Advertisement

Potential Use of Stem Cells in Mood Disorders

  • Gabriela D. Colpo
  • Laura Stertz
  • Breno S. Diniz
  • Antonio L. Teixeira
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1089)

Abstract

Mood disorders are heterogeneous conditions characterized by complex genetics, unclear pathophysiology, and variable symptomatology. Currently, there is no biomarker for the diagnosis or prognosis of mood disorders, and the treatments are of limited efficacy in a significant proportion of patients. Furthermore, the disease models are not able to recapitulate their complexity. In this scenario, stem cells may have different applications in mood disorders. Circulating stem cells may be regarded as potential biomarkers. Mesenchymal stem cells are a promising therapeutic strategy for mood disorders as they promote neurogenesis and increase the expression of neurotrophic factors that enhance the survival and differentiation of neurons. In addition, induced pluripotent stem cells, cells reprogrammed from somatic cells of healthy subjects or patients, offer a great opportunity to recapitulate both normal and pathological development of human brain tissues, thereby opening a new avenue for disease modeling and drug development in a more disease-relevant system.

Keywords

Bipolar disorder iPSCs Major depressive disorder Mood disorder MSCs Stem cells 

Notes

Conflicts of Interest

The authors declare that they have no conflict of interest.

References

  1. Baune BT, Adrian I, Arolt V, Berger K (2006) Associations between major depression, bipolar disorders, dysthymia and cardiovascular diseases in the general adult population. Psychother Psychosom 75(5):319–326.  https://doi.org/10.1159/000093955CrossRefPubMedGoogle Scholar
  2. Ben-Shaanan TL, Ben-Hur T, Yanai J (2008) Transplantation of neural progenitors enhances production of endogenous cells in the impaired brain. Mol Psychiatry 13(2):222–231.  https://doi.org/10.1038/sj.mp.4002084CrossRefPubMedGoogle Scholar
  3. Borkowska S, Suszynska M, Mierzejewska K, Ismail A, Budkowska M, Salata D, Dolegowska B, Kucia M, Ratajczak J, Ratajczak MZ (2014) Novel evidence that crosstalk between the complement, coagulation and fibrinolysis proteolytic cascades is involved in mobilization of hematopoietic stem/progenitor cells (HSPCs). Leukemia 28(11):2148–2154.  https://doi.org/10.1038/leu.2014.115CrossRefPubMedPubMedCentralGoogle Scholar
  4. Borkowska S, Suszynska M, Ratajczak J, Ratajczak MZ (2016) Evidence of a pivotal role for the distal part of the complement Cascade in the diurnal release of hematopoietic stem cells into peripheral blood. Cell Transplant 25(2):275–282.  https://doi.org/10.3727/096368915X688489CrossRefPubMedGoogle Scholar
  5. Bright J, Hussain S, Dang V, Wright S, Cooper B, Byun T, Ramos C, Singh A, Parry G, Stagliano N, Griswold-Prenner I (2015) Human secreted tau increases amyloid-beta production. Neurobiol Aging 36(2):693–709.  https://doi.org/10.1016/j.neurobiolaging.2014.09.007CrossRefPubMedGoogle Scholar
  6. Burkhardt MF, Martinez FJ, Wright S, Ramos C, Volfson D, Mason M, Garnes J, Dang V, Lievers J, Shoukat-Mumtaz U, Martinez R, Gai H, Blake R, Vaisberg E, Grskovic M, Johnson C, Irion S, Bright J, Cooper B, Nguyen L, Griswold-Prenner I, Javaherian A (2013) A cellular model for sporadic ALS using patient-derived induced pluripotent stem cells. Mol Cell Neurosci 56:355–364.  https://doi.org/10.1016/j.mcn.2013.07.007CrossRefPubMedPubMedCentralGoogle Scholar
  7. Canesi M, Giordano R, Lazzari L, Isalberti M, Isaias IU, Benti R, Rampini P, Marotta G, Colombo A, Cereda E, Dipaola M, Montemurro T, Vigano M, Budelli S, Montelatici E, Lavazza C, Cortelezzi A, Pezzoli G (2016) Finding a new therapeutic approach for no-option Parkinsonisms: mesenchymal stromal cells for progressive supranuclear palsy. J Transl Med 14(1):127.  https://doi.org/10.1186/s12967-016-0880-2CrossRefPubMedPubMedCentralGoogle Scholar
  8. Castren E, Kojima M (2017) Brain-derived neurotrophic factor in mood disorders and antidepressant treatments. Neurobiol Dis 97(Pt B):119–126.  https://doi.org/10.1016/j.nbd.2016.07.010CrossRefPubMedGoogle Scholar
  9. Chen H, Zhang L, Zhang M, Song X, Zhang H, Liu Y, Lv S (2013) Relationship of depression, stress and endothelial function in stable angina patients. Physiol Behav 118:152–158.  https://doi.org/10.1016/j.physbeh.2013.05.024CrossRefPubMedGoogle Scholar
  10. Cizza G (2011) Major depressive disorder is a risk factor for low bone mass, central obesity, and other medical conditions. Dialogues Clin Neurosci 13(1):73–87PubMedPubMedCentralGoogle Scholar
  11. Colpo GD, Leboyer M, Dantzer R, Trivedi MH, Teixeira AL (2017) Immune-based strategies for mood disorders: facts and challenges. Expert Rev Neurother 18:1–14.  https://doi.org/10.1080/14737175.2018.1407242CrossRefGoogle Scholar
  12. Connick P, Kolappan M, Crawley C, Webber DJ, Patani R, Michell AW, Du MQ, Luan SL, Altmann DR, Thompson AJ, Compston A, Scott MA, Miller DH, Chandran S (2012) Autologous mesenchymal stem cells for the treatment of secondary progressive multiple sclerosis: an open-label phase 2a proof-of-concept study. Lancet Neurol 11(2):150–156.  https://doi.org/10.1016/S1474-4422(11)70305-2CrossRefPubMedPubMedCentralGoogle Scholar
  13. Coquery N, Blesch A, Stroh A, Fernandez-Klett F, Klein J, Winter C, Priller J (2012) Intrahippocampal transplantation of mesenchymal stromal cells promotes neuroplasticity. Cytotherapy 14(9):1041–1053.  https://doi.org/10.3109/14653249.2012.694418CrossRefPubMedGoogle Scholar
  14. Corti S, Faravelli I, Cardano M, Conti L (2015) Human pluripotent stem cells as tools for neurodegenerative and neurodevelopmental disease modeling and drug discovery. Expert Opin Drug Discovery 10(6):615–629.  https://doi.org/10.1517/17460441.2015.1037737CrossRefGoogle Scholar
  15. Crigler L, Robey RC, Asawachaicharn A, Gaupp D, Phinney DG (2006) Human mesenchymal stem cell subpopulations express a variety of neuro-regulatory molecules and promote neuronal cell survival and neuritogenesis. Exp Neurol 198(1):54–64.  https://doi.org/10.1016/j.expneurol.2005.10.029CrossRefPubMedGoogle Scholar
  16. de Melo LGP, Nunes SOV, Anderson G, Vargas HO, Barbosa DS, Galecki P, Carvalho AF, Maes M (2017) Shared metabolic and immune-inflammatory, oxidative and nitrosative stress pathways in the metabolic syndrome and mood disorders. Prog Neuro-Psychopharmacol Biol Psychiatry 78:34–50.  https://doi.org/10.1016/j.pnpbp.2017.04.027CrossRefGoogle Scholar
  17. Dezawa M, Kanno H, Hoshino M, Cho H, Matsumoto N, Itokazu Y, Tajima N, Yamada H, Sawada H, Ishikawa H, Mimura T, Kitada M, Suzuki Y, Ide C (2004) Specific induction of neuronal cells from bone marrow stromal cells and application for autologous transplantation. J Clin Invest 113(12):1701–1710.  https://doi.org/10.1172/JCI20935CrossRefPubMedPubMedCentralGoogle Scholar
  18. Di Stefano R, Felice F, Pini S, Mazzotta G, Bovenzi FM, Bertoli D, Abelli M, Borelli L, Cardini A, Lari L, Gesi C, Muccignat A, Oligeri C, Michi P, Balbarini A (2014) Impact of depression on circulating endothelial progenitor cells in patients with acute coronary syndromes: a pilot study. J Cardiovasc Med 15(4):353–359.  https://doi.org/10.2459/JCM.0b013e328365c195CrossRefGoogle Scholar
  19. Dome P, Teleki Z, Rihmer Z, Peter L, Dobos J, Kenessey I, Tovari J, Timar J, Paku S, Kovacs G, Dome B (2009) Circulating endothelial progenitor cells and depression: a possible novel link between heart and soul. Mol Psychiatry 14(5):523–531.  https://doi.org/10.1038/sj.mp.4002138CrossRefPubMedGoogle Scholar
  20. Dome P, Halmai Z, Dobos J, Lazary J, Gonda X, Kenessey I, Sallai T, Makkos Z, Faludi G (2012) Investigation of circulating endothelial progenitor cells and angiogenic and inflammatory cytokines during recovery from an episode of major depression. J Affect Disord 136(3):1159–1163.  https://doi.org/10.1016/j.jad.2011.09.027CrossRefPubMedGoogle Scholar
  21. Eglen R, Reisine T (2011) Primary cells and stem cells in drug discovery: emerging tools for high-throughput screening. Assay Drug Dev Technol 9(2):108–124.  https://doi.org/10.1089/adt.2010.0305CrossRefPubMedGoogle Scholar
  22. Felice F, Di Stefano R, Pini S, Mazzotta G, Bovenzi FM, Bertoli D, Abelli M, Borelli L, Cardini A, Lari L, Gesi C, Michi P, Morrone D, Gnudi L, Balbarini A (2015) Influence of depression and anxiety on circulating endothelial progenitor cells in patients with acute coronary syndromes. Hum Psychopharmacol 30(3):183–188.  https://doi.org/10.1002/hup.2470CrossRefPubMedGoogle Scholar
  23. Ferensztajn-Rochowiak E, Kucharska-Mazur J, Samochowiec J, Ratajczak MZ, Michalak M, Rybakowski JK (2017) The effect of long-term lithium treatment of bipolar disorder on stem cells circulating in peripheral blood. World J Biol Psychiatry 18(1):54–62.  https://doi.org/10.3109/15622975.2016.1174301CrossRefPubMedGoogle Scholar
  24. Goldstein BI, Carnethon MR, Matthews KA, McIntyre RS, Miller GE, Raghuveer G, Stoney CM, Wasiak H, McCrindle BW (2015) Major depressive disorder and bipolar disorder predispose youth to accelerated atherosclerosis and early cardiovascular disease: a scientific statement from the American Heart Association. Circulation 132(10):965–986.  https://doi.org/10.1161/cir.0000000000000229CrossRefPubMedGoogle Scholar
  25. Hansen DV, Rubenstein JL, Kriegstein AR (2011) Deriving excitatory neurons of the neocortex from pluripotent stem cells. Neuron 70(4):645–660.  https://doi.org/10.1016/j.neuron.2011.05.006CrossRefPubMedPubMedCentralGoogle Scholar
  26. Hermann A, Gastl R, Liebau S, Popa MO, Fiedler J, Boehm BO, Maisel M, Lerche H, Schwarz J, Brenner R, Storch A (2004) Efficient generation of neural stem cell-like cells from adult human bone marrow stromal cells. J Cell Sci 117. (Pt 19:4411–4422.  https://doi.org/10.1242/jcs.01307CrossRefPubMedGoogle Scholar
  27. Karussis D, Karageorgiou C, Vaknin-Dembinsky A, Gowda-Kurkalli B, Gomori JM, Kassis I, Bulte JW, Petrou P, Ben-Hur T, Abramsky O, Slavin S (2010) Safety and immunological effects of mesenchymal stem cell transplantation in patients with multiple sclerosis and amyotrophic lateral sclerosis. Arch Neurol 67(10):1187–1194.  https://doi.org/10.1001/archneurol.2010.248CrossRefPubMedPubMedCentralGoogle Scholar
  28. Kendler KS, Myers JM, Maes HH, Keyes CL (2011) The relationship between the genetic and environmental influences on common internalizing psychiatric disorders and mental Well-being. Behav Genet 41(5):641–650.  https://doi.org/10.1007/s10519-011-9466-1CrossRefPubMedPubMedCentralGoogle Scholar
  29. Kessler RC, Akiskal HS, Ames M, Birnbaum H, Greenberg P, Hirschfeld RM, Jin R, Merikangas KR, Simon GE, Wang PS (2006) Prevalence and effects of mood disorders on work performance in a nationally representative sample of U.S. workers. Am J Psychiatry 163(9):1561–1568.  https://doi.org/10.1176/ajp.2006.163.9.1561CrossRefPubMedPubMedCentralGoogle Scholar
  30. Khakoo AY, Finkel T (2005) Endothelial progenitor cells. Annu Rev Med 56:79–101.  https://doi.org/10.1146/annurev.med.56.090203.104149CrossRefPubMedGoogle Scholar
  31. Kummer A, Teixeira AL (2009) Neuropsychiatry of Parkinson’s disease. Arq Neuropsiquiatr 67(3B):930–939CrossRefGoogle Scholar
  32. Kunisato A, Wakatsuki M, Shinba H, Ota T, Ishida I, Nagao K (2011) Direct generation of induced pluripotent stem cells from human nonmobilized blood. Stem Cells Dev 20(1):159–168.  https://doi.org/10.1089/scd.2010.0063CrossRefPubMedGoogle Scholar
  33. Llufriu S, Sepulveda M, Blanco Y, Marin P, Moreno B, Berenguer J, Gabilondo I, Martinez-Heras E, Sola-Valls N, Arnaiz JA, Andreu EJ, Fernandez B, Bullich S, Sanchez-Dalmau B, Graus F, Villoslada P, Saiz A (2014) Randomized placebo-controlled phase II trial of autologous mesenchymal stem cells in multiple sclerosis. PLoS One 9(12):e113936.  https://doi.org/10.1371/journal.pone.0113936CrossRefPubMedPubMedCentralGoogle Scholar
  34. Loomans CJ, De Koning EJ, Staal FJ, Rabelink TJ, Zonneveld AJ (2005) Endothelial progenitor cell dysfunction in type 1 diabetes: another consequence of oxidative stress? Antioxid Redox Signal 7(11–12):1468–1475.  https://doi.org/10.1089/ars.2005.7.1468CrossRefPubMedGoogle Scholar
  35. Lyoo IK, Sung YH, Dager SR, Friedman SD, Lee JY, Kim SJ, Kim N, Dunner DL, Renshaw PF (2006) Regional cerebral cortical thinning in bipolar disorder. Bipolar Disord 8(1):65–74.  https://doi.org/10.1111/j.1399-5618.2006.00284.xCrossRefPubMedGoogle Scholar
  36. Marotta A, Chiaie RD, Spagna A, Bernabei L, Sciarretta M, Roca J, Biondi M, Casagrande M (2015) Impaired conflict resolution and vigilance in euthymic bipolar disorder. Psychiatry Res 229(1–2):490–496.  https://doi.org/10.1016/j.psychres.2015.06.026CrossRefPubMedGoogle Scholar
  37. McGonigle P, Ruggeri B (2014) Animal models of human disease: challenges in enabling translation. Biochem Pharmacol 87(1):162–171.  https://doi.org/10.1016/j.bcp.2013.08.006CrossRefPubMedGoogle Scholar
  38. McNeish J, Gardner JP, Wainger BJ, Woolf CJ, Eggan K (2015) From dish to bedside: lessons learned while translating findings from a stem cell model of disease to a clinical trial. Cell Stem Cell 17(1):8–10.  https://doi.org/10.1016/j.stem.2015.06.013CrossRefPubMedGoogle Scholar
  39. Mertens J, Wang QW, Kim Y, Yu DX, Pham S, Yang B, Zheng Y, Diffenderfer KE, Zhang J, Soltani S, Eames T, Schafer ST, Boyer L, Marchetto MC, Nurnberger JI, Calabrese JR, Odegaard KJ, McCarthy MJ, Zandi PP, Alda M, Nievergelt CM, Pharmacogenomics of Bipolar Disorder S, Mi S, Brennand KJ, Kelsoe JR, Gage FH, Yao J (2015) Differential responses to lithium in hyperexcitable neurons from patients with bipolar disorder. Nature 527(7576):95–99.  https://doi.org/10.1038/nature15526CrossRefPubMedPubMedCentralGoogle Scholar
  40. Mullard A (2015) Stem-cell discovery platforms yield first clinical candidates. Nat Rev Drug Discov 14(9):589–591.  https://doi.org/10.1038/nrd4708CrossRefPubMedGoogle Scholar
  41. Munoz JR, Stoutenger BR, Robinson AP, Spees JL, Prockop DJ (2005) Human stem/progenitor cells from bone marrow promote neurogenesis of endogenous neural stem cells in the hippocampus of mice. Proc Natl Acad Sci U S A 102(50):18171–18176.  https://doi.org/10.1073/pnas.0508945102CrossRefPubMedPubMedCentralGoogle Scholar
  42. Naryshkin NA, Weetall M, Dakka A, Narasimhan J, Zhao X, Feng Z, Ling KK, Karp GM, Qi H, Woll MG, Chen G, Zhang N, Gabbeta V, Vazirani P, Bhattacharyya A, Furia B, Risher N, Sheedy J, Kong R, Ma J, Turpoff A, Lee CS, Zhang X, Moon YC, Trifillis P, Welch EM, Colacino JM, Babiak J, Almstead NG, Peltz SW, Eng LA, Chen KS, Mull JL, Lynes MS, Rubin LL, Fontoura P, Santarelli L, Haehnke D, McCarthy KD, Schmucki R, Ebeling M, Sivaramakrishnan M, Ko CP, Paushkin SV, Ratni H, Gerlach I, Ghosh A, Metzger F (2014) Motor neuron disease. SMN2 splicing modifiers improve motor function and longevity in mice with spinal muscular atrophy. Science 345(6197):688–693.  https://doi.org/10.1126/science.1250127CrossRefPubMedGoogle Scholar
  43. Papakostas GI, Ionescu DF (2015) Towards new mechanisms: an update on therapeutics for treatment-resistant major depressive disorder. Mol Psychiatry 20(10):1142–1150.  https://doi.org/10.1038/mp.2015.92CrossRefPubMedGoogle Scholar
  44. Pedersen CB, Bybjerg-Grauholm J, Pedersen MG, Grove J, Agerbo E, Baekvad-Hansen M, Poulsen JB, Hansen CS, McGrath JJ, Als TD, Goldstein JI, Neale BM, Daly MJ, Hougaard DM, Mors O, Nordentoft M, Borglum AD, Werge T, Mortensen PB (2017) The iPSYCH2012 case-cohort sample: new directions for unravelling genetic and environmental architectures of severe mental disorders. Mol Psychiatry 23:6–14.  https://doi.org/10.1038/mp.2017.196CrossRefPubMedPubMedCentralGoogle Scholar
  45. Pfaffenseller B, Fries GR, Wollenhaupt-Aguiar B, Colpo GD, Stertz L, Panizzutti B, Magalhaes PV, Kapczinski F (2013) Neurotrophins, inflammation and oxidative stress as illness activity biomarkers in bipolar disorder. Expert Rev Neurother 13(7):827–842.  https://doi.org/10.1586/14737175.2013.811981CrossRefPubMedGoogle Scholar
  46. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284(5411):143–147CrossRefGoogle Scholar
  47. Ratajczak MZ, Ratajczak J (2016) Horizontal transfer of RNA and proteins between cells by extracellular microvesicles: 14 years later. Clin Transl Med 5(1):7.  https://doi.org/10.1186/s40169-016-0087-4CrossRefPubMedPubMedCentralGoogle Scholar
  48. Ratajczak MZ, Ratajczak J (2017) Extracellular microvesicles as game changers in better understanding the complexity of cellular interactions-from bench to clinical applications. Am J Med Sci 354(5):449–452.  https://doi.org/10.1016/j.amjms.2017.06.001CrossRefPubMedPubMedCentralGoogle Scholar
  49. Ratajczak MZ, Liu R, Marlicz W, Blogowski W, Starzynska T, Wojakowski W, Zuba-Surma E (2011) Identification of very small embryonic/epiblast-like stem cells (VSELs) circulating in peripheral blood during organ/tissue injuries. Methods Cell Biol 103:31–54.  https://doi.org/10.1016/B978-0-12-385493-3.00003-6CrossRefPubMedGoogle Scholar
  50. Ratajczak MZ, Ratajczak D, Pedziwiatr D (2016) Extracellular microvesicles (ExMVs) in cell to cell communication: a role of telocytes. Adv Exp Med Biol 913:41–49.  https://doi.org/10.1007/978-981-10-1061-3_3CrossRefPubMedGoogle Scholar
  51. Riva-Posse P, Choi KS, Holtzheimer PE, Crowell AL, Garlow SJ, Rajendra JK, McIntyre CC, Gross RE, Mayberg HS (2017) A connectomic approach for subcallosal cingulate deep brain stimulation surgery: prospective targeting in treatment-resistant depression. Mol Psychiatry 23:843–849.  https://doi.org/10.1038/mp.2017.59CrossRefPubMedPubMedCentralGoogle Scholar
  52. Sayana P, Colpo GD, Simoes LR, Giridharan VV, Teixeira AL, Quevedo J, Barichello T (2017) A systematic review of evidence for the role of inflammatory biomarkers in bipolar patients. J Psychiatr Res 92:160–182.  https://doi.org/10.1016/j.jpsychires.2017.03.018CrossRefPubMedGoogle Scholar
  53. Shwartz A, Betzer O, Kronfeld N, Kazimirsky G, Cazacu S, Finniss S, Lee HK, Motiei M, Dagan SY, Popovtzer R, Brodie C, Yadid G (2017) Therapeutic effect of Astroglia-like mesenchymal stem cells expressing glutamate transporter in a genetic rat model of depression. Theranostics 7(10):2690–2703.  https://doi.org/10.7150/thno.18914CrossRefPubMedPubMedCentralGoogle Scholar
  54. Slattery DA, Cryan JF (2014) The ups and downs of modelling mood disorders in rodents. ILAR J 55(2):297–309.  https://doi.org/10.1093/ilar/ilu026CrossRefPubMedGoogle Scholar
  55. Soliman MA, Aboharb F, Zeltner N, Studer L (2017) Pluripotent stem cells in neuropsychiatric disorders. Mol Psychiatry 22(9):1241–1249.  https://doi.org/10.1038/mp.2017.40CrossRefPubMedPubMedCentralGoogle Scholar
  56. Strakowski SM, DelBello MP, Zimmerman ME, Getz GE, Mills NP, Ret J, Shear P, Adler CM (2002) Ventricular and periventricular structural volumes in first- versus multiple-episode bipolar disorder. Am J Psychiatry 159(11):1841–1847.  https://doi.org/10.1176/appi.ajp.159.11.1841CrossRefPubMedGoogle Scholar
  57. Sykova E, Rychmach P, Drahoradova I, Konradova S, Ruzickova K, Vorisek I, Forostyak S, Homola A, Bojar M (2017) Transplantation of mesenchymal stromal cells in patients with amyotrophic lateral sclerosis: results of phase I/IIa clinical trial. Cell Transplant 26(4):647–658.  https://doi.org/10.3727/096368916X693716CrossRefPubMedPubMedCentralGoogle Scholar
  58. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676.  https://doi.org/10.1016/j.cell.2006.07.024CrossRefPubMedGoogle Scholar
  59. Takahashi K, Okita K, Nakagawa M, Yamanaka S (2007) Induction of pluripotent stem cells from fibroblast cultures. Nat Protoc 2(12):3081–3089.  https://doi.org/10.1038/nprot.2007.418CrossRefPubMedGoogle Scholar
  60. Tfilin M, Sudai E, Merenlender A, Gispan I, Yadid G, Turgeman G (2010) Mesenchymal stem cells increase hippocampal neurogenesis and counteract depressive-like behavior. Mol Psychiatry 15(12):1164–1175.  https://doi.org/10.1038/mp.2009.110CrossRefPubMedGoogle Scholar
  61. Vadodaria KC, Mertens J, Paquola A, Bardy C, Li X, Jappelli R, Fung L, Marchetto MC, Hamm M, Gorris M, Koch P, Gage FH (2016) Generation of functional human serotonergic neurons from fibroblasts. Mol Psychiatry 21(1):49–61.  https://doi.org/10.1038/mp.2015.161CrossRefPubMedGoogle Scholar
  62. van den Ameele S, Coppens V, Schuermans J, De Boer P, Timmers M, Fransen E, Sabbe B, Morrens M (2017) Neurotrophic and inflammatory markers in bipolar disorder: a prospective study. Psychoneuroendocrinology 84:143–150.  https://doi.org/10.1016/j.psyneuen.2017.07.003CrossRefPubMedGoogle Scholar
  63. Venkataramana NK, Kumar SK, Balaraju S, Radhakrishnan RC, Bansal A, Dixit A, Rao DK, Das M, Jan M, Gupta PK, Totey SM (2010) Open-labeled study of unilateral autologous bone-marrow-derived mesenchymal stem cell transplantation in Parkinson’s disease. Transl Res J Lab Clin Med 155(2):62–70.  https://doi.org/10.1016/j.trsl.2009.07.006CrossRefGoogle Scholar
  64. Waring MJ, Arrowsmith J, Leach AR, Leeson PD, Mandrell S, Owen RM, Pairaudeau G, Pennie WD, Pickett SD, Wang J, Wallace O, Weir A (2015) An analysis of the attrition of drug candidates from four major pharmaceutical companies. Nat Rev Drug Discov 14(7):475–486.  https://doi.org/10.1038/nrd4609CrossRefPubMedGoogle Scholar
  65. Whiteford HA, Degenhardt L, Rehm J, Baxter AJ, Ferrari AJ, Erskine HE, Charlson FJ, Norman RE, Flaxman AD, Johns N, Burstein R, Murray CJ, Vos T (2013) Global burden of disease attributable to mental and substance use disorders: findings from the global burden of disease study 2010. Lancet 382(9904):1575–1586.  https://doi.org/10.1016/S0140-6736(13)61611-6CrossRefPubMedGoogle Scholar
  66. WHO (2012) World Health OrganizationGoogle Scholar
  67. Wise T, Radua J, Nortje G, Cleare AJ, Young AH, Arnone D (2016) Voxel-based meta-analytical Evidence of structural Disconnectivity in major depression and bipolar disorder. Biol Psychiatry 79(4):293–302.  https://doi.org/10.1016/j.biopsych.2015.03.004CrossRefPubMedGoogle Scholar
  68. Xu Z, Jiang H, Zhong P, Yan Z, Chen S, Feng J (2016) Direct conversion of human fibroblasts to induced serotonergic neurons. Mol Psychiatry 21(1):62–70.  https://doi.org/10.1038/mp.2015.101CrossRefPubMedGoogle Scholar
  69. Yang L, Ruan LM, Ye HH, Cui HB, Mu QT, Lou YR, Ji YX, Li WZ, Sun DH, Chen XB (2011) Depression is associated with lower circulating endothelial progenitor cells and increased inflammatory markers. Acta Neuropsychiatrica 23(5):235–240.  https://doi.org/10.1111/j.1601-5215.2011.00577.xCrossRefPubMedGoogle Scholar
  70. Yoo SW, Kim SS, Lee SY, Lee HS, Kim HS, Lee YD, Suh-Kim H (2008) Mesenchymal stem cells promote proliferation of endogenous neural stem cells and survival of newborn cells in a rat stroke model. Exp Mol Med 40(4):387–397.  https://doi.org/10.3858/emm.2008.40.4.387CrossRefPubMedPubMedCentralGoogle Scholar
  71. York TP, Miles MF, Kendler KS, Jackson-Cook C, Bowman ML, Eaves LJ (2005) Epistatic and environmental control of genome-wide gene expression. Twin Res Hum Genet 8(1):5–15.  https://doi.org/10.1375/1832427053435418CrossRefPubMedGoogle Scholar
  72. Zhang JC, Yao W, Hashimoto K (2016) Brain-derived neurotrophic factor (BDNF)-TrkB signaling in inflammation-related depression and potential therapeutic targets. Curr Neuropharmacol 14(7):721–731CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Neuropsychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical SchoolThe University of Texas Health Science Center at HoustonHoustonUSA
  2. 2.Translational Psychiatry Program, Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical SchoolThe University of Texas Health Science Center at HoustonHoustonUSA

Personalised recommendations