghivizzani TC et al (2000) Osteoprogenitor cells within skeletal muscle. J Orthop Res 18(6):933–944.  https://doi.org/10.1002/jor.1100180613CrossRefPubMedGoogle Scholar
  13. Bozo IY, Deev RV, Drobyshev AY, Isaev AA, Eremin II (2016) World’s first clinical case of gene-activated bone substitute application. Case Rep Dent 2016:2016–2016.  https://doi.org/10.1155/2016/8648949CrossRefGoogle Scholar
  14. Breitbart AS, Grande DA, Mason JM, Barcia M, James RT (1999) Gene enhanced tissue engineering: applications for bone healing using cultured periosteal cells transduced retrovirally with the BMP-7 gene. Ann Plast Surg 42:488–495CrossRefGoogle Scholar
  15. Cao H, Koehler DR, Hu J (2004) Adenoviral vectors for gene replacement therapy. Viral Immunol 17(3):327–333.  https://doi.org/10.1089/vim.2004.17.327CrossRefPubMedGoogle Scholar
  16. Carofino BC, Lieberman JR (2008) Gene therapy applications for fracture-healing. J Bone Joint Surg Am 90(Suppl 1):99–110.  https://doi.org/10.2106/JBJS.G.01546CrossRefPubMedGoogle Scholar
  17. Carragee EJ, Hurwitz EL, Bradley K, Weiner BK (2011) A critical review of recombinant human bone morphogenetic protein-2 trials in spinal surgery: emerging safety concerns and lessons learned. Spine J 11(6):471–491.  https://doi.org/10.1016/j.spinee.2011.04.023CrossRefPubMedGoogle Scholar
  18. Chakkalakal DA, Strates BS, Garvin KL, Novak JR, Fritz ED, Mollner TJ, McGuire MH (2001) Demineralized bone matrix as a biological scaffold for bone repair. Tissue Eng 7(2):161–177.  https://doi.org/10.1089/107632701300062778CrossRefPubMedGoogle Scholar
  19. Chamberlain JR, Schwarze U, Wang P-R, Hirata RK, Hankenson KD, Pace JM et al (2004) Gene targeting in stem cells from individuals with osteogenesis imperfecta. Science (New York, NY) 303(5661):1198–1201.  https://doi.org/10.1126/science.1088757CrossRefGoogle Scholar
  20. Chamberlain JR, Deyle DR, Schwarze U, Wang P, Hirata YL, Byers PH, Russell DW (2008) Gene targeting of mutant COL1A2 alleles in mesenchymal stem cells from individuals with osteogenesis imperfecta. Mol Ther 16(1):187–193.  https://doi.org/10.1038/sj.mt.6300339CrossRefPubMedGoogle Scholar
  21. Chang P-C, Cirelli JA, Jin Q, Seol Y-J, Sugai JV, D’Silva NJ et al (2009a) Adenovirus encoding human platelet-derived growth factor-B delivered to alveolar bone defects exhibits safety and biodistribution profiles favorable for clinical use. Hum Gene Ther 20(5):486–496.  https://doi.org/10.1089/hum.2008.114CrossRefPubMedPubMedCentralGoogle Scholar
  22. Chang SC-N, Lin T-M, Chung H-Y, Chen PK-T, Lin F-H, Lou J, Jeng L-B (2009b) Large-scale bicortical skull bone regeneration using ex vivo replication-defective adenoviral-mediated bone morphogenetic protein—2 gene—transferred bone marrow stromal cells and composite biomaterials. Oper Neurosurg 65(6 Suppl):ons75–ons83.  https://doi.org/10.1227/01.NEU.0000345947.33730.91CrossRefGoogle Scholar
  23. Cody Bünger ML (2005) Orthopaedic applications of gene therapy. Int Orthop (SICOT) 29:205–209.  https://doi.org/10.1007/s00264-005-0650-xCrossRefPubMedCentralGoogle Scholar
  24. Curtin CM, Tierney EG, Mcsorley K, Cryan SA, Duffy GP, O’Brien FJ (2015) Combinatorial gene therapy accelerates bone regeneration: non-viral dual delivery of VEGF and BMP2 in a collagen-nanohydroxyapatite scaffold. Adv Healthc Mater 4(2):223–227.  https://doi.org/10.1002/adhm.201400397CrossRefPubMedGoogle Scholar
  25. D’Mello S, Atluri K, Geary SM, Hong L, Elangovan S, Salem AK (2017) Bone regeneration using gene-activated matrices. AAPS J 19(1):43–53.  https://doi.org/10.1208/s12248-016-9982-2CrossRefPubMedGoogle Scholar
  26. Dai KR, Xu XL, Tang TT, Zhu ZA, Yu CF, Lou JR, Zhang XL (2005) Repairing of goat tibial bone defects with BMP-2 gene–modified tissue-engineered bone. Calcif Tissue Int 77(1):55–61.  https://doi.org/10.1007/s00223-004-0095-zCrossRefPubMedGoogle Scholar
  27. Dang JM, Leong KW (2006) Natural polymers for gene delivery and tissue engineering. Adv Drug Deliv Rev 58(4):487–499.  https://doi.org/10.1016/j.addr.2006.03.001CrossRefPubMedGoogle Scholar
  28. Delloye C, Cornu O, Druez V, Barbier O, Druez SV, Surgeon O (2007) Bone allografts: what they can offer and what they cannot. J Bone Joint Surg (Br) 89(5):574–579.  https://doi.org/10.1302/0301-620X.89B5CrossRefGoogle Scholar
  29. Deyle DR, Khan IF, Ren G, Wang PR, Kho J, Schwarze U, Russell DV (2012) Normal collagen and bone production by gene-targeted human osteogenesis imperfecta iPSCs. Am Soc Gene Cell Ther 20(1):204–213.  https://doi.org/10.1038/mt.2011.209CrossRefGoogle Scholar
  30. Doran PM, Turner RT, Chen D, Facteau SM, Ludvigson JM, Khosla S et al (2004) Native osteoprotegerin gene transfer inhibits the development of murine osteolytic bone disease induced by tumor xenografts. Exp Hematol 32(4):351–359.  https://doi.org/10.1016/j.exphem.2004.01.006CrossRefPubMedGoogle Scholar
  31. Dragoo JL, Lieberman JR, Lee RS, Deugarte DA, Lee Y, Zuk PA et al (2005) Tissue-engineered bone from BMP-2-transduced stem cells derived from human fat. Plast Reconstr Surg 115(6):1665–1673.  https://doi.org/10.1097/01.prs.0000161459.90856.abCrossRefPubMedGoogle Scholar
  32. Egermann M, Lill CA, Griesbeck K, Evans CH, Robbins PD, Schneider E, Baltzer AW (2006) Effect of BMP-2 gene transfer on bone healing in sheep. Gene Ther 13(17):1290–1299.  https://doi.org/10.1038/sj.gt.3302785CrossRefPubMedGoogle Scholar
  33. Ersching J, Hernandez MIM, Cezarotto FS, Ferreira JDS, Martins AB, Switzer WM et al (2010) Neutralizing antibodies to human and simian adenoviruses in humans and new-world monkeys. Virology 407(1):1–6.  https://doi.org/10.1016/j.virol.2010.07.043CrossRefPubMedGoogle Scholar
  34. Evans CH (2011) Gene therapy for the regeneration of bone. Injury 42(6):599–604.  https://doi.org/10.1016/j.injury.2011.03.032CrossRefPubMedPubMedCentralGoogle Scholar
  35. Evans CH (2013) Gene delivery to bone. Adv Drug Deliv Rev 64(12):1331–1340.  https://doi.org/10.1016/j.addr.2012.03.013CrossRefGoogle Scholar
  36. Evans CH (2014) Using genes to facilitate the endogenous repair and regeneration of orthopaedic tissues. Int Orthop 38(9):1761–1769.  https://doi.org/10.1007/s00264-014-2423-xCrossRefPubMedPubMedCentralGoogle Scholar
  37. Evans CH (2015) Gene therapy for bone healing. Expert Rev Mol Med 12(e18):e18.  https://doi.org/10.1017/S1462399410001493CrossRefGoogle Scholar
  38. Evans CH, Huard J (2016) Gene therapy approaches to regenerating the musculoskeletal system. Nat Rev Rheumatol 11(4):234–242.  https://doi.org/10.1038/nrrheum.2015.28CrossRefGoogle Scholar
  39. Evans CH, Palmer GD, Pascher A, Porter R, Kwong FN, Gouze E et al (2007) Facilitated endogenous repair: making tissue engineering simple, practical, and economical. Tissue Eng 13(8):1987–1993.  https://doi.org/10.1089/ten.2006.0302CrossRefPubMedGoogle Scholar
  40. Evans CH, Ghivizzani SC, Robbins PD (2009a) Orthopedic gene therapy in 2008. Mol Ther J Am Soc Gene Ther 17(2):231–244.  https://doi.org/10.1038/mt.2008.265CrossRefGoogle Scholar
  41. Evans CH, Liu F, Glatt V, Hoyland J, Kirker-Head C, Walsh A et al (2009b) Use of genetically modified muscle and fat grafts to repair defects in bone and cartilage. Eur Cell Mater 18:96–111.  https://doi.org/10.22203/ecm.v018a09CrossRefPubMedPubMedCentralGoogle Scholar
  42. Fang J, Zhu YY, Smiley E, Bonadio J, Rouleau JP, Goldstein SA et al (1996) Stimulation of new bone formation by direct transfer of osteogenic plasmid genes. Proc Natl Acad Sci USA 93(12):5753–5758CrossRefGoogle Scholar
  43. Gazit D, Turgeman G, Kelley P, Wang E, Jalenak M, Zilberman Y, Moutsatsos I (1999) Engineered pluripotent mesenchymal cells integrate and differentiate in regenerating bone: a novel cell-mediated gene therapy. J Gene Med 1(2):121–133.  https://doi.org/10.1002/(SICI)1521-2254(199903/04)1:2<121::AID-JGM26>3.0.CO;2-JCrossRefPubMedGoogle Scholar
  44. Geiger F, Bertram H, Berger I, Lorenz H, Wall O, Eckhardt C et al (2005) Vascular endothelial growth factor gene-activated matrix (VEGF165-GAM) enhances osteogenesis and angiogenesis in large segmental bone defects. J Bone Miner Res 20(11):2028–2035.  https://doi.org/10.1359/JBMR.050701CrossRefPubMedGoogle Scholar
  45. Gerstenfeld TA, Einhorn CH, Evans OB, Betz VM, Betz A, Nazarian CG et al (2006) Bone defects direct percutaneous gene delivery to enhance healing of segmental direct percutaneous gene delivery to enhance healing of segmental bone defects. J Bone Joint Surg Am 88-A(2):355–365.  https://doi.org/10.2106/JBJS.E.00464CrossRefGoogle Scholar
  46. Ginn SL, Alexander IE, Edelstein ML, Abedi MR, Wixon J (2013) Gene therapy clinical trials worldwide to 2012 – an update. J Gene Med 15(2):65–77.  https://doi.org/10.1002/jgm.2698CrossRefPubMedGoogle Scholar
  47. Goater JJ, O’Keefe RJ, Rosier RN, Puzas JE, Schwarz EM (2002) Efficacy of ex vivo OPG gene therapy in preventing wear debris-induced osteolysis. J Orthop Res 20(2):169–173.  https://doi.org/10.1016/S0736-0266(01)00083-3CrossRefPubMedGoogle Scholar
  48. Goessler UR, Riedel K, Hörmann K, Riedel F (2006) Perspectives of gene therapy in stem cell tissue engineering. Cells Tissues Organs 183:169–179.  https://doi.org/10.1159/000096508CrossRefPubMedGoogle Scholar
  49. Gugala Z, Olmsted-Davis EA, Gannon FH, Lindsey RW, Davis AR (2003) Osteoinduction by ex vivo adenovirus-mediated BMP-2 delivery is independent of cell type. Gene Ther 10(16):1289–1296.  https://doi.org/10.1038/sj.gt.3302006CrossRefPubMedGoogle Scholar
  50. Hacein-Bey-Abina S, Hauer J, Lim A, Picard C, Wang GP, Berry CC et al (2010) Efficacy of gene therapy for X-linked severe combined immunodeficiency. Clin Invest Cent Biother 363(4):335–364.  https://doi.org/10.1056/NEJMoa1000164CrossRefGoogle Scholar
  51. Heyde M, Partridge KA, Oreffo ROC, Howdle SM, Shakesheff KM, Garnett MC (2007) Gene therapy used for tissue engineering applications. J Pharm Pharmacol 59(3):329–350.  https://doi.org/10.1211/jpp.59.3.0002CrossRefPubMedGoogle Scholar
  52. Horwitz EM, Gordon PL, Koo WKK, Marx JC, Neel MD, Mcnall RY et al (2002) Isolated allogeneic bone marrow-derived mesenchymal cells engraft and stimulate growth in children with osteogenesis imperfecta: implications for cell therapy of bone. Proc Natl Acad Sci U S A 99:8932–8937.  https://doi.org/10.1073/pnas.132252399CrossRefPubMedPubMedCentralGoogle Scholar
  53. Hsu WK, Wang JC, Liu NQ, Krenek L, Zuk PA, Hedrick MH et al (2008) Stem cells from human fat as cellular delivery vehicles in an athymic rat posterolateral spine fusion model. J Bone Joint Surg Am 90(5):1043–1052.  https://doi.org/10.2106/JBJS.G.00292CrossRefPubMedGoogle Scholar
  54. Ishihara A, Shields KM, Litsky AS, Mattoon JS, Weisbrode SE, Bartlett JS, Bertone AL (2008) Osteogenic gene regulation and relative acceleration of healing by adenoviral-mediated transfer of human BMP-2 or −6 in equine osteotomy and ostectomy models. J Orthop Res 26(6):764–771.  https://doi.org/10.1002/jor.20585CrossRefPubMedGoogle Scholar
  55. Ishihara A, Zekas LJ, Litsky AS, Weisbrode SE, Bertone AL (2009) Dermal fibroblast-mediated BMP2 therapy to accelerate bone healing in an equine osteotomy model. J Orthop Res 28(3):403–411.  https://doi.org/10.1002/jor.20978CrossRefGoogle Scholar
  56. Ito H, Koefoed M, Tiyapatanaputi P, Gromov K, Goater JJ, Carmouche J et al (2005) Remodeling of cortical bone allografts mediated by adherent rAAV-RANKL and VEGF gene therapy. Nat Med 11(3):291–297.  https://doi.org/10.1038/nm1190CrossRefPubMedPubMedCentralGoogle Scholar
  57. James AW, Lachaud G, Shen J, Asatrian G, Nguyen V, Zhang X et al (2016) A review of the clinical side effects of bone morphogenetic protein-2. Tissue Eng Part B Rev 22(4):284–297.  https://doi.org/10.1089/ten.teb.2015.0357CrossRefPubMedPubMedCentralGoogle Scholar
  58. Kim DH, Rhim R, Li L, Martha J, Swaim BH, Banco RJ et al (2009) Prospective study of iliac crest bone graft harvest site pain and morbidity. Spine J 9(11):886–892.  https://doi.org/10.1016/j.spinee.2009.05.006CrossRefPubMedGoogle Scholar
  59. Kim Y-D, Pofali P, Park T-E, Singh B, Cho K, Maharjan S et al (2016) Gene therapy for bone tissue engineering. Tissue Eng Regen Med 13(2):111–125.  https://doi.org/10.1007/s13770-016-9063-8CrossRefPubMedPubMedCentralGoogle Scholar
  60. Koefoed M, Ito H, Gromov K, Reynolds DG, Awad HA, Rubery PT et al (2005) Biological effects of rAAV-caAlk2 coating on structural allograft healing. Mol Ther 12(2):212–218.  https://doi.org/10.1016/j.ymthe.2005.02.026CrossRefPubMedGoogle Scholar
  61. Kostenuik PJ, Bolon B, Morony S, Daris M, Geng Z, Carter C, Sheng J (2004) Gene therapy with human recombinant osteoprotegerin reverses established osteopenia in ovariectomized mice. Bone 34(4):656–664.  https://doi.org/10.1016/j.bone.2003.12.006CrossRefPubMedGoogle Scholar
  62. Kurian KM, Watson CJ, Wyllie AH (2000) Retroviral vectors. J Clin Pathol Mol Pathol 53(4):173–176.  https://doi.org/10.1136/mp.53.4.173CrossRefGoogle Scholar
  63. Kushibiki T, Tabata Y (2005) Future direction of gene therapy in tissue engineering. Top Tissue Eng 2:1–34Google Scholar
  64. Kwong FN, Harris MB (2008) Recent developments in the biology of fracture repair. J Am Acad Orthop Surg 16(11):619–625.  https://doi.org/10.5435/00124635-200811000-00001CrossRefPubMedGoogle Scholar
  65. Lee JY, Musgrave D, Pelinkovic D, Fukushima K, Cummins J, Usas A et al (2001) Effect of bone morphogenetic protein-2-expressing muscle-derived cells on healing of critical-sized bone defects in mice. J Bone Joint Surg Am 83-A(7):1032–1039CrossRefGoogle Scholar
  66. Lee J-S, Lee J-M, Im G-I (2011) Electroporation-mediated transfer of Runx2 and Osterix genes to enhance osteogenesis of adipose stem cells. Biomaterials 32(3):760–768.  https://doi.org/10.1016/j.biomaterials.2010.09.042CrossRefPubMedGoogle Scholar
  67. Lieberman JR, Le LQ, Wu L, Finerman GAM, Berk A, Witte ON, Stevenson S (1998) Regional gene therapy with a BMP-2-producing murine stromal cell line induces heterotopic and orthotopic bone formation in rodents. J Orthop Res 16(3):330–339.  https://doi.org/10.1002/jor.1100160309CrossRefPubMedGoogle Scholar
  68. Lieberman JR, Daluiski A, Stevenson S, Wu L, McAllister P, Lee YP et al (1999) The effect of regional gene therapy with bone morphogenetic protein-2-producing bone-marrow cells on the repair of segmental femoral defects in rats. J Bone Joint Surg Am 81(7):905–917CrossRefGoogle Scholar
  69. Lin Tan M, Choong PF, Dass CR (2009) Osteosarcoma – conventional treatment vs. gene therapy. Cancer Biol Ther 8(2):106–117.  https://doi.org/10.4161/cbt.8.2.7385CrossRefGoogle Scholar
  70. Lissenberg-Thunnissen SN, De Gorter DJJ, Sier CFM, Schipper IB (2011) Use and efficacy of bone morphogenetic proteins in fracture healing. Int Orthop 35(9):1271–1280.  https://doi.org/10.1007/s00264-011-1301-zCrossRefPubMedPubMedCentralGoogle Scholar
  71. Nauth A, Miclau T, Li R, Schemitsch EH (2010) Gene therapy for fracture healing. J Orthop Trauma 24(Suppl I):17–24.  https://doi.org/10.1097/BOT.0b013e3181cec6fbCrossRefGoogle Scholar
  72. Niyibizi C, Li F (2009) Potential implications of cell therapy for osteogenesis imperfecta. Int J Clin Rheumatol 4(1):57–66.  https://doi.org/10.2217/17584272.4.1.57CrossRefGoogle Scholar
  73. Niyibizi C, Smith P, Mi Z, Phillips CL, Robbins P (2001) Transfer of proα2(I) cDNA into cells of a murine model of human osteogenesis imperfecta restores synthesis of type I collagen comprised of α1(I) and α2(I) heterotrimers in vitro and in vivo. J Cell Biochem 83(1):84–91.  https://doi.org/10.1002/jcb.1209CrossRefPubMedGoogle Scholar
  74. Niyibizi C, Wang S, Mi Z, Robbins PD (2004) Gene therapy approaches for osteogenesis imperfecta. Gene Ther 11(4):408–416.  https://doi.org/10.1038/sj.gt.3302199CrossRefPubMedGoogle Scholar
  75. Oryan A, Alidadi S, Moshiri A, Bigham-Sadegh A (2014) Bone morphogenetic proteins: a powerful osteoinductive compound with non-negligible side effects and limitations. Biofactors 40(5):459–481.  https://doi.org/10.1002/biof.1177CrossRefPubMedGoogle Scholar
  76. Pelled G, Ben-Arav A, Hock C, Reynolds DG, Yazici C, Zilberman Y et al (2010) Direct gene therapy for bone regeneration: gene delivery, animal models, and outcome measures. Tissue Eng Part B Rev 16(1):13–20.  https://doi.org/10.1089/ten.teb.2009.0156CrossRefPubMedGoogle Scholar
  77. Peterson B, Zhang J, Iglesias R, Kabo M, Hedrick M, Benhaim P, Lieberman JR (2005) Healing of critically sized femoral defects, using genetically modified mesenchymal stem cells from human adipose tissue. Tissue Eng 11(1–2):120–129.  https://doi.org/10.1089/ten.2005.11.120CrossRefPubMedGoogle Scholar
  78. Phillips JE, Gersbach CA, García AJ (2007) Virus-based gene therapy strategies for bone regeneration. Biomaterials 28(2):211–229.  https://doi.org/10.1016/j.biomaterials.2006.07.032CrossRefPubMedGoogle Scholar
  79. Rao SM, Ugale GM, Warad SB (2013) Bone morphogenetic proteins: periodontal regeneration. N Am J Med Sci 5(3):161–168.  https://doi.org/10.4103/1947-2714.109175CrossRefPubMedPubMedCentralGoogle Scholar
  80. Raper SE, Chirmule N, Lee FS, Wivel NA, Bagg A, Gao G et al (2003) Fatal systemic inflammatory response syndrome in a ornithine transcarbamylase deficient patient following adenoviral gene transfer. Mol Genet Metab 80(1–2):148–158CrossRefGoogle Scholar
  81. Rie Molinier-Frenkel V, Gahery-Segard H, Mehtali M, Le Boulaire C, Bastien Ribault S, Boulanger P et al (2000) Immune response to recombinant adenovirus in humans: capsid components from viral input are targets for vector-specific cytotoxic T lymphocytes. J Virol 74(16):7678–7682.  https://doi.org/10.1128/JVI.74.16.7678-7682.2000CrossRefGoogle Scholar
  82. Schwarz EM (2000) The adeno-associated virus vector for orthopaedic gene therapy. Clin Orthop Relat Res 379(Suppl):31–39CrossRefGoogle Scholar
  83. Shen H-C, Peng H, Usas A, Gearhart B, Fu FH, Huard J (2004) Structural and functional healing of critical-size segmental bone defects by transduced muscle-derived cells expressing BMP4. J Gene Med 6(9):984–991.  https://doi.org/10.1002/jgm.588CrossRefPubMedGoogle Scholar
  84. Sheridan C (2011) Gene therapy finds its niche. Nat Biotechnol 29(2):121–128.  https://doi.org/10.1038/nbt.1769CrossRefPubMedGoogle Scholar
  85. Shin J-H, Kim K-H, Kim S-H, Koo K-T, Kim T-I, Seol Y-J et al (2010) Ex vivo bone morphogenetic protein-2 gene delivery using gingival fibroblasts promotes bone regeneration in rats. J Clin Periodontol 37(3):305–311.  https://doi.org/10.1111/j.1600-051X.2009.01522.xCrossRefPubMedGoogle Scholar
  86. Sinn P, Sauter S, Mccray P Jr (2005) Gene therapy progress and prospects: development of improved lentiviral and retroviral vectors – design, biosafety, and production. Gene Ther 121(14):1089–1098.  https://doi.org/10.1038/sj.gt.3302570CrossRefGoogle Scholar
  87. Turgeman G, Pittman D, Müller R, Gowda Kurkalli B, Zhou S, Pelled G et al (2001) Engineered human mesenchymal stem cells: a novel platform for skeletal cell-mediated gene therapy. J Gene Med 3(3):240–251.  https://doi.org/10.1002/1521-2254(200105/06)3:3<240::AID-JGM181>3.0.CO;2-ACrossRefPubMedGoogle Scholar
  88. Ulrich-Vinther M, Carmody EE, Goater JJ, S balle K, O’Keefe RJ, Schwarz EM (2002) Recombinant adeno-associated virus-mediated osteoprotegerin gene therapy inhibits wear debris-induced osteolysis. J Bone Joint Surg Am 84-A(8):1405–1412CrossRefGoogle Scholar
  89. Vaccaro AR (2002) The role of the Osteoconductive scaffold in synthetic bone graft. Orthopedics 25(5 Suppl):571–578Google Scholar
  90. Verrier S, Alini M, Alsberg E, Buchman SR, Kelly D, Laschke MW et al (2016) Tissue engineering and regenerative approaches to improving the healing of large bone defects. Eur Cell Mater 32:87–110.  https://doi.org/10.22203/eCM.v032a06CrossRefPubMedGoogle Scholar
  91. Viggeswarapu M, Boden SD, Liu Y, Hair GA, Louis-Ugbo J, Murakami H et al (2001) Adenoviral delivery of LIM mineralization protein-1 induces new-bone formation in vitro and in vivo. J Bone Joint Surg. Am 83-A(3):364–376CrossRefGoogle Scholar
  92. Virk MS, Conduah A, Park S-H, Liu N, Sugiyama O, Cuomo A et al (2008) Influence of short-term adenoviral vector and prolonged lentiviral vector-mediated bone morphogenetic protein-2 expression on the quality of bone repair in a rat femoral defect model. Bone 42(5):921–931.  https://doi.org/10.1016/j.bone.2007.12.216CrossRefPubMedGoogle Scholar
  93. Wang JC, Kanim LE, Yoo S, Campell PA, Berk AJ, Lieberman JR (2003) Effect of regional gene therapy with bone morphogenetic protein-2- producing bone marrow cells on spinal fusion in rats. J Bone Joint Surg 85(5):905–911CrossRefGoogle Scholar
  94. Witlox MA, Lamfers ML, Wuisman PIJM, Curiel DT, Siegal GP (2007) Evolving gene therapy approaches for osteosarcoma using viral vectors: review. Bone 40(4):797–812.  https://doi.org/10.1016/j.bone.2006.10.017CrossRefPubMedGoogle Scholar
  95. Xu XL, Tang T, Dai K, Zhu Z, Guo XE, Yu C, Lou J (2005) Immune response and effect of adenovirus-mediated human BMP-2 gene transfer on the repair of segmental tibial bone defects in goats. Acta Orthop 76(5):637–646.  https://doi.org/10.1080/17453670510041709CrossRefPubMedGoogle Scholar
  96. Yamamoto K, Igawa K, Sugimoto K, Yoshizawa Y, Yanagiguchi K, Ikeda T et al (2014) Biological safety of fish (tilapia) collagen. Biomed Res Int 2014:630757–630759.  https://doi.org/10.1155/2014/630757CrossRefPubMedPubMedCentralGoogle Scholar
  97. Yi Y, Jong Noh M, Hee Lee K (2011) Current advances in retroviral gene therapy. Curr Gene Ther 11(3):218–228.  https://doi.org/10.2174/156652311795684740CrossRefPubMedPubMedCentralGoogle Scholar
  98. Zhang Y, Wang Y, Shi B, Cheng X (2007) A platelet-derived growth factor releasing chitosan/coral composite scaffold for periodontal tissue engineering. Biomaterials 28(8):1515–1522.  https://doi.org/10.1016/j.biomaterials.2006.11.040CrossRefPubMedGoogle Scholar
  99. Zhang Y, Shi B, Li C, Wang Y, Chen Y, Zhang W et al (2009) The synergetic bone-forming effects of combinations of growth factors expressed by adenovirus vectors on chitosan/collagen scaffolds. J Control Release 136(3):172–178.  https://doi.org/10.1016/j.jconrel.2009.02.016CrossRefPubMedGoogle Scholar
  100. Zhang Y, Fan W, Nothdurt L, Wu C, Zhou Y, Crawford RW et al (2011) In vitro and in vivo evaluation of adenovirus combined silk fibroin scaffolds for bone morphogenetic protein-7 gene delivery. Tissue Eng Part C XX(XX):1–11.  https://doi.org/10.1089/ten.TEA.2010.0453CrossRefGoogle Scholar
  101. Zippel N, Schulze M, Tobiasch E (2010) Biomaterials and mesenchymal stem cells for regenerative medicine. Recent Pat Biotechnol 4(1):1–22.  https://doi.org/10.2174/187220810790069497CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Faculty of Engineering, Genetics and Bioengineering DepartmentYeditepe UniversityIstanbulTurkey
  2. 2.Biotechnology Research LaboratoryCenter of Excellence in Biomaterials and Tissue Engineering, BIOMATEN, METUAnkaraTurkey

Personalised recommendations