Advertisement

Stem Cell Therapy for Fanconi Anemia

  • Qing-Shuo Zhang
Conference paper
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1083)

Abstract

Stem cell therapy is the administration of stem cells to a patient to treat or prevent a disease. Since stem cells possess the long-term self-renewal capacity and provide daughter cells that differentiate into the specialized cells of each tissue, stem cell therapy will theoretically improve the disease condition for the lifetime of the patient. As the most widely used stem cell therapy, bone marrow transplantation is the treatment of choice for many kinds of blood disorders, including anemias, leukemias, lymphomas, and rare immunodeficiency diseases. For the fatal genetic blood disorder Fanconi anemia, allogeneic bone marrow transplantation has remained the only curative treatment. But the recent advances in stem cell and gene therapy fields may provide promising opportunities for an alternative or even better management of Fanconi anemia. Many of these new ideas and opportunities are also useful for treating other blood diseases that affect hematopoietic stem cells, such as sickle cell anemia, severe combined immunodeficiencies, and beta-thalassemias. In this chapter, these advances along with their challenges and limitations will be thoroughly discussed.

Keywords

Fanconi anemia Hematopoietic stem cell Stem cell therapy 

Abbreviations

AAV

Adeno-associated virus

FA

Fanconi anemia

GVHD

Graft-versus-host disease

HLA

Human leukocyte antigens

HSCT

Hematopoietic stem cell transplantation

HSPC

Hematopoietic stem and progenitor cell

iPS

Induced pluripotent stem cell

References

  1. Auerbach, A. D. (2009). Fanconi anemia and its diagnosis. Mutation Research, 668(1–2), 4–10. doi: 10.1016/j.mrfmmm.2009.01.013.CrossRefGoogle Scholar
  2. Battaile, K. P., Bateman, R. L., Mortimer, D., Mulcahy, J., Rathbun, R. K., Bagby, G., Fleming, W. H., & Grompe, M. (1999). In vivo selection of wild-type hematopoietic stem cells in a murine model of Fanconi anemia. Blood, 94(6), 2151–2158.Google Scholar
  3. Becker, P. S., Taylor, J. A., Trobridge, G. D., Zhao, X., Beard, B. C., Chien, S., Adair, J., Kohn, D. B., Wagner, J. E., Shimamura, A., & Kiem, H. P. (2010). Preclinical correction of human Fanconi anemia complementation group a bone marrow cells using a safety-modified lentiviral vector. Gene Therapy, 17(10), 1244–1252. doi: 10.1038/gt.2010.62.CrossRefGoogle Scholar
  4. Boitano, A. E., Wang, J., Romeo, R., Bouchez, L. C., Parker, A. E., Sutton, S. E., Walker, J. R., Flaveny, C. A., Perdew, G. H., Denison, M. S., Schultz, P. G., & Cooke, M. P. (2010). Aryl hydrocarbon receptor antagonists promote the expansion of human hematopoietic stem cells. Science, 329(5997), 1345–1348. doi: 10.1126/science.1191536.CrossRefGoogle Scholar
  5. Bryder, D., Rossi, D. J., & Weissman, I. L. (2006). Hematopoietic stem cells: The paradigmatic tissue-specific stem cell. The American Journal of Pathology, 169(2), 338–346. doi: 10.2353/ajpath.2006.060312.CrossRefGoogle Scholar
  6. Cavazzana, M. (2014). Hematopoietic stem cell gene therapy: Progress on the clinical front. Human Gene Therapy, 25(3), 165–170. doi: 10.1089/hum.2014.2504.CrossRefGoogle Scholar
  7. Ceccaldi, R., Briot, D., Larghero, J., Vasquez, N., Dubois d’Enghien, C., Chamousset, D., Noguera, M. E., Waisfisz, Q., Hermine, O., Pondarre, C., Leblanc, T., Gluckman, E., Joenje, H., Stoppa-Lyonnet, D., Socie, G., & Soulier, J. (2011). Spontaneous abrogation of the G(2)DNA damage checkpoint has clinical benefits but promotes leukemogenesis in Fanconi anemia patients. The Journal of Clinical Investigation, 121(1), 184–194. doi: 10.1172/JCI43836.CrossRefGoogle Scholar
  8. Ceccaldi, R., Parmar, K., Mouly, E., Delord, M., Kim, J. M., Regairaz, M., Pla, M., Vasquez, N., Zhang, Q. S., Pondarre, C., Peffault de Latour, R., Gluckman, E., Cavazzana-Calvo, M., Leblanc, T., Larghero, J., Grompe, M., Socie, G., D’Andrea, A. D., & Soulier, J. (2012). Bone marrow failure in Fanconi anemia is triggered by an exacerbated p53/p21 DNA damage response that impairs hematopoietic stem and progenitor cells. Cell Stem Cell, 11(1), 36–49. doi: 10.1016/j.stem.2012.05.013.CrossRefGoogle Scholar
  9. Daniel, M. G., Pereira, C. F., Lemischka, I. R., & Moore, K. A. (2016). Making a hematopoietic stem cell. Trends in Cell Biology, 26(3), 202–214. doi: 10.1016/j.tcb.2015.10.002.CrossRefGoogle Scholar
  10. Demarosi, F., Lodi, G., Carrassi, A., Soligo, D., & Sardella, A. (2005). Oral malignancies following HSCT: Graft versus host disease and other risk factors. Oral Oncology, 41(9), 865–877. doi: 10.1016/j.oraloncology.2005.02.001.CrossRefGoogle Scholar
  11. Dokal, I. (2003). Inherited aplastic anaemia. The Hematology Journal: The Official Journal of the European Haematology Association/EHA, 4(1), 3–9. doi: 10.1038/sj.thj.6200215.CrossRefGoogle Scholar
  12. Dong, H., Nebert, D. W., Bruford, E. A., Thompson, D. C., Joenje, H., & Vasiliou, V. (2015). Update of the human and mouse Fanconi anemia genes. Human Genomics, 9(1), 32. doi: 10.1186/s40246-015-0054-y.CrossRefGoogle Scholar
  13. Fu, K. L., Foe, J. R., Joenje, H., Rao, K. W., Liu, J. M., & Walsh, C. E. (1997). Functional correction of Fanconi anemia group A hematopoietic cells by retroviral gene transfer. Blood, 90(9), 3296–3303.Google Scholar
  14. Galimi, F., Noll, M., Kanazawa, Y., Lax, T., Chen, C., Grompe, M., & Verma, I. M. (2002). Gene therapy of Fanconi anemia: Preclinical efficacy using lentiviral vectors. Blood, 100(8), 2732–2736. doi: 10.1182/blood-2002-04-1245.CrossRefGoogle Scholar
  15. Gaspar, H. B., Cooray, S., Gilmour, K. C., Parsley, K. L., Zhang, F., Adams, S., Bjorkegren, E., Bayford, J., Brown, L., Davies, E. G., Veys, P., Fairbanks, L., Bordon, V., Petropoulou, T., Kinnon, C., & Thrasher, A. J. (2011). Hematopoietic stem cell gene therapy for adenosine deaminase-deficient severe combined immunodeficiency leads to long-term immunological recovery and metabolic correction. Science Translational Medicine, 3(97), 97ra80. doi: 10.1126/scitranslmed.3002716.CrossRefGoogle Scholar
  16. Gluckman, E., & Wagner, J. E. (2008). Hematopoietic stem cell transplantation in childhood inherited bone marrow failure syndrome. Bone Marrow Transplantation, 41(2), 127–132. doi: 10.1038/sj.bmt.1705960.CrossRefGoogle Scholar
  17. Gluckman, E., Rocha, V., Ionescu, I., Bierings, M., Harris, R. E., Wagner, J., Kurtzberg, J., Champagne, M. A., Bonfim, C., Bittencourt, M., Darbyshire, P., Fernandez, M. N., Locatelli, F., & Pasquini, R. (2007). Results of unrelated cord blood transplant in Fanconi anemia patients: Risk factor analysis for engraftment and survival. Biology of Blood and Marrow Transplantation: Journal of the American Society for Blood and Marrow Transplantation, 13(9), 1073–1082. doi: 10.1016/j.bbmt.2007.05.015.CrossRefGoogle Scholar
  18. Gross, M., Hanenberg, H., Lobitz, S., Friedl, R., Herterich, S., Dietrich, R., Gruhn, B., Schindler, D., & Hoehn, H. (2002). Reverse mosaicism in Fanconi anemia: Natural gene therapy via molecular self-correction. Cytogenet Genome Research, 98(2–3), 126–135. doi:69805.CrossRefGoogle Scholar
  19. Gush, K. A., Fu, K. L., Grompe, M., & Walsh, C. E. (2000). Phenotypic correction of Fanconi anemia group C knockout mice. Blood, 95(2), 700–704.Google Scholar
  20. Habi, O., Delisle, M. C., Messier, N., & Carreau, M. (2005). Lack of self-renewal capacity in Fancc−/− stem cells after ex vivo expansion. Stem Cells, 23(8), 1135–1141. doi: 10.1634/stemcells.2004-0356.CrossRefGoogle Scholar
  21. Hacein-Bey-Abina, S., Hauer, J., Lim, A., Picard, C., Wang, G. P., Berry, C. C., Martinache, C., Rieux-Laucat, F., Latour, S., Belohradsky, B. H., Leiva, L., Sorensen, R., Debre, M., Casanova, J. L., Blanche, S., Durandy, A., Bushman, F. D., Fischer, A., & Cavazzana-Calvo, M. (2010). Efficacy of gene therapy for X-linked severe combined immunodeficiency. The New England Journal of Medicine, 363(4), 355–364. doi: 10.1056/NEJMoa1000164.CrossRefGoogle Scholar
  22. Hanna, J., Wernig, M., Markoulaki, S., Sun, C. W., Meissner, A., Cassady, J. P., Beard, C., Brambrink, T., Wu, L. C., Townes, T. M., & Jaenisch, R. (2007). Treatment of sickle cell anemia mouse model with iPS cells generated from autologous skin. Science, 318(5858), 1920–1923. doi: 10.1126/science.1152092.CrossRefGoogle Scholar
  23. Hockemeyer, D., Soldner, F., Beard, C., Gao, Q., Mitalipova, M., DeKelver, R. C., Katibah, G. E., Amora, R., Boydston, E. A., Zeitler, B., Meng, X., Miller, J. C., Zhang, L., Rebar, E. J., Gregory, P. D., Urnov, F. D., & Jaenisch, R. (2009). Efficient targeting of expressed and silent genes in human ESCs and iPSCs using zinc-finger nucleases. Nature Biotechnology, 27(9), 851–857. doi: 10.1038/nbt.1562.CrossRefGoogle Scholar
  24. Hockemeyer, D., Wang, H., Kiani, S., Lai, C. S., Gao, Q., Cassady, J. P., Cost, G. J., Zhang, L., Santiago, Y., Miller, J. C., Zeitler, B., Cherone, J. M., Meng, X., Hinkley, S. J., Rebar, E. J., Gregory, P. D., Urnov, F. D., & Jaenisch, R. (2011). Genetic engineering of human pluripotent cells using TALE nucleases. Nature Biotechnology, 29(8), 731–734. doi: 10.1038/nbt.1927.CrossRefGoogle Scholar
  25. Hsu, P. D., Lander, E. S., & Zhang, F. (2014). Development and applications of CRISPR-Cas9 for genome engineering. Cell, 157(6), 1262–1278. doi: 10.1016/j.cell.2014.05.010.CrossRefGoogle Scholar
  26. Kelly, P. F., Radtke, S., von Kalle, C., Balcik, B., Bohn, K., Mueller, R., Schuesler, T., Haren, M., Reeves, L., Cancelas, J. A., Leemhuis, T., Harris, R., Auerbach, A. D., Smith, F. O., Davies, S. M., & Williams, D. A. (2007). Stem cell collection and gene transfer in Fanconi anemia. Molecular Therapy, 15(1), 211–219. doi: 10.1038/sj.mt.6300033.CrossRefGoogle Scholar
  27. Kiem, H. P., Jerome, K. R., Deeks, S. G., & McCune, J. M. (2012). Hematopoietic-stem-cell-based gene therapy for HIV disease. Cell Stem Cell, 10(2), 137–147. doi: 10.1016/j.stem.2011.12.015.CrossRefGoogle Scholar
  28. Kim, H., & D’Andrea, A. D. (2012). Regulation of DNA cross-link repair by the Fanconi anemia/BRCA pathway. Genes & Development, 26(13), 1393–1408. doi: 10.1101/gad.195248.112.CrossRefGoogle Scholar
  29. Kruse, A. L., Zwahlen, R. A., & Gratz, K. W. (2009). New classification of maxillary ameloblastic carcinoma based on an evidence-based literature review over the last 60 years. Head & Neck Oncology, 1, 31. doi: 10.1186/1758-3284-1-31.CrossRefGoogle Scholar
  30. Kutler, D. I., Singh, B., Satagopan, J., Batish, S. D., Berwick, M., Giampietro, P. F., Hanenberg, H., & Auerbach, A. D. (2003). A 20-year perspective on the International Fanconi Anemia Registry (IFAR). Blood, 101(4), 1249–1256. doi: 10.1182/blood-2002-07-2170.CrossRefGoogle Scholar
  31. Lemoli, R. M., & D’Addio, A. (2008). Hematopoietic stem cell mobilization. Haematologica, 93(3), 321–324. doi: 10.3324/haematol.12616.CrossRefGoogle Scholar
  32. Liu, J. M., Young, N. S., Walsh, C. E., Cottler-Fox, M., Carter, C., Dunbar, C., Barrett, A. J., & Emmons, R. (1997). Retroviral mediated gene transfer of the Fanconi anemia complementation group C gene to hematopoietic progenitors of group C patients. Human Gene Therapy, 8(14), 1715–1730. doi: 10.1089/hum.1997.8.14-1715.CrossRefGoogle Scholar
  33. Liu, J. M., Kim, S., Read, E. J., Futaki, M., Dokal, I., Carter, C. S., Leitman, S. F., Pensiero, M., Young, N. S., & Walsh, C. E. (1999). Engraftment of hematopoietic progenitor cells transduced with the Fanconi anemia group C gene (FANCC). Human Gene Therapy, 10(14), 2337–2346. doi: 10.1089/10430349950016988.CrossRefGoogle Scholar
  34. Macmillan, M. L., Blazar, B. R., DeFor, T. E., & Wagner, J. E. (2009). Transplantation of ex-vivo culture-expanded parental haploidentical mesenchymal stem cells to promote engraftment in pediatric recipients of unrelated donor umbilical cord blood: Results of a phase I-II clinical trial. Bone Marrow Transplantation, 43(6), 447–454. doi: 10.1038/bmt.2008.348.CrossRefGoogle Scholar
  35. MacMillan, M. L., Hughes, M. R., Agarwal, S., & Daley, G. Q. (2011). Cellular therapy for fanconi anemia: The past, present, and future. Biology of Blood and Marrow Transplantation: Journal of the American Society for Blood and Marrow Transplantation, 17(1 Suppl), S109–S114. doi: 10.1016/j.bbmt.2010.11.027.CrossRefGoogle Scholar
  36. MacMillan, M. L., DeFor, T. E., Young, J. A., Dusenbery, K. E., Blazar, B. R., Slungaard, A., Zierhut, H., Weisdorf, D. J., & Wagner, J. E. (2015). Alternative donor hematopoietic cell transplantation for Fanconi anemia. Blood, 125(24), 3798–3804. doi: 10.1182/blood-2015-02-626002.CrossRefGoogle Scholar
  37. Mankad, A., Taniguchi, T., Cox, B., Akkari, Y., Rathbun, R. K., Lucas, L., Bagby, G., Olson, S., D’Andrea, A., & Grompe, M. (2006). Natural gene therapy in monozygotic twins with Fanconi anemia. Blood, 107(8), 3084–3090. doi: 10.1182/blood-2005-07-2638.CrossRefGoogle Scholar
  38. Molina-Estevez, F. J., Nowrouzi, A., Lozano, M. L., Galy, A., Charrier, S., von Kalle, C., Guenechea, G., Bueren, J. A., & Schmidt, M. (2015). Lentiviral-mediated Gene therapy in Fanconi anemia-A mice reveals long-term engraftment and continuous turnover of corrected HSCs. Current Gene Therapy, 15(6), 550–562.CrossRefGoogle Scholar
  39. Monti, D., Macchioni, S., Guido, M., Pagano, G., Zatterale, A., Calzone, R., Cossarizza, A., Straface, E., Malorni, W., & Franceschi, C. (1997). Resistance to apoptosis in Fanconi’s anaemia. An ex vivo study in peripheral blood mononuclear cells. FEBS Letters, 409(3), 365–369.CrossRefGoogle Scholar
  40. Muller, L. U., Milsom, M. D., Harris, C. E., Vyas, R., Brumme, K. M., Parmar, K., Moreau, L. A., Schambach, A., Park, I. H., London, W. B., Strait, K., Schlaeger, T., Devine, A. L., Grassman, E., D’Andrea, A., Daley, G. Q., & Williams, D. A. (2012). Overcoming reprogramming resistance of Fanconi anemia cells. Blood, 119(23), 5449–5457. doi: 10.1182/blood-2012-02-408674.CrossRefGoogle Scholar
  41. Osborn, M. J., Gabriel, R., Webber, B. R., DeFeo, A. P., McElroy, A. N., Jarjour, J., Starker, C. G., Wagner, J. E., Joung, J. K., Voytas, D. F., von Kalle, C., Schmidt, M., Blazar, B. R., & Tolar, J. (2015). Fanconi anemia gene editing by the CRISPR/Cas9 system. Human Gene Therapy, 26(2), 114–126. doi: 10.1089/hum.2014.111.CrossRefGoogle Scholar
  42. Raya, A., Rodriguez-Piza, I., Guenechea, G., Vassena, R., Navarro, S., Barrero, M. J., Consiglio, A., Castella, M., Rio, P., Sleep, E., Gonzalez, F., Tiscornia, G., Garreta, E., Aasen, T., Veiga, A., Verma, I. M., Surralles, J., Bueren, J., & Izpisua Belmonte, J. C. (2009). Disease-corrected haematopoietic progenitors from Fanconi anaemia induced pluripotent stem cells. Nature, 460(7251), 53–59. doi: 10.1038/nature08129.CrossRefGoogle Scholar
  43. Robinton, D. A., & Daley, G. Q. (2012). The promise of induced pluripotent stem cells in research and therapy. Nature, 481(7381), 295–305. doi: 10.1038/nature10761.CrossRefGoogle Scholar
  44. Rosemann, A. (2014). Why regenerative stem cell medicine progresses slower than expected. Journal of Cellular Biochemistry, 115(12), 2073–2076. doi: 10.1002/jcb.24894.CrossRefGoogle Scholar
  45. Rosenberg, P. S., Alter, B. P., & Ebell, W. (2008). Cancer risks in Fanconi anemia: Findings from the German Fanconi anemia registry. Haematologica, 93(4), 511–517. doi: 10.3324/haematol.12234.CrossRefGoogle Scholar
  46. Seita, J., & Weissman, I. L. (2010). Hematopoietic stem cell: Self-renewal versus differentiation. Wiley Interdisciplinary Reviews Systems Biology and Medicine, 2(6), 640–653. doi: 10.1002/wsbm.86.CrossRefGoogle Scholar
  47. Shimamura, A., & Alter, B. P. (2010). Pathophysiology and management of inherited bone marrow failure syndromes. Blood Reviews, 24(3), 101–122. doi: 10.1016/j.blre.2010.03.002.CrossRefGoogle Scholar
  48. Si, Y., Pulliam, A. C., Linka, Y., Ciccone, S., Leurs, C., Yuan, J., Eckermann, O., Fruehauf, S., Mooney, S., Hanenberg, H., & Clapp, D. W. (2008). Overnight transduction with foamyviral vectors restores the long-term repopulating activity of Fancc−/− stem cells. Blood, 112(12), 4458–4465. doi: 10.1182/blood-2007-07-102947.CrossRefGoogle Scholar
  49. Singhal, S., Powles, R., Kulkarni, S., Treleaven, J., Sirohi, B., Millar, B., Shepherd, V., Saso, R., Rowland, A., Long, S., Cabral, S., Horton, C., & Mehta, J. (2000). Comparison of marrow and blood cell yields from the same donors in a double-blind, randomized study of allogeneic marrow vs blood stem cell transplantation. Bone Marrow Transplantation, 25(5), 501–505. doi: 10.1038/sj.bmt.1702173.CrossRefGoogle Scholar
  50. Socie, G., Devergie, A., Girinski, T., Piel, G., Ribaud, P., Esperou, H., Parquet, N., Maarek, O., Noguera, M. H., Richard, P., Brison, O., & Gluckman, E. (1998). Transplantation for Fanconi’s anaemia: Long-term follow-up of fifty patients transplanted from a sibling donor after low-dose cyclophosphamide and thoraco-abdominal irradiation for conditioning. British Journal of Haematology, 103(1), 249–255.CrossRefGoogle Scholar
  51. Spangrude, G. J., Heimfeld, S., & Weissman, I. L. (1988). Purification and characterization of mouse hematopoietic stem cells. Science, 241(4861), 58–62.CrossRefGoogle Scholar
  52. Takahashi, K., & Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126(4), 663–676. doi: 10.1016/j.cell.2006.07.024.CrossRefGoogle Scholar
  53. Tolar, J., Adair, J. E., Antoniou, M., Bartholomae, C. C., Becker, P. S., Blazar, B. R., Bueren, J., Carroll, T., Cavazzana-Calvo, M., Clapp, D. W., Dalgleish, R., Galy, A., Gaspar, H. B., Hanenberg, H., Von Kalle, C., Kiem, H. P., Lindeman, D., Naldini, L., Navarro, S., Renella, R., Rio, P., Sevilla, J., Schmidt, M., Verhoeyen, E., Wagner, J. E., Williams, D. A., & Thrasher, A. J. (2011). Stem cell gene therapy for Fanconi anemia: Report from the 1st international Fanconi anemia gene therapy working group meeting. Molecular Therapy, 19(7), 1193–1198. doi: 10.1038/mt.2011.78.CrossRefGoogle Scholar
  54. Tolar, J., Becker, P. S., Clapp, D. W., Hanenberg, H., de Heredia, C. D., Kiem, H. P., Navarro, S., Qasba, P., Rio, P., Schmidt, M., Sevilla, J., Verhoeyen, E., Thrasher, A. J., & Bueren, J. (2012). Gene therapy for Fanconi anemia: One step closer to the clinic. Human Gene Therapy, 23(2), 141–144. doi: 10.1089/hum.2011.237.CrossRefGoogle Scholar
  55. Wagner, J. E., & Gluckman, E. (2010). Umbilical cord blood transplantation: The first 20 years. Seminars in Hematology, 47(1), 3–12. doi: 10.1053/j.seminhematol.2009.10.011.CrossRefGoogle Scholar
  56. Waisfisz, Q., Morgan, N. V., Savino, M., de Winter, J. P., van Berkel, C. G., Hoatlin, M. E., Ianzano, L., Gibson, R. A., Arwert, F., Savoia, A., Mathew, C. G., Pronk, J. C., & Joenje, H. (1999). Spontaneous functional correction of homozygous Fanconi anaemia alleles reveals novel mechanistic basis for reverse mosaicism. Nature Genetics, 22(4), 379–383. doi: 10.1038/11956.CrossRefGoogle Scholar
  57. Yin, H., Song, C. Q., Dorkin, J. R., Zhu, L. J., Li, Y., Wu, Q., Park, A., Yang, J., Suresh, S., Bizhanova, A., Gupta, A., Bolukbasi, M. F., Walsh, S., Bogorad, R. L., Gao, G., Weng, Z., Dong, Y., Koteliansky, V., Wolfe, S. A., Langer, R., Xue, W., & Anderson, D. G. (2016). Therapeutic genome editing by combined viral and non-viral delivery of CRISPR system components in vivo. Nature Biotechnology. doi: 10.1038/nbt.3471.CrossRefGoogle Scholar
  58. Zhang, Q. S., Benedetti, E., Deater, M., Schubert, K., Major, A., Pelz, C., Impey, S., Marquez-Loza, L., Rathbun, R. K., Kato, S., Bagby, G. C., & Grompe, M. (2015). Oxymetholone therapy of fanconi anemia suppresses osteopontin transcription and induces hematopoietic stem cell cycling. Stem Cell Reports, 4(1), 90–102. doi: 10.1016/j.stemcr.2014.10.014.CrossRefGoogle Scholar
  59. Zou, J., Maeder, M. L., Mali, P., Pruett-Miller, S. M., Thibodeau-Beganny, S., Chou, B. K., Chen, G., Ye, Z., Park, I. H., Daley, G. Q., Porteus, M. H., Joung, J. K., & Cheng, L. (2009). Gene targeting of a disease-related gene in human induced pluripotent stem and embryonic stem cells. Cell Stem Cell, 5(1), 97–110. doi: 10.1016/j.stem.2009.05.023.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG  2017

Authors and Affiliations

  1. 1.Oregon Stem Cell Center, Department of PediatricsOregon Health & Science UniversityPortlandUSA

Personalised recommendations