Advertisement

Methodological Implications and Repeatability of Nasal Nitric Oxide: Relevance for Challenge Studies

  • Frank HoffmeyerEmail author
  • K. Sucker
  • H. Berresheim
  • C. Monsé
  • B. Jettkant
  • A. Beine
  • M. Raulf
  • T. Brüning
  • J. Bünger
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1113)

Abstract

There is an interest in assessing changes in nasal NO (nNO) levels as an effect marker of upper airways. In this study, we examined methodologic influences on short and long term repeatability of nNO levels assessed by a portable electrochemical analyzer. Nine atopic and eighteen healthy subjects were exposed for 4 h to ethyl acrylate concentration of 0.05 ppm (sham) and mean concentrations of 5 ppm (either constant 5 ppm or variable 0 to 10 ppm). Sampling of nNO was performed by using passive aspiration during both breath-holding (634 ppb) or calm tidal breathing (364 ppb, p < 0.0001). The intra-session (between-session) repeatability in terms of coefficient of variation was 16.4% (18.5%) using the tidal-breathing and 8.6% (13.0%) using the breath-holding method, respectively. Atopic subjects demonstrated a significant increase in nNO (breath-holding mean 16%, tidal-breathing mean 32%) after applying a constant ethyl acrylate concentration (5 ppm). Our findings suggest that the less elaborate tidal-breathing method might be sufficient to detect significant changes at a group level. Given a lower coefficient of variation of breath-holding we assume there is an advantage of that approach at an individual level. Further research is needed to validate the usefulness of nNO in the evaluation of irritative, non-allergic responses.

Keywords

Atopic subjects Breath holding Chemosensory challenge Ethyl acrylate Inflammation Methodological approach Nasal nitric oxide Tidal breathing Upper airway 

Notes

Conflicts of Interest

The authors declare no conflicts of interest in relation to this article.

References

  1. Antosova M, Mokra D, Tonhajzerova I, Mikolka P, Kosutova P, Mestanik M, Pepucha L, Plevkova J, Buday T, Calkovsky V, Bencova A (2017) Nasal nitric oxide in healthy adults - reference values and affecting factors. Physiol Res 66(Suppl 2):247–255Google Scholar
  2. Arts JH, de Heer C, Woutersen RA (2006) Local effects in the respiratory tract: relevance of subjectively measured irritation for setting occupational exposure limits. Int Arch Occup Environ Health 79:283–298CrossRefGoogle Scholar
  3. ATS/ERS (2005) American Thoracic Society; European Respiratory Society recommendations for standardized procedures for the online and offline measurement of exhaled lower respiratory nitric oxide and nasal nitric oxide. Am J Respir Crit Care Med 71:912–930Google Scholar
  4. Bartley J, Fergusson W, Moody A, Wells AU, Kolbe J (1999) Normal adult values, diurnal variation, and repeatability of nasal nitric oxide measurement. Am J Rhinol 13:401–405CrossRefGoogle Scholar
  5. Boot JD, de Kam ML, Mascelli MA, Miller B, van Wijk RG, de Groot H, Cohen AF, Diamant Z (2007) Nasal nitric oxide: longitudinal reproducibility and the effects of a nasal allergen challenge in patients with allergic rhinitis. Allergy 62:378–384CrossRefGoogle Scholar
  6. Brüning T, Bartsch R, Bolt HM, Desel H, Drexler H, Gundert-Remy U, Hartwig A, Jäckh R, Leibold E, Pallapies D, Rettenmeier AW, Schlüter G, Stropp G, Sucker K, Triebig G, Westphal G, van Thriel C (2014) Sensory irritation as a basis for setting occupational exposure limits. Arch Toxicol 88:1855–1879CrossRefGoogle Scholar
  7. Colantonio D, Brouillette L, Parikh A, Scadding GK (2002) Paradoxical low nasal nitric oxide in nasal polyposis. Clin Exp Allergy 32:698–701CrossRefGoogle Scholar
  8. Dalton P (2003) Upper airway irritation, odor perception and health risk due to airborne chemicals. Toxicol Lett 140-141:239–248CrossRefGoogle Scholar
  9. De Winter-de Groot KM, van der Ent CK (2009) Measurement of nasal nitric oxide: evaluation of six different sampling methods. Eur J Clin Investig 39:72–77CrossRefGoogle Scholar
  10. Dressel H, Bihler A, Jund F, de la Motte D, Nowak D, Jörres RA, Kramer MF (2008) Diurnal variation of nasal nitric oxide levels in healthy subjects. J Investig Allergol Clin Immunol 18:316–317PubMedGoogle Scholar
  11. Dweik RA, Boggs PB, Erzurum SC, Irvin CG, Leigh MW, Lundberg JO, Olin AC, Plummer AL, Taylor DR, American Thoracic Society Committee on Interpretation of Exhaled Nitric Oxide Levels (FENO) for Clinical Applications (2011) An official ATS clinical practice guideline: interpretation of exhaled nitric oxide levels (FENO) for clinical applications. Am J Respir Crit Care Med 184:602–615CrossRefGoogle Scholar
  12. Ferguson EA, Eccles R (1997) Changes in nasal nitric oxide concentration associated with symptoms of common cold and treatment with a topical nasal decongestant. Acta Otolaryngol 117:614–617CrossRefGoogle Scholar
  13. Furukawa K, Harrison DG, Saleh D, Shennib H, Chagnon FP, Giaid A (1996) Expression of nitric oxide synthase in the human nasal mucosa. Am J Respir Crit Care Med 153:847–850CrossRefGoogle Scholar
  14. Gehring U, Oldenwening M, Brunekreef B, Wieringa MH, Kerkhof M, Smit HA, van der Ent CK, De Jongste JC (2009) The impact of ambient NO on online measurements of exhaled and nasal NO: the PIAMA study. Pediatr Allergy Immunol 20:665–672CrossRefGoogle Scholar
  15. Gelardi M, Abbattista G, Quaranta VN, Quaranta N, Seccia V, Buttafava S, Frati F, Ciprandi G (2016) Standardization procedure for the nasal nitric oxide measurement method using Niox MINO® and the tidal-breathing technique with velum-closure. J Biol Regul Homeost Agents 30:853–858PubMedGoogle Scholar
  16. Henriksen AH, Sue-Chu M, Holmen TL, Langhammer A, Bjermer L (1999) Exhaled and nasal NO levels in allergic rhinitis: relation to sensitization, pollen season and bronchial hyperresponsiveness. Eur Respir J 13:301–306CrossRefGoogle Scholar
  17. Hoffmeyer F, Bünger J, Monsé C, Berresheim H, Jettkant B, Beine A, Brüning T, Sucker K (2016) Clinical effects, exhaled breath condensate pH and exhaled nitric oxide in humans after ethyl acrylate exposure. Adv Exp Med Biol 921:11–20CrossRefGoogle Scholar
  18. Hoffmeyer F, Sucker K, Berresheim H, Monsé C, Jettkant B, Beine A, Raulf M, Bünger J, Brüning T (2017) Impact of internal and external factors on EBC-pH and FeNO changes in humans following challenge with ethyl acrylate. Adv Exp Med Biol 1020:7–16CrossRefGoogle Scholar
  19. Horváth I, Barnes PJ, Loukides S, Sterk PJ, Högman M, Olin AC, Amann A, Antus B, Baraldi E, Bikov A, Boots AW, Bos LD, Brinkman P, Bucca C, Carpagnano GE, Corradi M, Cristescu S, de Jongste JC, Dinh-Xuan AT, Dompeling E, Fens N, Fowler S, Hohlfeld JM, Holz O, Jöbsis Q, Van De Kant K, Knobel HH, Kostikas K, Lehtimäki L, Lundberg J, Montuschi P, Van Muylem A, Pennazza G, Reinhold P, Ricciardolo FLM, Rosias P, Santonico M, van der Schee MP, van Schooten FJ, Spanevello A, Tonia T, Vink TJ (2017) A European Respiratory Society technical standard: exhaled biomarkers in lung disease. Eur Respir J 49:1600965CrossRefGoogle Scholar
  20. Kharitonov SA, Rajakulasingam K, O’Connor B, Durham SR, Barnes PJ (1997) Nasal nitric oxide is increased in patients with asthma and allergic rhinitis and may be modulated by nasal glucocorticoids. J Allergy Clin Immunol 99:58–64PubMedGoogle Scholar
  21. Kharitonov SA, Walker L, Barnes PJ (2005) Repeatability of standardised nasal nitric oxide measurements in healthy and asthmatic adults and children. Respir Med 99:1105–1114CrossRefGoogle Scholar
  22. Krantz C, Janson C, Borres MP, Nordvall L, Alving K, Malinovschi A (2014) Nasal nitric oxide is associated with exhaled NO, bronchial responsiveness and poor asthma control. J Breath Res 8(2):026002CrossRefGoogle Scholar
  23. Lundberg JO, Farkas-Szallasi T, Weitzberg E, Rinder J, Lidholm J, Anggåard A, Hökfelt T, Lundberg JM, Alving K (1995) High nitric oxide production in human paranasal sinuses. Nat Med 1:370–373CrossRefGoogle Scholar
  24. Maniscalco M, de Laurentiis G, Weitzberg E, Lundberg JO, Sofia M (2008) Validation study of nasal nitric oxide measurements using a hand-held electrochemical analyser. Eur J Clin Investig 38:197–200CrossRefGoogle Scholar
  25. Maniscalco M, Bianco A, Mazzarella G, Motta A (2016) Recent advances on nitric oxide in the upper airways. Curr Med Chem 23:2736–2745CrossRefGoogle Scholar
  26. Marthin JK, Nielsen KG (2013) Hand-held tidal breathing nasal nitric oxide measurement--a promising targeted case-finding tool for the diagnosis of primary ciliary dyskinesia. PLoS One 8(2):e57262CrossRefGoogle Scholar
  27. Montella S, Alving K, Maniscalco M, Sofia M, De Stefano S, Raia V, Santamaria F (2011) Measurement of nasal nitric oxide by hand-held and stationary devices. Eur J Clin Investig 41:1063–1070CrossRefGoogle Scholar
  28. Palm JP, Graf P, Lundberg JO, Alving K (2000) Characterization of exhaled nitric oxide: introducing a new reproducible method for nasal nitric oxide measurements. Eur Respir J 16:236–241CrossRefGoogle Scholar
  29. Quirce S, Lemière C, de Blay F, del Pozo V, Gerth Van Wijk R, Maestrelli P, Pauli G, Pignatti P, Raulf-Heimsoth M, Sastre J, Storaas T, Moscato G (2010) Noninvasive methods for assessment of airway inflammation in occupational settings. Allergy 65:445–458CrossRefGoogle Scholar
  30. Raulf M, van Kampen V, Neumann HD, Liebers V, Deckert A, Brüning T, Bünger J, Hoffmeyer F (2017) Airway and blood inflammatory markers in waste collectors. Adv Exp Med Biol 1021:1–14CrossRefGoogle Scholar
  31. Serrano CD, Valero A, Bartra J, Roca-Ferrer J, Muñoz-Cano R, Sánchez-López J, Mullol J, Picado C (2012) Nasal and bronchial inflammation after nasal allergen challenge: assessment using noninvasive methods. J Investig Allergol Clin Immunol 22:351–356PubMedGoogle Scholar
  32. Stark HJ, Randell JT, Hirvonen MR, Purokivi MK, Roponen MH, Tukiainen HO (2005) The effects of Aspergillus fumigatus challenge on exhaled and nasal NO levels. Eur Respir J 26:887–893CrossRefGoogle Scholar
  33. Stark H, Purokivi M, Kiviranta J, Randell J, Tukiainen H (2007) Short-term and seasonal variations of exhaled and nasal NO in healthy subjects. Respir Med 101:265–271CrossRefGoogle Scholar
  34. Wodehouse T, Kharitonov SA, Mackay IS, Barnes PJ, Wilson R, Cole PJ (2003) Nasal nitric oxide measurements for the screening of primary ciliary dyskinesia. Eur Respir J 21:43–47CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG  2018

Authors and Affiliations

  • Frank Hoffmeyer
    • 1
    Email author
  • K. Sucker
    • 1
  • H. Berresheim
    • 1
  • C. Monsé
    • 1
  • B. Jettkant
    • 1
  • A. Beine
    • 1
  • M. Raulf
    • 1
  • T. Brüning
    • 1
  • J. Bünger
    • 1
  1. 1.Institute for Prevention and Occupational Medicine (IPA) of the German Social Accident InsuranceRuhr-University BochumBochumGermany

Personalised recommendations