Embryonic Stem Cells in Development and Regenerative Medicine

  • Ayşegül DoğanEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1079)


After progressive improvement in embryonic stem (ES) cell field, several studies have been conducted to explore the usage of ES cells in regenerative medicine. Unlimited self renewal and pluripoteny properties, combined with encouraging preclinical trials, remark that ES cell technology might be promising for clinical practice. ES cells, which can form three germ layers in vitro, are potential candidates to study development at the cellular and molecular level. Understanding the cell fate decision and differentiation processes during development might enable generating functional progenitor cells for tissue restoration. Progression in gene modifications and tissue engineering technology has facilitated the derivation of desired cells for therapy. Success in differentiation protocols and identification the regulatory pathways simplify the research for clinical applications. Although there are established protocols for cell differentiation in vitro and promising preclinical studies in vivo, many challenges need to be adressed before clinical translation. In this review, ES cells are discussed as a model of development in vitro and as a potential candidate for regenerative medicine. This review also dissusses current challenges for ES cell based therapy.


Embryonic stem cells Development Differentiation Regenerative medicine Tissue engineering 



Amyotrophic Lateral Sclerosis


Adult Stem Cells


Brain-Derived Neurotrophic Factor


Bone Morphogenic Protein


Embryoid Body


Extracellular Matrix


Epidermal Growth Factor

ES cells

Embryonic stem cells


Fluorescence-Activated Cell Sorting


Fibroblast Growth Factor


Fms-like tyrosine kinase 3 ligand


Forkhead box O1


Granulocyte Colony-Stimulating Factor


Glial-Derived Neurotrophic Factor


Hematopoietic Stem Cells


Inner Cell Mass




Induced Pluripotent Stem Cells


Leukemia Inhibitory Factor


Magnetically Activated Cell Sorting


Major Histocompatibility Complex


Multiple Sclerosis


Mesenchymal Stem Cells


Nerve Growth Factor


Podocalyxin-like protein-1


Retinoic Acid


Stem Cell Factor


Somatic Cell Nuclear Transfer


Sonic Hedgehog


Trophoblast Stem Cells


Extraembryonic Endoderm Cells


  1. Abbasi N, Hashemi SM, Salehi M, Jahani H, Mowla SJ, Soleimani M, Hosseinkhani H (2016) Influence of oriented nanofibrous PCL scaffolds on quantitative gene expression during neural differentiation of mouse embryonic stem cells. J Biomed Mater Res A 104:155–164CrossRefPubMedGoogle Scholar
  2. Adewumi O et al (2007) Characterization of human embryonic stem cell lines by the international stem cell initiative. Nat Biotechnol 25:803–816CrossRefPubMedGoogle Scholar
  3. Araújo MR, Kyrylenko S, Spejo AB, Castro MV, Junior RSF, Barraviera B, Oliveira ALR (2017) Transgenic human embryonic stem cells overexpressing FGF2 stimulate neuroprotection following spinal cord ventral root avulsion. Exp Neurol 294:45–57CrossRefPubMedGoogle Scholar
  4. Assady S, Maor G, Amit M, Itskovitz-Eldor J, Skorecki KL, Tzukerman M (2001) Insulin production by human embryonic stem cells. Diabetes 50:1691–1697CrossRefPubMedGoogle Scholar
  5. Ben-David U, Nudel N, Benvenisty N (2013) Immunologic and chemical targeting of the tight-junction protein Claudin-6 eliminates tumorigenic human pluripotent stem cells. Nat Commun 4:1992CrossRefPubMedGoogle Scholar
  6. Ben-Hur T, Idelson M, Khaner H, Pera M, Reinhartz E, Itzik A, Reubinoff BE (2004) Transplantation of human embryonic stem cell–derived neural progenitors improves behavioral deficit in parkinsonian rats. Stem Cells 22:1246–1255CrossRefPubMedGoogle Scholar
  7. Brolen GK, Heins N, Edsbagge J, Semb H (2005) Signals from the embryonic mouse pancreas induce differentiation of human embryonic stem cells into insulin-producing β-cell–like cells. Diabetes 54:2867–2874CrossRefPubMedGoogle Scholar
  8. Carpenter MK et al (2004) Properties of four human embryonic stem cell lines maintained in a feeder-free culture system. Dev Dyn 229:243–258CrossRefPubMedGoogle Scholar
  9. Caspi O et al (2007) Transplantation of human embryonic stem cell-derived cardiomyocytes improves myocardial performance in infarcted rat hearts. J Am Coll Cardiol 50:1884–1893CrossRefPubMedGoogle Scholar
  10. Chen H et al (2015) Reinforcement of STAT3 activity reprogrammes human embryonic stem cells to naive-like pluripotency. Nat Commun 6:7095CrossRefPubMedPubMedCentralGoogle Scholar
  11. Cheng A, Kapacee Z, Peng J, Lu S, Lucas RJ, Hardingham TE, Kimber SJ (2014) Cartilage repair using human embryonic stem cell-derived chondroprogenitors. Stem Cells Transl Med 3:1287–1294CrossRefPubMedPubMedCentralGoogle Scholar
  12. Choo AB et al (2008) Selection against undifferentiated human embryonic stem cells by a cytotoxic antibody recognizing podocalyxin-like protein-1. Stem Cells 26:1454–1463CrossRefPubMedGoogle Scholar
  13. Christoforou N et al (2010) Implantation of mouse embryonic stem cell-derived cardiac progenitor cells preserves function of infarcted murine hearts. PLoS One 5:e11536CrossRefPubMedPubMedCentralGoogle Scholar
  14. Coraux C et al (2003) Reconstituted skin from murine embryonic stem cells. Curr Biol 13:849–853CrossRefPubMedGoogle Scholar
  15. de Pooter RF, Cho SK, Carlyle JR, Zúñiga-Pflücker JC (2003) In vitro generation of T lymphocytes from embryonic stem cell–derived prehematopoietic progenitors. Blood 102:1649–1653CrossRefPubMedGoogle Scholar
  16. Doetschman TC, Eistetter H, Katz M, Schmidt W, Kemler R (1985) The in vitro development of blastocyst-derived embryonic stem cell lines: formation of visceral yolk sac, blood islands and myocardium. Development 87:27–45Google Scholar
  17. Dvash T, Ben-Yosef D, Eiges R (2006) Human embryonic stem cells as a powerful tool for studying human embryogenesis. Pediatr Res 60:111–117CrossRefPubMedGoogle Scholar
  18. English K, Wood KJ (2011) Immunogenicity of embryonic stem cell-derived progenitors after transplantation. Curr Opin Organ Transplant 16:90–95CrossRefPubMedGoogle Scholar
  19. Fecek C et al (2008) Chondrogenic derivatives of embryonic stem cells seeded into 3D polycaprolactone scaffolds generated cartilage tissue in vivo. Tissue Eng Part A 14:1403–1413CrossRefPubMedGoogle Scholar
  20. Gibson JD, O’sullivan MB, Alaee F, Paglia DN, Yoshida R, Guzzo RM, Drissi H (2017) Regeneration of articular cartilage by human ESC-derived mesenchymal progenitors treated sequentially with BMP-2 and Wnt5a. Stem Cells Transl Med 6:40–50CrossRefPubMedGoogle Scholar
  21. Ginis I et al (2004) Differences between human and mouse embryonic stem cells. Dev Biol 269:360–380CrossRefPubMedGoogle Scholar
  22. Hay DC, Sutherland L, Clark J, Burdon T (2004) Oct-4 knockdown induces similar patterns of endoderm and trophoblast differentiation markers in human and mouse embryonic stem cells. Stem Cells 22:225–235CrossRefPubMedGoogle Scholar
  23. Hegert C et al (2002) Differentiation plasticity of chondrocytes derived from mouse embryonic stem cells. J Cell Sci 115:4617–4628CrossRefPubMedGoogle Scholar
  24. Hwang NS, Varghese S, Zhang Z, Elisseeff J (2006) Chondrogenic differentiation of human embryonic stem cell–derived cells in arginine-glycine-aspartate–modified hydrogels. Tissue Eng 12:2695–2706CrossRefPubMedGoogle Scholar
  25. Hwang NS, Varghese S, Elisseeff J (2008a) Derivation of chondrogenically-committed cells from human embryonic cells for cartilage tissue regeneration. PLoS One 3:e2498CrossRefPubMedPubMedCentralGoogle Scholar
  26. Hwang NS et al (2008b) In vivo commitment and functional tissue regeneration using human embryonic stem cell-derived mesenchymal cells. Proc Natl Acad Sci 105:20641–20646CrossRefPubMedGoogle Scholar
  27. Itskovitz-Eldor J et al (2000) Differentiation of human embryonic stem cells into embryoid bodies compromising the three embryonic germ layers. Mol Med 6:88PubMedPubMedCentralCrossRefGoogle Scholar
  28. Jiang J, Au M, Lu K, Eshpeter A, Korbutt G, Fisk G, Majumdar AS (2007) Generation of insulin-producing islet-like clusters from human embryonic stem cells. Stem Cells 25:1940–1953CrossRefPubMedGoogle Scholar
  29. Joannides AJ et al (2007) A scaleable and defined system for generating neural stem cells from human embryonic stem cells. Stem Cells 25:731–737CrossRefPubMedGoogle Scholar
  30. Jopling C, Boue S, Belmonte JCI (2011) Dedifferentiation, transdifferentiation and reprogramming: three routes to regeneration. Nat Rev Mol Cell Biol 12:79–89CrossRefPubMedGoogle Scholar
  31. Jukes JM, Both SK, Leusink A, Lotus MT, Van Blitterswijk CA, De Boer J (2008a) Endochondral bone tissue engineering using embryonic stem cells. Proc Natl Acad Sci 105:6840–6845CrossRefPubMedGoogle Scholar
  32. Jukes JM, Moroni L, Van Blitterswijk CA, De Boer J (2008b) Critical steps toward a tissue-engineered cartilage implant using embryonic stem cells. Tissue Eng Part A 14:135–147CrossRefPubMedGoogle Scholar
  33. Karlsson C et al (2009) Human embryonic stem cell-derived mesenchymal progenitors—potential in regenerative medicine. Stem Cell Res 3:39–50CrossRefPubMedGoogle Scholar
  34. Kawasaki H et al (2000) Induction of midbrain dopaminergic neurons from ES cells by stromal cell–derived inducing activity. Neuron 28:31–40CrossRefPubMedGoogle Scholar
  35. Keirstead HS, Nistor G, Bernal G, Totoiu M, Cloutier F, Sharp K, Steward O (2005) Human embryonic stem cell-derived oligodendrocyte progenitor cell transplants remyelinate and restore locomotion after spinal cord injury. J Neurosci 25:4694–4705CrossRefPubMedGoogle Scholar
  36. Keller G (2005) Embryonic stem cell differentiation: emergence of a new era in biology and medicine. Genes Dev 19:1129–1155CrossRefPubMedGoogle Scholar
  37. Kim SU, De Vellis J (2009) Stem cell-based cell therapy in neurological diseases: a review. J Neurosci Res 87:2183–2200CrossRefPubMedGoogle Scholar
  38. Kimura H et al (2005) Transplantation of embryonic stem cell-derived neural stem cells for spinal cord injury in adult mice. Neurol Res 27:812–819CrossRefPubMedGoogle Scholar
  39. Kolossov E et al (2006) Engraftment of engineered ES cell–derived cardiomyocytes but not BM cells restores contractile function to the infarcted myocardium. J Exp Med 203:2315–2327CrossRefPubMedPubMedCentralGoogle Scholar
  40. Konig N et al (2017) Murine neural crest stem cells and embryonic stem cell-derived neuron precursors survive and differentiate after transplantation in a model of dorsal root avulsion. J Tissue Eng Regen Med 11:129–137CrossRefPubMedGoogle Scholar
  41. Laflamme MA et al (2005) Formation of human myocardium in the rat heart from human embryonic stem cells. Am J Pathol 167:663–671CrossRefPubMedPubMedCentralGoogle Scholar
  42. Laflamme MA et al (2007) Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nat Biotechnol 25:1015–1024CrossRefPubMedGoogle Scholar
  43. Lahmy R, Soleimani M, Sanati MH, Behmanesh M, Kouhkan F, Mobarra N (2016) Pancreatic islet differentiation of human embryonic stem cells by microRNA overexpression. J Tissue Eng Regen Med 10:527–534CrossRefPubMedGoogle Scholar
  44. Levenberg S, Golub JS, Amit M, Itskovitz-Eldor J, Langer R (2002) Endothelial cells derived from human embryonic stem cells. Proc Natl Acad Sci 99:4391–4396CrossRefPubMedGoogle Scholar
  45. McDonald JW et al (1999) Transplanted embryonic stem cells survive, differentiate and promote recovery in injured rat spinal cord. Nat Med 5:1410–1412CrossRefPubMedGoogle Scholar
  46. McKee C, Hong Y, Yao D, Chaudhry GR (2017) Compression induced chondrogenic differentiation of embryonic stem cells in three-dimensional polydimethylsiloxane scaffolds. Tissue Eng A 23:426–435CrossRefGoogle Scholar
  47. Ménard C et al (2005) Transplantation of cardiac-committed mouse embryonic stem cells to infarcted sheep myocardium: a preclinical study. Lancet 366:1005–1012CrossRefPubMedGoogle Scholar
  48. Menasché P et al (2015) Human embryonic stem cell-derived cardiac progenitors for severe heart failure treatment: first clinical case report. Eur Heart J 36:2011–2017CrossRefPubMedGoogle Scholar
  49. Menasché P et al (2018) Transplantation of human embryonic stem cell–derived cardiovascular progenitors for severe ischemic left ventricular dysfunction. J Am Coll Cardiol 71:429–438CrossRefPubMedGoogle Scholar
  50. Min J-Y et al (2003) Long-term improvement of cardiac function in rats after infarction by transplantation of embryonic stem cells. J Thorac Cardiovasc Surg 125:361–369CrossRefPubMedGoogle Scholar
  51. Mohseni R, Hamidieh AA, Verdi J, Shoae-Hassani A (2014) Safe transplantation of pluripotent stem cell by preventing teratoma formation. Stem Cell Res Ther 4:212Google Scholar
  52. Mummery C et al (2003) Differentiation of human embryonic stem cells to cardiomyocytes. Circulation 107:2733–2740CrossRefPubMedGoogle Scholar
  53. Murry CE, Keller G (2008) Differentiation of embryonic stem cells to clinically relevant populations: lessons from embryonic development. Cell 132:661–680CrossRefPubMedGoogle Scholar
  54. Nakagawa T, Lee SY, Reddi AH (2009) Induction of chondrogenesis from human embryonic stem cells without embryoid body formation by bone morphogenetic protein 7 and transforming growth factor β1. Arthritis Rheum 60:3686–3692CrossRefPubMedGoogle Scholar
  55. Nakano T, Kodama H, Honjo T (1994) Generation of lymphohematopoietic cells from embryonic stem cells in culture. Science 265:1098–1101CrossRefGoogle Scholar
  56. Nishikawa S-I, Nishikawa S, Hirashima M, Matsuyoshi N, Kodama H (1998) Progressive lineage analysis by cell sorting and culture identifies FLK1+ VE-cadherin+ cells at a diverging point of endothelial and hemopoietic lineages. Development 125:1747–1757PubMedGoogle Scholar
  57. Nishikawa S-I, Jakt LM, Era T (2007) Embryonic stem-cell culture as a tool for developmental cell biology. Nat Rev Mol Cell Biol 8:502–507CrossRefPubMedGoogle Scholar
  58. Nistor GI, Totoiu MO, Haque N, Carpenter MK, Keirstead HS (2005) Human embryonic stem cells differentiate into oligodendrocytes in high purity and myelinate after spinal cord transplantation. Glia 49:385–396CrossRefPubMedGoogle Scholar
  59. Park CH et al (2005) In vitro and in vivo analyses of human embryonic stem cell-derived dopamine neurons. J Neurochem 92:1265–1276CrossRefPubMedGoogle Scholar
  60. Pearl JI et al (2011) Short-term immunosuppression promotes engraftment of embryonic and induced pluripotent stem cells. Cell Stem Cell 8:309–317CrossRefPubMedPubMedCentralGoogle Scholar
  61. Pera MF, Trounson AO (2004) Human embryonic stem cells: prospects for development. Development 131:5515–5525CrossRefPubMedGoogle Scholar
  62. Pera MF, Reubinoff B, Trounson A (2000) Human embryonic stem cells. J Cell Sci 113:5–10PubMedGoogle Scholar
  63. Pera MF et al (2004) Regulation of human embryonic stem cell differentiation by BMP-2 and its antagonist noggin. J Cell Sci 117:1269–1280CrossRefPubMedGoogle Scholar
  64. Rambhatla L, Chiu C-P, Kundu P, Peng Y, Carpenter MK (2003) Generation of hepatocyte-like cells from human embryonic stem cells. Cell Transplant 12:1–11CrossRefPubMedGoogle Scholar
  65. Ritner C, Bernstein HS (2010) Fate mapping of human embryonic stem cells by teratoma formation. J Vis Exp 42:2036Google Scholar
  66. Rossant J (2015) Mouse and human blastocyst-derived stem cells: vive les differences. Development 142:9–12CrossRefPubMedGoogle Scholar
  67. Sato N, Meijer L, Skaltsounis L, Greengard P, Brivanlou AH (2004) Maintenance of pluripotency in human and mouse embryonic stem cells through activation of Wnt signaling by a pharmacological GSK-3-specific inhibitor. Nat Med 10:55–63CrossRefPubMedGoogle Scholar
  68. Saxena P, Bojar D, Zulewski H, Fussenegger M (2017) Generation of glucose-sensitive insulin-secreting beta-like cells from human embryonic stem cells by incorporating a synthetic lineage-control network. J Biotechnol 259:39–45CrossRefPubMedGoogle Scholar
  69. Shim J, Kim S, Woo D, Kim S, Oh C, McKay R, Kim J (2007) Directed differentiation of human embryonic stem cells towards a pancreatic cell fate. Diabetologia 50:1228–1238CrossRefPubMedGoogle Scholar
  70. Shroff G (2016) Human embryonic stem cell therapy in chronic spinal cord injury: a retrospective study. Clin Transl Sci 9:168–175CrossRefPubMedPubMedCentralGoogle Scholar
  71. Singla DK (2009) Embryonic stem cells in cardiac repair and regeneration. Antioxid Redox Signal 11:1857–1863CrossRefPubMedPubMedCentralGoogle Scholar
  72. Smith AG (2001) Embryo-derived stem cells: of mice and men. Annu Rev Cell Dev Biol 17:435–462CrossRefPubMedGoogle Scholar
  73. Snir M, Kehat I, Gepstein A, Coleman R, Itskovitz-Eldor J, Livne E, Gepstein L (2003) Assessment of the ultrastructural and proliferative properties of human embryonic stem cell-derived cardiomyocytes. Am J Physiol Heart Circ Physiol 285:H2355–H2363CrossRefPubMedGoogle Scholar
  74. Tabar V, Studer L (2014) Pluripotent stem cells in regenerative medicine: challenges and recent progress. Nat Rev Genet 15:82–92CrossRefPubMedPubMedCentralGoogle Scholar
  75. Takagi M, Umetsu Y, Fujiwara M, Wakitani S (2007) High inoculation cell density could accelerate the differentiation of human bone marrow mesenchymal stem cells to chondrocyte cells. J Biosci Bioeng 103:98–100CrossRefPubMedGoogle Scholar
  76. Tang C et al (2011) An antibody against SSEA-5 glycan on human pluripotent stem cells enables removal of teratoma-forming cells. Nat Biotechnol 29:829–834CrossRefPubMedPubMedCentralGoogle Scholar
  77. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM (1998) Embryonic stem cell lines derived from human blastocysts. Science 282:1145–1147CrossRefGoogle Scholar
  78. Toh WS, Lee EH, Guo X-M, Chan JK, Yeow CH, Choo AB, Cao T (2010) Cartilage repair using hyaluronan hydrogel-encapsulated human embryonic stem cell-derived chondrogenic cells. Biomaterials 31:6968–6980CrossRefPubMedGoogle Scholar
  79. Toh WS, Lee EH, Cao T (2011) Potential of human embryonic stem cells in cartilage tissue engineering and regenerative medicine. Stem Cell Rev 7:544–559CrossRefPubMedGoogle Scholar
  80. van Laake LW et al (2007) Human embryonic stem cell-derived cardiomyocytes survive and mature in the mouse heart and transiently improve function after myocardial infarction. Stem Cell Res 1:9–24CrossRefPubMedGoogle Scholar
  81. Vats A et al (2006) Chondrogenic differentiation of human embryonic stem cells: the effect of the micro-environment. Tissue Eng 12:1687–1697CrossRefPubMedGoogle Scholar
  82. Vegas AJ et al (2016) Long-term glycemic control using polymer-encapsulated human stem cell–derived beta cells in immune-competent mice. Nat Med 22:306CrossRefPubMedPubMedCentralGoogle Scholar
  83. Vodyanik MA, Thomson JA, Slukvin II (2006) Leukosialin (CD43) defines hematopoietic progenitors in human embryonic stem cell differentiation cultures. Blood 108:2095–2105CrossRefPubMedPubMedCentralGoogle Scholar
  84. Wang L, Menendez P, Cerdan C, Bhatia M (2005) Hematopoietic development from human embryonic stem cell lines. Exp Hematol 33:987–996CrossRefPubMedGoogle Scholar
  85. Wei S et al (2016) Conversion of embryonic stem cells into extraembryonic lineages by CRISPR-mediated activators. Sci Rep 6:19648CrossRefPubMedPubMedCentralGoogle Scholar
  86. Xu C, Police S, Rao N, Carpenter MK (2002a) Characterization and enrichment of cardiomyocytes derived from human embryonic stem cells. Circ Res 91:501–508CrossRefPubMedGoogle Scholar
  87. Xu R-H et al (2002b) BMP4 initiates human embryonic stem cell differentiation to trophoblast. Nat Biotechnol 20:1261–1264CrossRefPubMedGoogle Scholar
  88. Yabut O, Bernstein HS (2011) Human embryonic stem cells in regenerative medicine. In: Tissue engineering in regenerative medicine. Springer, New York, pp 17–38CrossRefGoogle Scholar
  89. Yamashita A, Krawetz R, Rancourt D (2009) Loss of discordant cells during micro-mass differentiation of embryonic stem cells into the chondrocyte lineage. Cell Death Differ 16:278–286CrossRefPubMedGoogle Scholar
  90. Yang D, Chen S, Gao C, Liu X, Zhou Y, Liu P, Cai J (2016) Chemically defined serum-free conditions for cartilage regeneration from human embryonic stem cells. Life Sci 164:9–14CrossRefPubMedGoogle Scholar
  91. Yeo RWY, Lim SK (2011) Embryonic stem cells for therapies–challenges and possibilities. In: Embryonic stem cells-basic biology to bioengineering. InTech, RijekaGoogle Scholar
  92. Yu F et al (2018) FoxO1 inhibition promotes differentiation of human embryonic stem cells into insulin producing cells. Exp Cell Res 362:227–234CrossRefPubMedGoogle Scholar
  93. Zhu W-Z, Hauch KD, Xu C, Laflamme MA (2009) Human embryonic stem cells and cardiac repair. Transplant Rev 23:53–68CrossRefGoogle Scholar
  94. Zhu Q et al (2017) Directed differentiation of human embryonic stem cells to neural crest stem cells, functional peripheral neurons, and corneal Keratocytes. Biotechnol J 12.

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.National Cancer Institute, CDBL, NIHFrederickUSA

Personalised recommendations