Advertisement

Stem Cell Therapy and Type 1 Diabetes Mellitus: Treatment Strategies and Future Perspectives

  • Tahir Farooq
  • Kanwal RehmanEmail author
  • Arruje Hameed
  • Muhammad Sajid Hamid AkashEmail author
Conference paper
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1084)

Abstract

Type 1 diabetes mellitus (T1DM) is classified as an autoimmune disease which progressively results in the depletion of insulin-secreting β-cells. Consequently, the insulin secretion stops leading to hyperglycemic situations within the body. Under severe conditions, it also causes multi-organ diabetes-associated dysfunctionalities notably hypercoagulability, neuropathy, nephropathy, retinopathy, and sometimes organ failures. The prevalence of this disease has been noticed about 3% that has highlighted the serious concerns for healthcare professionals around the globe. For the treatment of this disease, the cell therapy is considered as an important therapeutic approach for the replacement of damaged β-cells. However, the development of autoantibodies unfortunately reduces their effectiveness with the passage of time and finally with the recurrence of diabetes mellitus. The development of new techniques for extraction and transplantation of islets failed to support this approach due to the issues related to major surgery and lifelong dependence on immunosuppression. For T1DM, such cells are supposed to produce, store, and supply insulin to maintain glucose homeostasis. The urgent need of much-anticipated substitute for insulin-secreting β-cells directed the researchers to focus on stem cells (SCs) to produce insulin-secreting β-cells. For being more specific and targeted therapeutic approaches, SC-based strategies opened up the new horizons to cure T1DM. This cell-based therapy aimed to produce functional insulin-secreting β-cells to cure diabetes on forever basis. The intrinsic regenerative potential along with immunomodulatory abilities of SCs highlights the therapeutic potential of SC-based strategies. In this article, we have comprehensively highlighted the role of SCs to treat diabetes mellitus.

Keywords

Autoimmune diseases Diabetes mellitus Pancreatic islets Regenerative medicines Stem cell therapy 

Abbreviations

CPPs

Cell-penetrating peptides

ESCs

Embryonic stem cells

HSCs

Hematopoietic stem cells

HSV

Herpes simplex virus

iPSCs

Induced pluripotent stem cells

ISC

Insulin-secreting cells

MSCs

Mesenchymal stromal cells

PTDs

Protein transduction domains

r-ATG

Rabbit anti-thymoglobulin

SCs

Stem cells

SCT

Stem cell therapy

T1DM

Type 1 diabetes mellitus

TAT

Trans-activator of transcription

UCB

Umbilical cord blood

WHO

World Health Organization

Notes

Conflict of Interest

Nothing to declare.

References

  1. American Diabetes, A. (2010). Diagnosis and classification of diabetes mellitus. Diabetes Care, 33(Suppl 1), S62–S69.  https://doi.org/10.2337/dc10-S062.CrossRefGoogle Scholar
  2. Assady, S., Maor, G., Amit, M., Itskovitz-Eldor, J., Skorecki, K. L., & Tzukerman, M. (2001). Insulin production by human embryonic stem cells. Diabetes, 50(8), 1691–1697.CrossRefGoogle Scholar
  3. Ball, S. G., & Barber, T. M. (2003). Molecular development of the pancreatic beta cell: Implications for cell replacement therapy. Trends Endocrinol Metab, 14(8), 349–355.CrossRefGoogle Scholar
  4. Barcala Tabarrozzi, A. E., Castro, C. N., Dewey, R. A., Sogayar, M. C., Labriola, L., & Perone, M. J. (2013). Cell-based interventions to halt autoimmunity in type 1 diabetes mellitus. Clin Exp Immunol, 171(2), 135–146.  https://doi.org/10.1111/cei.12019.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bianco, P., & Robey, P. G. (2001). Stem cells in tissue engineering. Nature, 414(6859), 118–121.CrossRefGoogle Scholar
  6. Bonner-Weir, S., Baxter, L. A., Schuppin, G. T., & Smith, F. E. (1993). A second pathway for regeneration of adult exocrine and endocrine pancreas. A possible recapitulation of embryonic development. Diabetes, 42(12), 1715–1720.CrossRefGoogle Scholar
  7. Buzzetti, R., Cernea, S., Petrone, A., Capizzi, M., Spoletini, M., Zampetti, S.,. .. Pozzilli, P. (2011). C-peptide response and HLA genotypes in subjects with recent-onset type 1 diabetes after immunotherapy with DiaPep277: an exploratory study. Diabetes, 60(11), 3067–3072. doi:  https://doi.org/10.2337/db10-0560CrossRefPubMedPubMedCentralGoogle Scholar
  8. Cefalu, W. T. (2012). American diabetes association-European association for the study of diabetes position statement: Due diligence was conducted. Diabetes Care, 35(6), 1201–1203.  https://doi.org/10.2337/dc12-0564.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Concannon, P., Rich, S. S., & Nepom, G. T. (2009). Genetics of Type 1A diabetes. New England Journal of Medicine, 360(16), 1646–1654.  https://doi.org/10.1056/NEJMra0808284.CrossRefPubMedGoogle Scholar
  10. Couri, C. E. B., & Voltarelli, J. C. (2009). Stem cell therapy for type 1 diabetes mellitus: a review of recent clinical trials. Diabetology & Metabolic Syndrome, 1(1), 19.  https://doi.org/10.1186/1758-5996-1-19.CrossRefGoogle Scholar
  11. Czaja, A. J. (2014). Current and prospective pharmacotherapy for autoimmune hepatitis. Expert Opinion on Pharmacotherapy, 15(12), 1715–1736.  https://doi.org/10.1517/14656566.2014.931938.CrossRefPubMedGoogle Scholar
  12. Czaja, A. J. (2016). Diagnosis and Management of Autoimmune Hepatitis: Current Status and Future Directions. Gut Liver, 10(2), 177–203.  https://doi.org/10.5009/gnl15352.CrossRefPubMedPubMedCentralGoogle Scholar
  13. D’Amour, K. A., Bang, A. G., Eliazer, S., Kelly, O. G., Agulnick, A. D., Smart, N. G.,. .. Baetge, E. E. (2006). Production of pancreatic hormone-expressing endocrine cells from human embryonic stem cells. Nat Biotechnol, 24(11), 1392–1401. doi:  https://doi.org/10.1038/nbt1259CrossRefPubMedGoogle Scholar
  14. Dominguez-Bendala, J., Klein, D., Ribeiro, M., Ricordi, C., Inverardi, L., Pastori, R., & Edlund, H. (2005). TAT-mediated neurogenin 3 protein transduction stimulates pancreatic endocrine differentiation in vitro. Diabetes, 54(3), 720–726.CrossRefGoogle Scholar
  15. Dominici, M., Le Blanc, K., Mueller, I., Slaper-Cortenbach, I., Marini, F., Krause, D.,. .. Horwitz, E. (2006). Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy, 8(4), 315–317. doi:  https://doi.org/10.1080/14653240600855905CrossRefGoogle Scholar
  16. Dube, S., Errazuriz, I., Cobelli, C., Basu, R., & Basu, A. (2013). Assessment of insulin action on carbohydrate metabolism: Physiological and non-physiological methods. Diabet Med, 30(6), 664–670.  https://doi.org/10.1111/dme.12189.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Eaton, R. P., Allen, R. C., Schade, D. S., Erickson, K. M., & Standefer, J. (1980). Prehepatic insulin production in man: kinetic analysis using peripheral connecting peptide behavior. J Clin Endocrinol Metab, 51(3), 520–528.  https://doi.org/10.1210/jcem-51-3-520.CrossRefPubMedGoogle Scholar
  18. Elliott, R. B., Crossley, J. R., Berryman, C. C., & James, A. G. (1981). Partial preservation of pancreatic β-cell function in children with diabetes. The Lancet, 318(8247), 631–632.  https://doi.org/10.1016/S0140-6736(81)92761-6.CrossRefGoogle Scholar
  19. Fiorina, P., Jurewicz, M., Augello, A., Vergani, A., Dada, S., La Rosa, S.,. .. Abdi, R. (2009). Immunomodulatory function of bone marrow-derived mesenchymal stem cells in experimental autoimmune type 1 diabetes. J Immunol, 183(2), 993–1004. doi:  https://doi.org/10.4049/jimmunol.0900803CrossRefGoogle Scholar
  20. Fiorina, P., Voltarelli, J., & Zavazava, N. (2011). Immunological applications of stem cells in type 1 diabetes. Endocr Rev, 32(6), 725–754.  https://doi.org/10.1210/er.2011-0008.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Fotino, N., Fotino, C., & Pileggi, A. (2015). Re-engineering islet cell transplantation. Pharmacol Res, 98, 76–85.  https://doi.org/10.1016/j.phrs.2015.02.010.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Friedenstein, A. J., Piatetzky, S., II, & Petrakova, K. V. (1966). Osteogenesis in transplants of bone marrow cells. J Embryol Exp Morphol, 16(3), 381–390.Google Scholar
  23. Geoghegan, E., & Byrnes, L. (2008). Mouse induced pluripotent stem cells. International Journal of Developmental Biology, 52(8), 1015–1022.CrossRefGoogle Scholar
  24. Gibly, R. F., Graham, J. G., Luo, X., Lowe, W. L., Jr., Hering, B. J., & Shea, L. D. (2011). Advancing islet transplantation: from engraftment to the immune response. Diabetologia, 54(10), 2494–2505.  https://doi.org/10.1007/s00125-011-2243-0.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Greenbaum, C., & Atkinson, M. A. (2011). Persistence is the twin sister of excellence: an important lesson for attempts to prevent and reverse type 1 diabetes. Diabetes, 60(3), 693–694.  https://doi.org/10.2337/db10-1810.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Gruessner, A. C., & Sutherland, D. E. (2005). Pancreas transplant outcomes for United States (US) and non-US cases as reported to the United Network for Organ Sharing (UNOS) and the International Pancreas Transplant Registry (IPTR) as of June 2004. Clin Transplant, 19(4), 433–455.  https://doi.org/10.1111/j.1399-0012.2005.00378.x.CrossRefPubMedGoogle Scholar
  27. Haidara, M. A., Assiri, A. S., Youssef, M. A., Mahmoud, M. M., Ahmed M.S., E., Al-Hakami, A., & Chandramoorthy, H. C. (2015). Differentiated mesenchymal stem cells ameliorate cardiovascular complications in diabetic rats. Cell and Tissue Research, 359(2), 565–575. doi:  https://doi.org/10.1007/s00441-014-2034-2CrossRefGoogle Scholar
  28. Halban, P. A. (2004). Cellular sources of new pancreatic beta cells and therapeutic implications for regenerative medicine. Nat Cell Biol, 6(11), 1021–1025.  https://doi.org/10.1038/ncb1104-1021.CrossRefPubMedGoogle Scholar
  29. Haller, M. J., Wasserfall, C. H., McGrail, K. M., Cintron, M., Brusko, T. M., Wingard, J. R.,. .. Schatz, D. A. (2009). Autologous umbilical cord blood transfusion in very young children with type 1 diabetes. Diabetes Care, 32(11), 2041–2046. doi:  https://doi.org/10.2337/dc09-0967CrossRefPubMedPubMedCentralGoogle Scholar
  30. Harjutsalo, V., Sjoberg, L., & Tuomilehto, J. (2008). Time trends in the incidence of type 1 diabetes in Finnish children: A cohort study. Lancet, 371(9626), 1777–1782.  https://doi.org/10.1016/s0140-6736(08)60765-5.CrossRefPubMedGoogle Scholar
  31. Hoogduijn, M. J., Popp, F., Verbeek, R., Masoodi, M., Nicolaou, A., Baan, C., & Dahlke, M. H. (2010). The immunomodulatory properties of mesenchymal stem cells and their use for immunotherapy. Int Immunopharmacol, 10(12), 1496–1500.  https://doi.org/10.1016/j.intimp.2010.06.019.CrossRefPubMedGoogle Scholar
  32. Hori, Y., Gu, X., Xie, X., & Kim, S. K. (2005). Differentiation of insulin-producing cells from human neural progenitor cells. PLoS Med, 2(4), e103.  https://doi.org/10.1371/journal.pmed.0020103.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Jahansouz, C., Kumer, S. C., Ellenbogen, M., & Brayman, K. L. (2011). Evolution of beta-Cell replacement therapy in diabetes mellitus: Pancreas transplantation. Diabetes Technol Ther, 13(3), 395–418.  https://doi.org/10.1089/dia.2010.0133.CrossRefPubMedGoogle Scholar
  34. Jurewicz, M., Yang, S., Augello, A., Godwin, J. G., Moore, R. F., Azzi, J.,. .. Abdi, R. (2010). Congenic mesenchymal stem cell therapy reverses hyperglycemia in experimental type 1 diabetes. Diabetes, 59(12), 3139–3147. doi:  https://doi.org/10.2337/db10-0542CrossRefPubMedPubMedCentralGoogle Scholar
  35. Karnieli, O., Izhar-Prato, Y., Bulvik, S., & Efrat, S. (2007). Generation of insulin-producing cells from human bone marrow mesenchymal stem cells by genetic manipulation. Stem Cells, 25(11), 2837–2844.  https://doi.org/10.1634/stemcells.2007-0164.CrossRefPubMedGoogle Scholar
  36. Kilk, K., Magzoub, M., Pooga, M., Eriksson, L. E., Langel, U., & Graslund, A. (2001). Cellular internalization of a cargo complex with a novel peptide derived from the third helix of the islet-1 homeodomain. Comparison with the penetrating peptide. Bioconjug Chem, 12(6), 911–916.CrossRefGoogle Scholar
  37. Kukko, M., Kimpimaki, T., Korhonen, S., Kupila, A., Simell, S., Veijola, R.,. .. Knip, M. (2005). Dynamics of diabetes-associated autoantibodies in young children with human leukocyte antigen-conferred risk of type 1 diabetes recruited from the general population. J Clin Endocrinol Metab, 90(5), 2712–2717. doi:  https://doi.org/10.1210/jc.2004-1371CrossRefPubMedGoogle Scholar
  38. Li, Y., Zhang, R., Qiao, H., Zhang, H., Wang, Y., Yuan, H.,. .. Pei, X. (2007). Generation of insulin-producing cells from PDX-1 gene-modified human mesenchymal stem cells. J Cell Physiol, 211(1), 36–44. doi:  https://doi.org/10.1002/jcp.20897CrossRefPubMedGoogle Scholar
  39. Liu, X., Wang, Y., Li, Y., & Pei, X. (2013). Research status and prospect of stem cells in the treatment of diabetes mellitus. Science China Life Sciences, 56(4), 306–312.  https://doi.org/10.1007/s11427-013-4469-1.CrossRefPubMedGoogle Scholar
  40. Lumelsky, N., Blondel, O., Laeng, P., Velasco, I., Ravin, R., & McKay, R. (2001). Differentiation of embryonic stem cells to insulin-secreting structures similar to pancreatic islets. Science, 292(5520), 1389–1394.  https://doi.org/10.1126/science.1058866.CrossRefPubMedGoogle Scholar
  41. Manns, M. P., & Strassburg, C. P. (2011). Therapeutic strategies for autoimmune hepatitis. Digestive Diseases, 29(4), 411–415.CrossRefGoogle Scholar
  42. Martin, G. R. (1981). Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci U S A, 78(12), 7634–7638.CrossRefGoogle Scholar
  43. Masoud, M. S., Anwar, S. S., Afzal, M. Z., Mehmood, A., Khan, S. N., & Riazuddin, S. (2012). Pre-conditioned mesenchymal stem cells ameliorate renal ischemic injury in rats by augmented survival and engraftment. Journal of Translational Medicine, 10(1), 243.  https://doi.org/10.1186/1479-5876-10-243.CrossRefPubMedPubMedCentralGoogle Scholar
  44. Noguchi, H., & Matsumoto, S. (2006). Protein transduction technology offers a novel therapeutic approach for diabetes. Journal of Hepato-Biliary-Pancreatic Surgery, 13(4), 306–313.  https://doi.org/10.1007/s00534-005-1038-4.CrossRefPubMedGoogle Scholar
  45. Noguchi, H., Kaneto, H., Weir, G. C., & Bonner-Weir, S. (2003). PDX-1 protein containing its own antennapedia-like protein transduction domain can transduce pancreatic duct and islet cells. Diabetes, 52(7), 1732–1737.CrossRefGoogle Scholar
  46. Noguchi, H., Bonner-Weir, S., Wei, F. Y., Matsushita, M., & Matsumoto, S. (2005). BETA2/NeuroD protein can be transduced into cells due to an arginine- and lysine-rich sequence. Diabetes, 54(10), 2859–2866.CrossRefGoogle Scholar
  47. Oh, S. H., Muzzonigro, T. M., Bae, S. H., LaPlante, J. M., Hatch, H. M., & Petersen, B. E. (2004). Adult bone marrow-derived cells trans-differentiating into insulin-producing cells for the treatment of type I diabetes. Lab Invest, 84(5), 607–617.  https://doi.org/10.1038/labinvest.3700074.CrossRefPubMedGoogle Scholar
  48. Okita, K., Yamakawa, T., Matsumura, Y., Sato, Y., Amano, N., Watanabe, A.,. .. Yamanaka, S. (2013). An efficient nonviral method to generate integration-free human-induced pluripotent stem cells from cord blood and peripheral blood cells. Stem Cells, 31(3), 458–466. doi:  https://doi.org/10.1002/stem.1293CrossRefPubMedGoogle Scholar
  49. Orban, T., Bundy, B., Becker, D. J., DiMeglio, L. A., Gitelman, S. E., Goland, R.,. .. Skyler, J. S. (2011). Co-stimulation modulation with abatacept in patients with recent-onset type 1 diabetes: a randomised, double-blind, placebo-controlled trial. Lancet, 378(9789), 412–419. doi:  https://doi.org/10.1016/s0140-6736(11)60886-6CrossRefPubMedPubMedCentralGoogle Scholar
  50. Ostman, J., Lonnberg, G., Arnqvist, H. J., Blohme, G., Bolinder, J., Ekbom Schnell, A.,. .. Nystrom, L. (2008). Gender differences and temporal variation in the incidence of type 1 diabetes: results of 8012 cases in the nationwide Diabetes Incidence Study in Sweden 1983–2002. J Intern Med, 263(4), 386–394. doi:  https://doi.org/10.1111/j.1365-2796.2007.01896.xCrossRefPubMedGoogle Scholar
  51. Pozzilli, P. (2012). Type 1 diabetes mellitus in 2011: Heterogeneity of T1DM raises questions for therapy. Nat Rev. Endocrinol, 8(2), 78–80.CrossRefGoogle Scholar
  52. Prokhorova, T. A., Harkness, L. M., Frandsen, U., Ditzel, N., Schroder, H. D., Burns, J. S., & Kassem, M. (2009). Teratoma formation by human embryonic stem cells is site dependent and enhanced by the presence of Matrigel. Stem Cells Dev, 18(1), 47–54.  https://doi.org/10.1089/scd.2007.0266.CrossRefPubMedGoogle Scholar
  53. Rackham, C. L., Chagastelles, P. C., Nardi, N. B., Hauge-Evans, A. C., Jones, P. M., & King, A. J. (2011). Co-transplantation of mesenchymal stem cells maintains islet organisation and morphology in mice. Diabetologia, 54(5), 1127–1135.  https://doi.org/10.1007/s00125-011-2053-4.CrossRefPubMedGoogle Scholar
  54. Rahier, J., Goebbels, R. M., & Henquin, J. C. (1983). Cellular composition of the human diabetic pancreas. Diabetologia, 24(5), 366–371.CrossRefGoogle Scholar
  55. Ramirez-Dominguez, M. (2016). Historical background of pancreatic islet isolation. Adv Exp Med Biol, 938, 1–9.  https://doi.org/10.1007/978-3-319-39824-2_1.CrossRefPubMedGoogle Scholar
  56. Ramiya, V. K., Maraist, M., Arfors, K. E., Schatz, D. A., Peck, A. B., & Cornelius, J. G. (2000). Reversal of insulin-dependent diabetes using islets generated in vitro from pancreatic stem cells. Nat Med, 6(3), 278–282.  https://doi.org/10.1038/73128.CrossRefPubMedGoogle Scholar
  57. Ricordi, C., Lacy, P. E., & Scharp, D. W. (1989). Automated islet isolation from human pancreas. Diabetes, 38(Suppl 1), 140–142.CrossRefGoogle Scholar
  58. Ryan, E. A., Paty, B. W., Senior, P. A., Bigam, D., Alfadhli, E., Kneteman, N. M.,. .. Shapiro, A. M. (2005). Five-year follow-up after clinical islet transplantation. Diabetes, 54(7), 2060–2069.CrossRefGoogle Scholar
  59. Santana, A., Ensenat-Waser, R., Arribas, M. I., Reig, J. A., & Roche, E. (2006). Insulin-producing cells derived from stem cells: recent progress and future directions. J Cell Mol Med, 10(4), 866–883.CrossRefGoogle Scholar
  60. Schloot, N. C., Meierhoff, G., Lengyel, C., Vandorfi, G., Takacs, J., Panczel, P.,. .. Jermendy, G. (2007). Effect of heat shock protein peptide DiaPep277 on beta-cell function in paediatric and adult patients with recent-onset diabetes mellitus type 1: two prospective, randomized, double-blind phase II trials. Diabetes Metab Res Rev., 23(4), 276–285. doi:  https://doi.org/10.1002/dmrr.707CrossRefPubMedGoogle Scholar
  61. Seaberg, R. M., Smukler, S. R., Kieffer, T. J., Enikolopov, G., Asghar, Z., Wheeler, M. B.,. .. van der Kooy, D. (2004). Clonal identification of multipotent precursors from adult mouse pancreas that generate neural and pancreatic lineages. Nat Biotechnol, 22(9), 1115–1124. doi:  https://doi.org/10.1038/nbt1004CrossRefGoogle Scholar
  62. Segev, H., Fishman, B., Ziskind, A., Shulman, M., & Itskovitz-Eldor, J. (2004). Differentiation of human embryonic stem cells into insulin-producing clusters. Stem Cells, 22(3), 265–274.  https://doi.org/10.1634/stemcells.22-3-265.CrossRefPubMedGoogle Scholar
  63. Shih, C. C., Forman, S. J., Chu, P., & Slovak, M. (2007). Human embryonic stem cells are prone to generate primitive, undifferentiated tumors in engrafted human fetal tissues in severe combined immunodeficient mice. Stem Cells Dev, 16(6), 893–902.  https://doi.org/10.1089/scd.2007.0070.CrossRefPubMedGoogle Scholar
  64. Soria, B., Roche, E., Berna, G., Leon-Quinto, T., Reig, J. A., & Martin, F. (2000). Insulin-secreting cells derived from embryonic stem cells normalize glycemia in streptozotocin-induced diabetic mice. Diabetes, 49(2), 157–162.CrossRefGoogle Scholar
  65. Sprent, J., & Kishimoto, H. (2001). The thymus and central tolerance. Philos Trans R Soc Lond B Biol Sci, 356(1409), 609–616.  https://doi.org/10.1098/rstb.2001.0846.CrossRefPubMedPubMedCentralGoogle Scholar
  66. Staeva, T. P., Chatenoud, L., Insel, R., & Atkinson, M. A. (2013). Recent lessons learned from prevention and recent-onset type 1 diabetes immunotherapy trials. Diabetes, 62(1), 9–17.  https://doi.org/10.2337/db12-0562.CrossRefPubMedGoogle Scholar
  67. Starzl, T. E. (2001). The “privileged” liver and hepatic tolerogenicity. Liver Transplantation, 7(10), 918–920.  https://doi.org/10.1053/jlts.2001.0070918.CrossRefPubMedPubMedCentralGoogle Scholar
  68. Stefan, Y., Orci, L., Malaisse-Lagae, F., Perrelet, A., Patel, Y., & Unger, R. H. (1982). Quantitation of endocrine cell content in the pancreas of nondiabetic and diabetic humans. Diabetes, 31(8 Pt 1), 694–700.CrossRefGoogle Scholar
  69. Sun, Y., Chen, L., Hou, X. G., Hou, W. K., Dong, J. J., Sun, L.,. .. Wang, K. X. (2007). Differentiation of bone marrow-derived mesenchymal stem cells from diabetic patients into insulin-producing cells in vitro. Chinese Medical Journal (Engl), 120(9), 771–776.CrossRefGoogle Scholar
  70. Takahashi, K., & Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126(4), 663–676.  https://doi.org/10.1016/j.cell.2006.07.024.CrossRefPubMedGoogle Scholar
  71. Tariq, M., Masoud, M. S., Mehmood, A., Khan, S. N., & Riazuddin, S. (2013). Stromal cell derived factor-1alpha protects stem cell derived insulin-producing cells from glucotoxicity under high glucose conditions in-vitro and ameliorates drug induced diabetes in rats. Journal of Translational Medicine, 11(1), 115.  https://doi.org/10.1186/1479-5876-11-115.CrossRefPubMedPubMedCentralGoogle Scholar
  72. Thakkar, U. G., Trivedi, H. L., Vanikar, A. V., & Dave, S. D. (2015). Insulin-secreting adipose-derived mesenchymal stromal cells with bone marrow-derived hematopoietic stem cells from autologous and allogenic sources for type 1 diabetes mellitus. Cytotherapy, 17(7), 940–947.  https://doi.org/10.1016/j.jcyt.2015.03.608.CrossRefPubMedGoogle Scholar
  73. Trivedi, H. L., & Vanikar, A. V. (2013). Mesenchymal stem cells and solid organ transplantation. CellR4, 1(2), 123–136.Google Scholar
  74. Trivedi, H. L., Vanikar, A. V., Thakker, U., Firoze, A., Dave, S. D., Patel, C. N.,. .. Shankar, V. (2008). Human adipose tissue-derived mesenchymal stem cells combined with hematopoietic stem cell transplantation synthesize insulin. Transplantation Proceedings, 40(4), 1135–1139. doi:  https://doi.org/10.1016/j.transproceed.2008.03.113CrossRefPubMedGoogle Scholar
  75. Urban, V. S., Kiss, J., Kovacs, J., Gocza, E., Vas, V., Monostori, E., & Uher, F. (2008). Mesenchymal stem cells cooperate with bone marrow cells in therapy of diabetes. Stem Cells, 26(1), 244–253.  https://doi.org/10.1634/stemcells.2007-0267.CrossRefPubMedGoogle Scholar
  76. Vanikar, A. V., Dave, S. D., Thakkar, U. G., & Trivedi, H. L. (2010). Cotransplantation of adipose tissue-derived insulin-secreting mesenchymal stem cells and hematopoietic stem cells: A novel therapy for insulin-dependent diabetes mellitus. Stem Cells International.  https://doi.org/10.4061/2010/582382.CrossRefGoogle Scholar
  77. Vanikar, A. V., Trivedi, H. L., & Thakkar, U. G. (2016). Stem cell therapy emerging as the key player in treating type 1 diabetes mellitus. Cytotherapy, 18(9), 1077–1086.  https://doi.org/10.1016/j.jcyt.2016.06.006.CrossRefPubMedGoogle Scholar
  78. Voltarelli, J. C., Couri, C. E., Stracieri, A. B., Oliveira, M. C., Moraes, D. A., Pieroni, F.,. .. Burt, R. K. (2007). Autologous nonmyeloablative hematopoietic stem cell transplantation in newly diagnosed type 1 diabetes mellitus. JAMA, 297(14), 1568–1576. doi:  https://doi.org/10.1001/jama.297.14.1568CrossRefPubMedGoogle Scholar
  79. Voltarelli, J. C., Couri, C. E., Stracieri, A. B., Oliveira, M. C., Moraes, D. A., Pieroni, F.,. .. Burt, R. K. (2008). Autologous hematopoietic stem cell transplantation for type 1 diabetes. Annals of the New York Academy of Sciences, 1,150, 220–229. doi:  https://doi.org/10.1196/annals.1447.048CrossRefGoogle Scholar
  80. Walter, M., Philotheou, A., Bonnici, F., Ziegler, A. G., & Jimenez, R. (2009). No effect of the altered peptide ligand NBI-6024 on beta-cell residual function and insulin needs in new-onset type 1 diabetes. Diabetes Care, 32(11), 2036–2040.  https://doi.org/10.2337/dc09-0449.CrossRefPubMedPubMedCentralGoogle Scholar
  81. Wang, R. N., Kloppel, G., & Bouwens, L. (1995). Duct- to islet-cell differentiation and islet growth in the pancreas of duct-ligated adult rats. Diabetologia, 38(12), 1405–1411.CrossRefGoogle Scholar
  82. Werbowetski-Ogilvie, T. E., Bosse, M., Stewart, M., Schnerch, A., Ramos-Mejia, V., Rouleau, A.,. .. Bhatia, M. (2009). Characterization of human embryonic stem cells with features of neoplastic progression. Nature Biotechnology, 27(1), 91–97. doi:  https://doi.org/10.1038/nbt.1516CrossRefPubMedGoogle Scholar
  83. Wherrett, D. K., Bundy, B., Becker, D. J., DiMeglio, L. A., Gitelman, S. E., Goland, R.,. .. Skyler, J. S. (2011). Antigen-based therapy with glutamic acid decarboxylase (GAD) vaccine in patients with recent-onset type 1 diabetes: a randomised double-blind trial. Lancet, 378(9788), 319–327. doi:  https://doi.org/10.1016/s0140-6736(11)60895-7CrossRefPubMedPubMedCentralGoogle Scholar
  84. Xu, X., D’Hoker, J., Stange, G., Bonne, S., De Leu, N., Xiao, X.,. .. Heimberg, H. (2008). Beta cells can be generated from endogenous progenitors in injured adult mouse pancreas. Cell, 132(2), 197–207. doi:  https://doi.org/10.1016/j.cell.2007.12.015CrossRefGoogle Scholar
  85. Yeung, W. C., Rawlinson, W. D., & Craig, M. E. (2011). Enterovirus infection and type 1 diabetes mellitus: systematic review and meta-analysis of observational molecular studies. BMJ, 342, d35.  https://doi.org/10.1136/bmj.d35.CrossRefPubMedPubMedCentralGoogle Scholar
  86. Yoon, J. W., & Jun, H. S. (2005). Autoimmune destruction of pancreatic beta cells. American Journal of Therapeutics, 12(6), 580–591.CrossRefGoogle Scholar
  87. Zimmet, P., Alberti, K. G., & Shaw, J. (2001). Global and societal implications of the diabetes epidemic. Nature, 414(6865), 782–787.  https://doi.org/10.1038/414782a.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Applied ChemistryGovernment College UniversityFaisalabadPakistan
  2. 2.Institute of Pharmacy, Physiology and PharmacologyUniversity of AgricultureFaisalabadPakistan
  3. 3.Department of BiochemistryGovernment College UniversityFaisalabadPakistan
  4. 4.Department of Pharmaceutical ChemistryGovernment College UniversityFaisalabadPakistan

Personalised recommendations