The Robust Potential of Mesenchymal Stem Cell-Loaded Constructs for Hard Tissue Regeneration After Cancer Removal

  • Samaneh Hosseini
  • Mohammad Amin Shamekhi
  • Shahrbanoo Jahangir
  • Fatemeh Bagheri
  • Mohamadreza Baghaban EslaminejadEmail author
Conference paper
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1084)


Malignant bone tumors, although quite rare, are one of the causes of death in children and adolescents. Surgery as a common and primary treatment for removal of virtually bone cancer cause large bone defects. Thus, restoration of hard tissues like bone and cartilage after surgical tumor resection needs efficient therapeutic approaches. Tissue engineering (TE) is a powerful approach which has provided hope for restoration, maintenance, or improvement of damaged tissues. This strategy generally supplies a three-dimensional scaffold as an active substrate to support cell recruitment, infiltration, and proliferation for neo-tissues. The scaffold mimics the natural extracellular matrix (ECM) of tissue which needs to be regenerated. The use of potent cell sources such as mesenchymal stem cells (MSCs) has also led to remarkable progresses in hard tissue regeneration. Combination of living cells and various biomaterials have continuously evolved over the past decades to improve the process of regeneration. This chapter describes various strategies used in TE and highlights recent advances in cell-loaded constructs. We herein focus on cell-based scaffold approach utilized in hard tissue engineering and parameters determining a clinically efficient outcome. Also, we attempt to identify the potential as well as shortcomings of pre-loaded scaffolds for future therapeutic applications.


Mesenchymal stem cells Hard tissue regeneration Cancer Removal Stem cell loaded constructs 


  1. Aarvold, A., Smith, J. O., Tayton, E. R., Lanham, S. A., Chaudhuri, J. B., Turner, I. G., & Oreffo, R. O. C. (2013). The effect of porosity of a biphasic ceramic scaffold on human skeletal stem cell growth and differentiation in vivo. Journal of Biomedical Materials Research Part A, 101, 3431–3437.PubMedGoogle Scholar
  2. Ahearne, M. (2014). Introduction to cell-hydrogel mechanosensing. Interface focus, 4, 20130038.PubMedPubMedCentralGoogle Scholar
  3. Akay, G., Birch, M. A., & Bokhari, M. A. (2004). Microcellular polyHIPE polymer supports osteoblast growth and bone formation in vitro. Biomaterials, 25, 3991–4000.PubMedGoogle Scholar
  4. Alaribe, F. N., Manoto, S. L., & Motaung, S. C. (2016). Scaffolds from biomaterials: Advantages and limitations in bone and tissue engineering. Biologia, 71, 353–366.Google Scholar
  5. Allickson, J. G., Sanchez, A., Yefimenko, N., Borlongan, C. V., & Sanberg, P. R. (2011). Recent studies assessing the proliferative capability of a novel adult stem cell identified in menstrual blood. The Open Stem Cell Journal, 3, 4–10.PubMedPubMedCentralGoogle Scholar
  6. Amemiya, T., Nakaoka, K., Hamada, Y., & Hayakawa, T. (2012). Effect of porosity of titanium web on cortical bone response. Journal of Hard Tissue Biology, 21, 103–108.Google Scholar
  7. Bai, F., Wang, Z., Lu, J., Liu, J., Chen, G., Lv, R., Wang, J., Lin, K., Zhang, J., & Huang, X. (2010). The correlation between the internal structure and vascularization of controllable porous bioceramic materials in vivo: A quantitative study. Tissue Engineering Part A, 16, 3791–3803.PubMedGoogle Scholar
  8. Bailey, B. M., Nail, L. N., & Grunlan, M. A. (2013). Continuous gradient scaffolds for rapid screening of cell-material interactions and interfacial tissue regeneration. Acta Biomaterialia, 9, 8254–8261.PubMedPubMedCentralGoogle Scholar
  9. Balmayor, E. R. (2015). Targeted delivery as key for the success of small osteoinductive molecules. Advanced Drug Delivery Reviews, 94, 13–27.PubMedGoogle Scholar
  10. Beloti, M. M., Tambasco De Oliveira, P., Perri De Carvalho, P. S., & Rosa, A. L. (2009). Seeding osteoblastic cells into a macroporous biodegradable CaP/PLGA scaffold by a centrifugal force. Journal of Biomaterials Applications, 23, 481–495.PubMedGoogle Scholar
  11. Benevenia, J., Kirchner, R., Patterson, F., Beebe, K., Wirtz, D. C., Rivero, S., Palma, M., & Friedrich, M. J. (2016). Outcomes of a modular intercalary Endoprosthesis as treatment for segmental defects of the femur, tibia, and Humerus. Clinical Orthopaedics and Related Research, 474, 539–548.PubMedGoogle Scholar
  12. Berninger, M. T., Wexel, G., Rummeny, E. J., Imhoff, A. B., Anton, M., Henning, T. D., & Vogt, S. (2013). Treatment of osteochondral defects in the rabbit’s knee joint by implantation of allogeneic mesenchymal stem cells in fibrin clots, J Vis Exp, 75, e4423.Google Scholar
  13. Blackwood, K. A., Bock, N., Dargaville, T. R., & Ann Woodruff, M. (2012). Scaffolds for growth factor delivery as applied to bone tissue engineering. International Journal of Polymer Science, 2012, 1–25.Google Scholar
  14. Bone, N., & Process, H. (2017). The importance of cell Signalling – Integrins and growth factors – in Bone tissue engineering: Applications for the treatment of osteosarcoma. Advances in Tissue Engineering & Regenerative Medicine, 2, 1–9.Google Scholar
  15. Bose, S., Roy, M., & Bandyopadhyay, A. (2012). Recent advances in bone tissue engineering scaffolds. Trends in Biotechnology, 30, 546–554.PubMedPubMedCentralGoogle Scholar
  16. Bruder, S. P., Kraus, K. H., Goldberg, V. M., & Kadiyala, S. (1998). The effect of implants loaded with autologous mesenchymal stem cells on the healing of canine segmental bone defects. The Journal of Bone and Joint Surgery. American Volume, 80, 985–996.PubMedGoogle Scholar
  17. Brydone, A. S., Meek, D., & Maclaine, S. (2010). Bone grafting, orthopaedic biomaterials, and the clinical need for bone engineering. Proceedings of the Institution of Mechanical Engineers Part H, Journal of Engineering in Medicine, 224, 1329–1343.PubMedGoogle Scholar
  18. Buizer, A. T., Veldhuizen, A. G., Bulstra, S. K., & Kuijer, R. (2014). Static versus vacuum cell seeding on high and low porosity ceramic scaffolds. Journal of Biomaterials Applications, 29, 3–13.PubMedGoogle Scholar
  19. Buket Basmanav, F., Kose, G. T., & Hasirci, V. (2008). Sequential growth factor delivery from complexed microspheres for bone tissue engineering. Biomaterials, 29, 4195–4204.PubMedGoogle Scholar
  20. Canillas, M., Pena, P., de Aza, A. H., & Rodríguez, M. A. (2017). Calcium phosphates for biomedical applications. Boletín de la Sociedad Española de Cerámica y Vidrio, 56, 91–112.Google Scholar
  21. Chai, G., Zhang, Y., Liu, W., Cui, L., & Cao, Y. L. (2003). Clinical application of tissue engineered bone repair of human craniomaxillofacial bone defects. Zhonghua Yi Xue Za Zhi, 83, 1676–1681.PubMedGoogle Scholar
  22. Chan, B. P., & Leong, K. W. (2008). Scaffolding in tissue engineering: General approaches and tissue-specific considerations. European spine journal : official publication of the European Spine Society, the European Spinal Deformity Society, and the European Section of the Cervical Spine Research Society, 17(Suppl 4), 467–479.Google Scholar
  23. Chanlalit, C., Shukla, D. R., Fitzsimmons, J. S., An, K.-N., & O’Driscoll, S. W. (2012). Stress shielding around radial head prostheses. The Journal of Hand Surgery, 37, 2118–2125.PubMedGoogle Scholar
  24. Chen, G., Deng, C., & Li, Y. P. (2012). TGF-beta and BMP signaling in osteoblast differentiation and bone formation. International Journal of Biological Sciences, 8, 272–288.PubMedPubMedCentralGoogle Scholar
  25. Chiou, G. J., Crowe, C., McGoldrick, R., Hui, K., Pham, H., & Chang, J. (2015). Optimization of an injectable tendon hydrogel: The effects of platelet-rich plasma and adipose-derived stem cells on tendon healing in vivo. Tissue Engineering. Part A, 21, 1579–1586.PubMedGoogle Scholar
  26. Chong, A. K., Ang, A. D., Goh, J. C., Hui, J. H., Lim, A. Y., Lee, E. H., & Lim, B. H. (2007). Bone marrow-derived mesenchymal stem cells influence early tendon-healing in a rabbit achilles tendon model. The Journal of Bone and Joint Surgery American, 89, 74–81.Google Scholar
  27. Crovace, A., Lacitignola, L., Rossi, G., & Francioso, E. (2010). Histological and immunohistochemical evaluation of autologous cultured bone marrow mesenchymal stem cells and bone marrow mononucleated cells in collagenase-induced tendinitis of equine superficial digital flexor tendon. Veterinary Medicine International, 2010, 250978.PubMedPubMedCentralGoogle Scholar
  28. Dado, D., & Levenberg, S. (2009). Cell-scaffold mechanical interplay within engineered tissue. Seminars in Cell and Developmental Biology, 20, 656–664.PubMedGoogle Scholar
  29. d’Aquino, R., De Rosa, A., Lanza, V., Tirino, V., Laino, L., Graziano, A., Desiderio, V., Laino, G., & Papaccio, G. (2009). Human mandible bone defect repair by the grafting of dental pulp stem/progenitor cells and collagen sponge biocomplexes. European Cells & Materials, 18, 75–83.Google Scholar
  30. Dar, A., Shachar, M., Leor, J., & Cohen, S. (2002). Optimization of cardiac cell seeding and distribution in 3D porous alginate scaffolds. Biotechnology and Bioengineering, 80, 305–312.PubMedGoogle Scholar
  31. Dehghan, M. M., Baghaban Eslaminejad, M., Motallebizadeh, N., Ashrafi Halan, J., Tagiyar, L., Soroori, S., Nikmahzar, A., Pedram, M., Shahverdi, A., Kazemi Mehrjerdi, H., et al. (2015). Transplantation of autologous bone marrow mesenchymal stem cells with platelet-rich plasma accelerate distraction osteogenesis in a canine model. Cell Journal, 17, 243–252.PubMedPubMedCentralGoogle Scholar
  32. Doyle, A. D., & Yamada, K. M. (2016). Mechanosensing via cell-matrix adhesions in 3D microenvironments. Experimental Cell Research, 343, 60–66.PubMedGoogle Scholar
  33. Dvir-Ginzberg, M., Gamlieli-Bonshtein, I., Agbaria, R., & Cohen, S. (2003). Liver tissue engineering within alginate scaffolds: Effects of cell-seeding density on hepatocyte viability, morphology, and function. Tissue Engineering, 9, 757–766.PubMedGoogle Scholar
  34. Ehashi, T., Takemura, T., Hanagata, N., Minowa, T., Kobayashi, H., Ishihara, K., & Yamaoka, T. (2014). Comprehensive genetic analysis of early host body reactions to the bioactive and bio-inert porous scaffolds. PLoS One, 9, e85132.PubMedPubMedCentralGoogle Scholar
  35. Escobar Ivirico, J. L., Salmerón-Sánchez, M., Gómez Ribelles, J. L., Monleón Pradas, M., Soria, J. M., Gomes, M. E., Reis, R. L., & Mano, J. F. (2009). Proliferation and differentiation of goat bone marrow stromal cells in 3D scaffolds with tunable hydrophilicity. Journal of Biomedical Materials Research – Part B Applied Biomaterials, 91, 277–286.Google Scholar
  36. Eslaminejad, M. B., & Nadri, S. (2009). Murine mesenchymal stem cell isolated and expanded in low and high density culture system: Surface antigen expression and osteogenic culture mineralization. In Vitro Cellular & Developmental Biology Animal, 45, 451–459.Google Scholar
  37. Eslaminejad, M. B., Mirzadeh, H., Mohamadi, Y., & Nickmahzar, A. (2007). Bone differentiation of marrow-derived mesenchymal stem cells using beta-tricalcium phosphate-alginate-gelatin hybrid scaffolds. Journal of Tissue Engineering and Regenerative Medicine, 1, 417–424.PubMedGoogle Scholar
  38. Eslaminejad, M. B., Mirzadeh, H., Nickmahzar, A., Mohamadi, Y., & Mivehchi, H. (2009). Type I collagen gel in seeding medium improves murine mesencymal stem cell loading onto the scaffold, increases their subsequent proliferation, and enhances culture mineralization. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 90, 659–667.Google Scholar
  39. Faghihi, F., and Baghaban Eslaminejad, M. (2014). The effect of nano-scale topography on osteogenic differentiation of mesenchymal stem cells. Biomedical papers of the Medical Faculty of the University Palacky, Olomouc, Czechoslovakia 158, pp. 5–16.Google Scholar
  40. Faghihi, F., Baghaban Eslaminejad, M., Nekookar, A., Najar, M., & Salekdeh, G. H. (2013). The effect of purmorphamine and sirolimus on osteogenic differentiation of human bone marrow-derived mesenchymal stem cells. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 67, 31–38.Google Scholar
  41. Fan, J., Im, C. S., Cui, Z. K., Guo, M., Bezouglaia, O., Fartash, A., Lee, J. Y., Nguyen, J., Wu, B. M., Aghaloo, T., et al. (2015). Delivery of Phenamil enhances BMP-2-induced osteogenic differentiation of adipose-derived stem cells and bone formation in Calvarial defects. Tissue Engineering. Part A, 21, 2053–2065.PubMedPubMedCentralGoogle Scholar
  42. Feng, B., Jinkang, Z., Zhen, W., Jianxi, L., Jiang, C., Jian, L., Guolin, M., & Xin, D. (2011). The effect of pore size on tissue ingrowth and neovascularization in porous bioceramics of controlled architecture in vivo. Biomedical Materials, 6, 15007.Google Scholar
  43. Fernandez, J. M., Molinuevo, M. S., Cortizo, M. S., & Cortizo, A. M. (2011). Development of an osteoconductive PCL–PDIPF–hydroxyapatite composite scaffold for bone tissue engineering. Journal of Tissue Engineering and Regenerative Medicine, 5, e126.PubMedGoogle Scholar
  44. Fortier, L. A., Mohammed, H. O., Lust, G., & Nixon, A. J. (2002). Insulin-like growth factor-I enhances cell-based repair of articular cartilage. Journal of Bone and Joint Surgery. British Volume (London), 84, 276–288.Google Scholar
  45. Fu, R.-H., Wang, Y.-C., Liu, S.-P., Shih, T.-R., Lin, H.-L., Chen, Y.-M., Sung, J.-H., Lu, C.-H., Wei, J.-R., & Wang, Z.-W. (2014). Decellularization and recellularization technologies in tissue engineering. Cell Transplantation, 23, 621–630.PubMedGoogle Scholar
  46. Gao, C., Deng, Y., Feng, P., Mao, Z., Li, P., Yang, B., Deng, J., Cao, Y., Shuai, C., & Peng, S. (2014). Current progress in bioactive ceramic scaffolds for bone repair and regeneration. International Journal of Molecular Sciences, 15, 4714–4732.PubMedPubMedCentralGoogle Scholar
  47. Garreta, E., Oria, R., Tarantino, C., Pla-Roca, M., Prado, P., Fernández-Avilés, F., Campistol, J. M., Samitier, J., & Montserrat, N. (2017). Tissue engineering by decellularization and 3D bioprinting. Materials Today, 20, 166.Google Scholar
  48. Gerhardt, L.-C., & Boccaccini, A. R. (2010). Bioactive glass and glass-ceramic scaffolds for bone tissue engineering. Materials, 3, 3867–3910.PubMedPubMedCentralGoogle Scholar
  49. Godbey, W., Hindy, B. S., Sherman, M. E., & Atala, A. (2004). A novel use of centrifugal force for cell seeding into porous scaffolds. Biomaterials, 25, 2799–2805.PubMedGoogle Scholar
  50. Goshima, J., Goldberg, V. M., & Caplan, A. I. (1991a). Osteogenic potential of culture-expanded rat marrow cells as assayed in vivo with porous calcium phosphate ceramic. Biomaterials, 12, 253–258.PubMedGoogle Scholar
  51. Goshima, J., Goldberg, V. M., & Caplan, A. I. (1991b). The osteogenic potential of culture-expanded rat marrow mesenchymal cells assayed in vivo in calcium phosphate ceramic blocks. Clinical Orthopaedics and Related Research, 262, 298–311.Google Scholar
  52. Griffon, D. J., Sedighi, M. R., Sendemir-Urkmez, A., Stewart, A. A., & Jamison, R. (2005). Evaluation of vacuum and dynamic cell seeding of polyglycolic acid and chitosan scaffolds for cartilage engineering. American Journal of Veterinary Research, 66, 599–605.PubMedGoogle Scholar
  53. Guilak, F., Awad, H. A., Fermor, B., Leddy, H. A., & Gimble, J. M. (2004). Adipose-derived adult stem cells for cartilage tissue engineering. Biorheology, 41, 389–399.PubMedGoogle Scholar
  54. Guo, X., Park, H., Young, S., Kretlow, J. D., van den Beucken, J. J., Baggett, L. S., Tabata, Y., Kasper, F. K., Mikos, A. G., & Jansen, J. A. (2010). Repair of osteochondral defects with biodegradable hydrogel composites encapsulating marrow mesenchymal stem cells in a rabbit model. Acta Biomaterialia, 6, 39–47.PubMedGoogle Scholar
  55. Hameed, M., & Dorfman, H. (2011). Primary malignant bone tumors–recent developments. Seminars in Diagnostic Pathology, 28, 86–101.PubMedGoogle Scholar
  56. Hannink, G., & Arts, J. J. (2011). Bioresorbability, porosity and mechanical strength of bone substitutes: What is optimal for bone regeneration? Injury, 42(Suppl 2), S22–S25.PubMedGoogle Scholar
  57. Hench, L. L. (1998). Bioactive materials: The potential for tissue regeneration. Journal of Biomedical Materials Research Part A, 41, 511–518.Google Scholar
  58. Hernigou, P., Flouzat Lachaniette, C. H., Delambre, J., Chevallier, N., & Rouard, H. (2014). Regenerative therapy with mesenchymal stem cells at the site of malignant primary bone tumour resection: What are the risks of early or late local recurrence? International Orthopaedics, 38, 1825–1835.PubMedGoogle Scholar
  59. Hing, K. A. (2004). Bone repair in the twenty--first century: Biology, chemistry or engineering? Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 362, 2821–2850.Google Scholar
  60. Hosseini, S., & Baghaban Eslaminejad, M. (2017). Mesenchymal stem cells: An optimistic cell source in tissue engineering for bone regeneration. In P. V. Pham (Ed.), Bone and cartilage regeneration. New York: Springer.Google Scholar
  61. Hosseini, S., & Eslaminejad, M. B. (2016). Bone and cartilage regeneration (pp. 205–243). Cham: Springer.Google Scholar
  62. Huri, P. Y., Ozilgen, B. A., Hutton, D. L., & Grayson, W. L. (2014). Scaffold pore size modulates in vitro osteogenesis of human adipose-derived stem/stromal cells. Biomedical Materials, 9, 45003.Google Scholar
  63. Ito, K., Yamada, Y., Naiki, T., & Ueda, M. (2006). Simultaneous implant placement and bone regeneration around dental implants using tissue-engineered bone with fibrin glue, mesenchymal stem cells and platelet-rich plasma. Clinical Oral Implants Research, 17, 579–586.PubMedGoogle Scholar
  64. Itoh, M., Shimazu, A., Hirata, I., Yoshida, Y., Shintani, H., & Okazaki, M. (2004). Characterization of CO 3 Ap-collagen sponges using X-ray high-resolution microtomography. Biomaterials, 25, 2577–2583.PubMedGoogle Scholar
  65. Jackson, W. M., Nesti, L. J., & Tuan, R. S. (2010). Potential therapeutic applications of muscle-derived mesenchymal stem and progenitor cells. Expert Opinion on Biological Therapy, 10, 505–517.PubMedPubMedCentralGoogle Scholar
  66. Jafarian, M., Eslaminejad, M. B., Khojasteh, A., Mashhadi Abbas, F., Dehghan, M. M., Hassanizadeh, R., & Houshmand, B. (2008). Marrow-derived mesenchymal stem cells-directed bone regeneration in the dog mandible: A comparison between biphasic calcium phosphate and natural bone mineral. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontics, 105, e14–e24.PubMedGoogle Scholar
  67. Jansen, E. J. P., Sladek, R. E. J., Bahar, H., Yaffe, A., Gijbels, M. J., Kuijer, R., Bulstra, S. K., Guldemond, N. A., Binderman, I., & Koole, L. H. (2005). Hydrophobicity as a design criterion for polymer scaffolds in bone tissue engineering. Biomaterials, 26, 4423–4431.PubMedGoogle Scholar
  68. Jiang, Y., Jahagirdar, B. N., Reinhardt, R. L., Schwartz, R. E., Keene, C. D., Ortiz-Gonzalez, X. R., Reyes, M., Lenvik, T., Lund, T., Blackstad, M., et al. (2002). Pluripotency of mesenchymal stem cells derived from adult marrow. Nature, 418, 41–49.Google Scholar
  69. Jones, E. A., Crawford, A., English, A., Henshaw, K., Mundy, J., Corscadden, D., Chapman, T., Emery, P., Hatton, P., & McGonagle, D. (2008). Synovial fluid mesenchymal stem cells in health and early osteoarthritis: Detection and functional evaluation at the single-cell level. Arthritis and Rheumatism, 58, 1731–1740.PubMedGoogle Scholar
  70. Kadiyala, S., Young, R. G., Thiede, M. A., & Bruder, S. P. (1997). Culture expanded canine mesenchymal stem cells possess osteochondrogenic potential in vivo and in vitro. Cell Transplantation, 6, 125–134.PubMedGoogle Scholar
  71. Kaigler, D., Krebsbach, P. H., Wang, Z., West, E. R., Horger, K., & Mooney, D. J. (2006). Transplanted endothelial cells enhance orthotopic bone regeneration. Journal of Dental Research, 85, 633–637.PubMedGoogle Scholar
  72. Kakabadze, A., Mardaleishvili, K., Loladze, G., Karalashvili, L., Chutkerashvili, G., Chakhunashvili, D., & Kakabadze, Z. (2017). Reconstruction of mandibular defects with autogenous bone and decellularized bovine bone grafts with freeze-dried bone marrow stem cell paracrine factors. Oncology Letters, 13, 1811–1818.PubMedPubMedCentralGoogle Scholar
  73. Kang, M. S., Kim, J. H., Singh, R. K., Jang, J. H., & Kim, H. W. (2015). Therapeutic-designed electrospun bone scaffolds: Mesoporous bioactive nanocarriers in hollow fiber composites to sequentially deliver dual growth factors. Acta Biomaterialia, 16, 103–116.PubMedGoogle Scholar
  74. Kansara, M., Teng, M. W., Smyth, M. J., & Thomas, D. M. (2014). Translational biology of osteosarcoma. Nature Reviews Cancer, 14, 722–735.PubMedGoogle Scholar
  75. Katayama, R., Wakitani, S., Tsumaki, N., Morita, Y., Matsushita, I., Gejo, R., & Kimura, T. (2004). Repair of articular cartilage defects in rabbits using CDMP1 gene-transfected autologous mesenchymal cells derived from bone marrow. Rheumatology (Oxford), 43, 980–985.Google Scholar
  76. Kayakabe, M., Tsutsumi, S., Watanabe, H., Kato, Y., & Takagishi, K. (2006). Transplantation of autologous rabbit BM-derived mesenchymal stromal cells embedded in hyaluronic acid gel sponge into osteochondral defects of the knee. Cytotherapy, 8, 343–353.PubMedGoogle Scholar
  77. Khojasteh, A., Eslaminejad, M. B., & Nazarian, H. (2008). Mesenchymal stem cells enhance bone regeneration in rat calvarial critical size defects more than platelete-rich plasma. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontics, 106, 356–362. discussion 363.PubMedGoogle Scholar
  78. Kim, J. A., Lim, J., Naren, R., suk Yun, H., & Park, E. K. (2016). Effect of the biodegradation rate controlled by pore structures in magnesium phosphate ceramic scaffolds on bone tissue regeneration in vivo. Acta Biomaterialia, 44, 155–167.PubMedGoogle Scholar
  79. Koga, H., Muneta, T., Nagase, T., Nimura, A., Ju, Y. J., Mochizuki, T., & Sekiya, I. (2008). Comparison of mesenchymal tissues-derived stem cells for in vivo chondrogenesis: Suitable conditions for cell therapy of cartilage defects in rabbit. Cell and Tissue Research, 333, 207–215.PubMedGoogle Scholar
  80. Kon, E., Muraglia, A., Corsi, A., Bianco, P., Marcacci, M., Martin, I., Boyde, A., Ruspantini, I., Chistolini, P., Rocca, M., et al. (2000). Autologous bone marrow stromal cells loaded onto porous hydroxyapatite ceramic accelerate bone repair in critical-size defects of sheep long bones. Journal of Biomedical Materials Research, 49, 328–337.PubMedGoogle Scholar
  81. Langer, R., & Vacanti, J. (2016). Advances in tissue engineering. Journal of Pediatric Surgery, 51, 8–12.PubMedGoogle Scholar
  82. Lee, O. K., Kuo, T. K., Chen, W. M., Lee, K. D., Hsieh, S. L., & Chen, T. H. (2004). Isolation of multipotent mesenchymal stem cells from umbilical cord blood. Blood, 103, 1669–1675.Google Scholar
  83. Lee, B. J., Kang, D. W., Park, H. Y., Song, J. S., Kim, J. M., Jang, J. Y., Lee, J. C., Wang, S. G., Jung, J. S., & Shin, S. C. (2016). Isolation and localization of mesenchymal stem cells in human palatine tonsil by W5C5 (SUSD2). Cellular Physiology and Biochemistry: International Journal of Experimental Cellular Physiology, Biochemistry, and Pharmacology, 38, 83–93.Google Scholar
  84. Leipzig, N. D., & Shoichet, M. S. (2009). The effect of substrate stiffness on adult neural stem cell behavior. Biomaterials, 30, 6867–6878.PubMedGoogle Scholar
  85. Li, J., Zhi, W., Xu, T., Shi, F., Duan, K., Wang, J., Mu, Y., & Weng, J. (2016). Ectopic osteogenesis and angiogenesis regulated by porous architecture of hydroxyapatite scaffolds with similar interconnecting structure in vivo. Regenerative Biomaterials, 3, 285–297.PubMedPubMedCentralGoogle Scholar
  86. Lindner, M., Bergmann, C., Telle, R., & Fischer, H. (2014). Calcium phosphate scaffolds mimicking the gradient architecture of native long bones. Journal of Biomedical Materials Research. Part A, 102, 3677–3684.PubMedGoogle Scholar
  87. Liu, C., Zhao, Y., Cheung, W. Y., Gandhi, R., Wang, L., & You, L. (2010). Effects of cyclic hydraulic pressure on osteocytes. Bone, 46, 1449–1456.PubMedPubMedCentralGoogle Scholar
  88. Liu, J., Liu, C., Sun, B., Shi, C., Qiao, C., Ke, X., Liu, S., Liu, X., & Sun, H. (2014). Differentiation of rabbit bone mesenchymal stem cells into endothelial cells in vitro and promotion of defective bone regeneration in vivo. Cell Biochemistry and Biophysics, 68, 479–487.PubMedGoogle Scholar
  89. Lovati, A. B., Bottagisio, M., & Moretti, M. (2016). Decellularized and engineered tendons as biological substitutes: A critical review. Stem Cells International, 2016, 1.Google Scholar
  90. Lu, X., Wang, Y., Jin, F., Hing, K. A., Malak, S. F. F., Anderson, I. A., Mistry, A. S., Mikos, A. G., Bose, S., Roy, M., et al. (2016). Influence of a non-biodegradable porous structure on bone repair. RSC Advances, 6, 80522–80528.Google Scholar
  91. Luo, L., Eswaramoorthy, R., Mulhall, K. J., & Kelly, D. J. (2016). Decellularization of porcine articular cartilage explants and their subsequent repopulation with human chondroprogenitor cells. Journal of the Mechanical Behavior of Biomedical Materials, 55, 21–31.Google Scholar
  92. Maffulli, N., Wong, J., & Almekinders, L. C. (2003). Types and epidemiology of tendinopathy. Clinics in Sports Medicine, 22, 675–692.PubMedGoogle Scholar
  93. Mandal, B. B., Grinberg, A., Gil, E. S., Panilaitis, B., & Kaplan, D. L. (2012). High-strength silk protein scaffolds for bone repair. Proceedings of the National Academy of Sciences, 109, 7699–7704.Google Scholar
  94. Mano, J. F., Silva, G. A., Azevedo, H. S., Malafaya, P. B., Sousa, R. A., Silva, S. S., Boesel, L. F., Oliveira, J. M., Santos, T. C., Marques, A. P., et al. (2007). Natural origin biodegradable systems in tissue engineering and regenerative medicine: Present status and some moving trends. Journal of the Royal Society, Interface, 4, 999–1030.PubMedPubMedCentralGoogle Scholar
  95. Marcacci, M., Kon, E., Moukhachev, V., Lavroukov, A., Kutepov, S., Quarto, R., Mastrogiacomo, M., & Cancedda, R. (2007). Stem cells associated with macroporous bioceramics for long bone repair: 6- to 7-year outcome of a pilot clinical study. Tissue Engineering, 13, 947–955.PubMedGoogle Scholar
  96. Marulli, G., Dell’amore, A., Calabrese, F., Schiavon, M., Daddi, N., Dolci, G., Stella, F., & Rea, F. (2017). Safety and effectiveness of cadaveric allograft sternochondral replacement after Sternectomy: A new tool for the reconstruction of anterior chest wall. The Annals of Thoracic Surgery, 103, 898–905.PubMedGoogle Scholar
  97. Mattioli-Belmonte, M., Teti, G., Salvatore, V., Focaroli, S., Orciani, M., Dicarlo, M., Fini, M., Orsini, G., Primio, R. D., & Falconi, M. (2015). Stem cell origin differently affects bone tissue engineering strategies. Frontiers in Physiology, 6, 1–12.Google Scholar
  98. Mesimaki, K., Lindroos, B., Tornwall, J., Mauno, J., Lindqvist, C., Kontio, R., Miettinen, S., & Suuronen, R. (2009). Novel maxillary reconstruction with ectopic bone formation by GMP adipose stem cells. International Journal of Oral and Maxillofacial Surgery, 38, 201–209.PubMedGoogle Scholar
  99. Morishita, T., Honoki, K., Ohgushi, H., Kotobuki, N., Matsushima, A., & Takakura, Y. (2006). Tissue engineering approach to the treatment of bone tumors: Three cases of cultured bone grafts derived from patients’ mesenchymal stem cells. Artificial Organs, 30, 115–118.PubMedGoogle Scholar
  100. Murphy, C. M., Haugh, M. G., & O’Brien, F. J. (2010). The effect of mean pore size on cell attachment, proliferation and migration in collagen-glycosaminoglycan scaffolds for bone tissue engineering. Biomaterials, 31, 461–466.PubMedGoogle Scholar
  101. Murphy, C. M., O’Brien, F. J., Little, D. G., & Schindeler, A. (2013). Cell-scaffold interactions in the bone tissue engineering triad. European Cells and Materials, 26, 120–132.PubMedGoogle Scholar
  102. Myoui, A., & Yoshikawa, H. (2008). Regenerative medicine in bone tumor surgery. Clinical Calcium, 18, 1767–1773.PubMedGoogle Scholar
  103. Nguyen, D., Hägg, D. A., Forsman, A., Ekholm, J., Nimkingratana, P., Brantsing, C., Kalogeropoulos, T., Zaunz, S., Concaro, S., & Brittberg, M. (2017). Cartilage tissue engineering by the 3D bioprinting of iPS cells in a Nanocellulose/alginate bioink. Scientific Reports, 7, 658.PubMedPubMedCentralGoogle Scholar
  104. Nie, L., Yang, X., Duan, L., Huang, E., Pengfei, Z., Luo, W., Zhang, Y., Zeng, X., Qiu, Y., Cai, T., et al. (2017). The healing of alveolar bone defects with novel bio-implants composed of ad-BMP9-transfected rDFCs and CHA scaffolds. Scientific Reports, 7, 6373.PubMedPubMedCentralGoogle Scholar
  105. Niemeyer, P., Schonberger, T. S., Hahn, J., Kasten, P., Fellenberg, J., Suedkamp, N., Mehlhorn, A. T., Milz, S., & Pearce, S. (2010). Xenogenic transplantation of human mesenchymal stem cells in a critical size defect of the sheep tibia for bone regeneration. Tissue Engineering. Part A, 16, 33–43.PubMedGoogle Scholar
  106. Ning, L. J., Zhang, Y., Chen, X. H., Luo, J. C., Li, X. Q., Yang, Z. M., & Qin, T. W. (2012). Preparation and characterization of decellularized tendon slices for tendon tissue engineering. Journal of Biomedical Materials Research Part A, 100, 1448–1456.PubMedGoogle Scholar
  107. O’Brien, F. J. (2011). Biomaterials & scaffolds for tissue engineering. Materials Today, 14, 88–95.Google Scholar
  108. Ohgushi, H., Goldberg, V. M., & Caplan, A. I. (1989). Repair of bone defects with marrow cells and porous ceramic. Experiments in rats. Acta Orthopaedica Scandinavica, 60, 334–339.PubMedGoogle Scholar
  109. Omae, H., Mochizuki, Y., Yokoya, S., Adachi, N., & Ochi, M. (2007). Augmentation of tendon attachment to porous ceramics by bone marrow stromal cells in a rabbit model. International Orthopaedics, 31, 353–358.PubMedGoogle Scholar
  110. Omidvar, N., Ganji, F., & Eslaminejad, M. B. (2016). In vitro osteogenic induction of human marrow-derived mesenchymal stem cells by PCL fibrous scaffolds containing dexamethazone-loaded chitosan microspheres. Journal of Biomedical Materials Research. Part A, 104, 1657–1667.PubMedGoogle Scholar
  111. Oryan, A., Alidadi, S., Moshiri, A., & Maffulli, N. (2014). Bone regenerative medicine: Classic options, novel strategies, and future directions. Journal of Orthopaedic Surgery and Research, 9, 18.PubMedPubMedCentralGoogle Scholar
  112. Oryan, A., Kamali, A., Moshiri, A., & Baghaban Eslaminejad, M. (2017). Role of mesenchymal stem cells in bone regenerative medicine: What is the evidence? Cells, Tissues, Organs, 204, 59–83.PubMedGoogle Scholar
  113. Ouyang, H. W., Goh, J. C., Thambyah, A., Teoh, S. H., & Lee, E. H. (2003). Knitted poly-lactide-co-glycolide scaffold loaded with bone marrow stromal cells in repair and regeneration of rabbit Achilles tendon. Tissue Engineering, 9, 431–439.PubMedGoogle Scholar
  114. Ozdil, D., & Aydin, H. M. (2014). Polymers for medical and tissue engineering applications. Journal of Chemical Technology and Biotechnology, 89, 1793–1810.Google Scholar
  115. Park, J. S., Yang, H. N., Woo, D. G., Chung, H. M., & Park, K. H. (2009). In vitro and in vivo chondrogenesis of rabbit bone marrow-derived stromal cells in fibrin matrix mixed with growth factor loaded in nanoparticles. Tissue Engineering. Part A, 15, 2163–2175.PubMedGoogle Scholar
  116. Park, J. S., Chu, J. S., Tsou, A. D., Diop, R., Tang, Z., Wang, A., & Li, S. (2011). The effect of matrix stiffness on the differentiation of mesenchymal stem cells in response to TGF-beta. Biomaterials, 32, 3921–3930.PubMedPubMedCentralGoogle Scholar
  117. Patki, S., Kadam, S., Chandra, V., & Bhonde, R. (2010). Human breast milk is a rich source of multipotent mesenchymal stem cells. Human Cell, 23, 35–40.PubMedGoogle Scholar
  118. Pietschmann, M. F., Frankewycz, B., Schmitz, P., Docheva, D., Sievers, B., Jansson, V., Schieker, M., & Muller, P. E. (2013). Comparison of tenocytes and mesenchymal stem cells seeded on biodegradable scaffolds in a full-size tendon defect model. Journal of Materials Science Materials in Medicine, 24, 211–220.PubMedGoogle Scholar
  119. Pobloth, A. M., Schell, H., Petersen, A., Beierlein, K., Kleber, C., Schmidt-Bleek, K., & Duda, G. N. (2017). Tubular open-porous beta-tricalcium phosphate polycaprolactone scaffolds as guiding structure for segmental bone defect regeneration in a novel sheep model. Journal of Tissue Engineering and Regenerative Medicine, 11, 1–15.Google Scholar
  120. Quarto, R., Mastrogiacomo, M., Cancedda, R., Kutepov, S. M., Mukhachev, V., Lavroukov, A., Kon, E., & Marcacci, M. (2001). Repair of large bone defects with the use of autologous bone marrow stromal cells. The New England Journal of Medicine, 344, 385–386.PubMedGoogle Scholar
  121. Raikin, S. M., Garras, D. N., & Krapchev, P. V. (2013). Achilles tendon injuries in a United States population. Foot & Ankle International, 34, 475–480.Google Scholar
  122. Ribeiro, M., de Moraes, M. A., Beppu, M. M., Garcia, M. P., Fernandes, M. H., Monteiro, F. J., & Ferraz, M. P. (2015). Development of silk fibroin/nanohydroxyapatite composite hydrogels for bone tissue engineering. European Polymer Journal, 67, 66–77.Google Scholar
  123. Rivera-Munoz, E. M. (2015). Oseoimmunomodulation for the development of advanced bone biomaterials. Materials Today, 00, 1–18.Google Scholar
  124. Roh, J. D., Nelson, G. N., Udelsman, B. V., Brennan, M. P., Lockhart, B., Fong, P. M., Lopez-Soler, R. I., Saltzman, W. M., & Breuer, C. K. (2007). Centrifugal seeding increases seeding efficiency and cellular distribution of bone marrow stromal cells in porous biodegradable scaffolds. Tissue Engineering, 13, 2743–2749.PubMedGoogle Scholar
  125. Roseti, L., Parisi, V., Petretta, M., Cavallo, C., Desando, G., Bartolotti, I., & Grigolo, B. (2017). Scaffolds for bone tissue engineering: State of the art and new perspectives. Materials Science and Engineering: C., 78, 1246.Google Scholar
  126. Roy, T. D., Simon, J. L., Ricci, J. L., Rekow, E. D., Thompson, V. P., & Parsons, J. R. (2003). Performance of degradable composite bone repair products made via three-dimensional fabrication techniques. Journal of Biomedical Materials Research. Part A, 66, 283–291.PubMedGoogle Scholar
  127. Sadlik, B., Jaroslawski, G., Gladysz, D., Puszkarz, M., Markowska, M., Pawelec, K., Boruczkowski, D., & Oldak, T. (2017). Knee cartilage regeneration with umbilical cord mesenchymal stem cells embedded in collagen scaffold using dry arthroscopy technique. Advances in Experimental Medicine and Biology, 1020, 113–122.PubMedGoogle Scholar
  128. Scaglione, S., Giannoni, P., Bianchini, P., Sandri, M., Marotta, R., Firpo, G., Valbusa, U., Tampieri, A., Diaspro, A., Bianco, P., et al. (2012). Order versus disorder: In vivo bone formation within osteoconductive scaffolds. Scientific Reports, 2, 274.PubMedPubMedCentralGoogle Scholar
  129. Schon, L. C., Gill, N., Thorpe, M., Davis, J., Nadaud, J., Kim, J., Molligan, J., & Zhang, Z. (2014). Efficacy of a mesenchymal stem cell loaded surgical mesh for tendon repair in rats. Journal of Translational Medicine, 12, 110.PubMedPubMedCentralGoogle Scholar
  130. Seetapun, D., & Ross, J. J. (2017). Eliminating the organ transplant waiting list: The future with perfusion decellularized organs. Surgery, 161, 1474–1478.PubMedGoogle Scholar
  131. Shahabipour, F., Mahdavi-Shahri, N., Matin, M. M., Tavassoli, A., & Zebarjad, S. M. (2013). Scaffolds derived from cancellous bovine bone support mesenchymal stem cells’ maintenance and growth. In Vitro Cellular & Developmental Biology Animal, 49, 440–448.Google Scholar
  132. Shang, Q., Wang, Z., Liu, W., Shi, Y., Cui, L., & Cao, Y. (2001). Tissue-engineered bone repair of sheep cranial defects with autologous bone marrow stromal cells. The Journal of Craniofacial Surgery, 12, 586–593. discussion 594-585.PubMedGoogle Scholar
  133. Shao, X., Goh, J. C., Hutmacher, D. W., Lee, E. H., & Zigang, G. (2006). Repair of large articular osteochondral defects using hybrid scaffolds and bone marrow-derived mesenchymal stem cells in a rabbit model. Tissue Engineering, 12, 1539–1551.PubMedGoogle Scholar
  134. Sharma, P., & Maffulli, N. (2005). Tendon injury and tendinopathy: Healing and repair. The Journal of Bone and Joint Surgery. American Volume, 87, 187–202.PubMedGoogle Scholar
  135. Sharma, B., Williams, C. G., Khan, M., Manson, P., & Elisseeff, J. H. (2007). In vivo chondrogenesis of mesenchymal stem cells in a photopolymerized hydrogel. Plastic and Reconstructive Surgery, 119, 112–120.PubMedGoogle Scholar
  136. Shayesteh, Y. S., Khojasteh, A., Soleimani, M., Alikhasi, M., Khoshzaban, A., & Ahmadbeigi, N. (2008). Sinus augmentation using human mesenchymal stem cells loaded into a beta-tricalcium phosphate/hydroxyapatite scaffold. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontics, 106, 203–209.PubMedGoogle Scholar
  137. Shimizu, K., Ito, A., & Honda, H. (2006). Enhanced cell-seeding into 3D porous scaffolds by use of magnetite nanoparticles. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 77, 265–272.Google Scholar
  138. Solchaga, L. A., Tognana, E., Penick, K., Baskaran, H., Goldberg, V. M., Caplan, A. I., & Welter, J. F. (2006). A rapid seeding technique for the assembly of large cell/scaffold composite constructs. Tissue Engineering, 12, 1851–1863.PubMedPubMedCentralGoogle Scholar
  139. Son, S.-R., Sarkar, S. K., Linh, N.-T. B., Padalhin, A. R., Kim, B. R., Jung, H. I., & Lee, B.-T. (2015). Platelet-rich plasma encapsulation in hyaluronic acid/gelatin-BCP hydrogel for growth factor delivery in BCP sponge scaffold for bone regeneration. Journal of Biomaterials Applications, 29, 988–1002.PubMedGoogle Scholar
  140. Sultana, N. (2013). Biodegradable polymer- based scaffolds for bone tissue engineering. NewYork: Springer, 1–60.Google Scholar
  141. Takahashi, Y., & Tabata, Y. (2004). Effect of the fiber diameter and porosity of non-woven PET fabrics on the osteogenic differentiation of mesenchymal stem cells. Journal of Biomaterials Science, Polymer Edition, 15, 41–57.Google Scholar
  142. Tan, L., Ren, Y., & Kuijer, R. (2012). A 1-min method for homogenous cell seeding in porous scaffolds. Journal of Biomaterials Applications, 26, 877–889.PubMedGoogle Scholar
  143. Thavornyutikarn, B., Chantarapanich, N., Sitthiseripratip, K., Thouas, G. A., & Chen, Q. (2014). Bone tissue engineering scaffolding: Computer-aided scaffolding techniques. Progress in Biomaterials, 3, 61–102.PubMedPubMedCentralGoogle Scholar
  144. Vacanti, C. A., Bonassar, L. J., Vacanti, M. P., & Shufflebarger, J. (2001). Replacement of an avulsed phalanx with tissue-engineered bone. The New England Journal of Medicine, 344, 1511–1514.PubMedGoogle Scholar
  145. Vaquette, C., Slimani, S., Kahn, C. J., Tran, N., Rahouadj, R., & Wang, X. (2010). A poly(lactic-co-glycolic acid) knitted scaffold for tendon tissue engineering: An in vitro and in vivo study. Journal of Biomaterials Science. Polymer Edition, 21, 1737–1760.PubMedGoogle Scholar
  146. Vo, T. T. N., Kasper, F. K., & Mikos, A. G. A. (2012). Strategies for controlled delivery of growth factors and cells for bone regeneration. Advanced Drug Delivery Reviews, 64, 1292–1309.PubMedPubMedCentralGoogle Scholar
  147. Wakitani, S., Kimura, T., Hirooka, A., Ochi, T., Yoneda, M., Yasui, N., Owaki, H., & Ono, K. (1989). Repair of rabbit articular surfaces with allograft chondrocytes embedded in collagen gel. Journal of Bone and Joint Surgery. British Volume (London), 71, 74–80.Google Scholar
  148. Wang, Z., Zhang, Z., Zhang, J., She, Z., & Ding, J. (2009). Distribution of bone marrow stem cells in large porous polyester scaffolds. Chinese Science Bulletin, 54, 2968–2975.Google Scholar
  149. Wang, Y., Zhu, G., Li, N., Song, J., Wang, L., & Shi, X. (2015). Small molecules and their controlled release that induce the osteogenic/chondrogenic commitment of stem cells. Biotechnology Advances, 33, 1626–1640.PubMedGoogle Scholar
  150. Weinand, C., Jian, W. X., Peretti, G. M., Bonassar, L. J., & Gill, T. J. (2009). Conditions affecting cell seeding onto three-dimensional scaffolds for cellular-based biodegradable implants. Journal of Biomedical Materials Research – Part B Applied Biomaterials, 91, 80–87.Google Scholar
  151. Weng, Y., Wang, M., Liu, W., Hu, X., Chai, G., Yan, Q., Zhu, L., Cui, L., & Cao, Y. (2006). Repair of experimental alveolar bone defects by tissue-engineered bone. Tissue Engineering, 12, 1503–1513.PubMedGoogle Scholar
  152. Witkowska-Zimny, M., & Wrobel, E. (2011). Perinatal sources of mesenchymal stem cells: Wharton’s jelly, amnion and chorion. Cellular & Molecular Biology Letters, 16, 493–514.Google Scholar
  153. Woodard, J. R., Hilldore, A. J., Lan, S. K., Park, C. J., Morgan, A. W., Eurell, J. A., Clark, S. G., Wheeler, M. B., Jamison, R. D., & Wagoner Johnson, A. J. (2007). The mechanical properties and osteoconductivity of hydroxyapatite bone scaffolds with multi-scale porosity. Biomaterials, 28, 45–54.PubMedGoogle Scholar
  154. Wu, M., Chen, G., & Li, Y. P. (2016). TGF-beta and BMP signaling in osteoblast, skeletal development, and bone formation, homeostasis and disease. Bone Research, 4, 16009.PubMedPubMedCentralGoogle Scholar
  155. Xue, D., Zheng, Q., Zong, C., Li, Q., Li, H., Qian, S., Zhang, B., Yu, L., & Pan, Z. (2010). Osteochondral repair using porous poly(lactide-co-glycolide)/nano-hydroxyapatite hybrid scaffolds with undifferentiated mesenchymal stem cells in a rat model. Journal of Biomedical Materials Research. Part A, 94, 259–270.PubMedGoogle Scholar
  156. Yan, H., & Yu, C. (2007). Repair of full-thickness cartilage defects with cells of different origin in a rabbit model. Arthroscopy, 23, 178–187.PubMedGoogle Scholar
  157. Yang, T. H., Miyoshi, H., & Ohshima, N. (2001). Novel cell immobilization method utilizing centrifugal force to achieve high-density hepatocyte culture in porous scaffold. Journal of Biomedical Materials Research, 55, 379–386.PubMedGoogle Scholar
  158. Yao, J., Woon, C. Y., Behn, A., Korotkova, T., Park, D. Y., Gajendran, V., & Smith, R. L. (2012). The effect of suture coated with mesenchymal stem cells and bioactive substrate on tendon repair strength in a rat model. The Journal of Hand Surgery, 37, 1639–1645.PubMedGoogle Scholar
  159. Yoshii, T., Sotome, S., Torigoe, I., Tsuchiya, A., Maehara, H., Ichinose, S., & Shinomiya, K. (2009). Fresh bone marrow introduction into porous scaffolds using a simple low-pressure loading method for effective osteogenesis in a rabbit model. Journal of Orthopaedic Research, 27, 1–7.PubMedGoogle Scholar
  160. Young, R. G., Butler, D. L., Weber, W., Caplan, A. I., Gordon, S. L., & Fink, D. J. (1998). Use of mesenchymal stem cells in a collagen matrix for Achilles tendon repair. Journal of Orthopaedic Research, 16, 406–413.PubMedGoogle Scholar
  161. Youngstrom, D. W., Barrett, J. G., Jose, R. R., & Kaplan, D. L. (2013). Functional characterization of detergent-decellularized equine tendon extracellular matrix for tissue engineering applications. PLoS One, 8, e64151.PubMedPubMedCentralGoogle Scholar
  162. Yuan, J., Cui, L., Zhang, W. J., Liu, W., & Cao, Y. (2007). Repair of canine mandibular bone defects with bone marrow stromal cells and porous beta-tricalcium phosphate. Biomaterials, 28, 1005–1013.PubMedGoogle Scholar
  163. Zandi, M., Mirzadeh, H., Mayer, C., Urch, H., Eslaminejad, M. B., Bagheri, F., & Mivehchi, H. (2010). Biocompatibility evaluation of nano-rod hydroxyapatite/gelatin coated with nano-HAp as a novel scaffold using mesenchymal stem cells. Journal of Biomedical Materials Research. Part A, 92, 1244–1255.PubMedGoogle Scholar
  164. Zhang, Z. Y., Teoh, S. H., Teo, E. Y., Khoon Chong, M. S., Shin, C. W., Tien, F. T., Choolani, M. A., & Chan, J. K. (2010). A comparison of bioreactors for culture of fetal mesenchymal stem cells for bone tissue engineering. Biomaterials, 31, 8684–8695.PubMedGoogle Scholar
  165. Zhang, W., Yang, Y., Zhang, K., Li, Y., & Fang, G. (2015). Weft-knitted silk-poly(lactide-co-glycolide) mesh scaffold combined with collagen matrix and seeded with mesenchymal stem cells for rabbit Achilles tendon repair. Connective Tissue Research, 56, 25–34.PubMedGoogle Scholar
  166. Zhao, F., & Ma, T. (2005). Perfusion bioreactor system for human mesenchymal stem cell tissue engineering: Dynamic cell seeding and construct development. Biotechnology and Bioengineering, 91, 482–493.PubMedGoogle Scholar
  167. Zhao, Y.-N., Fan, J.-J., Li, Z.-Q., Liu, Y.-W., Wu, Y.-P., & Liu, J. (2017). Effects of pore size on the Osteoconductivity and mechanical properties of calcium phosphate cement in a rabbit model. Artificial Organs, 41, 199–204.PubMedGoogle Scholar
  168. Zhou, G., Liu, W., Cui, L., Wang, X., Liu, T., & Cao, Y. (2006). Repair of porcine articular osteochondral defects in non-weightbearing areas with autologous bone marrow stromal cells. Tissue Engineering, 12, 3209–3221.PubMedGoogle Scholar
  169. Zohora, F. T., & Azim, A. Y. M. A. (2014). Biomaterials as porous scaffolds for tissue engineering applications: A review. European Scientific Journal, 10, 1857–1881.Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Samaneh Hosseini
    • 1
  • Mohammad Amin Shamekhi
    • 2
  • Shahrbanoo Jahangir
    • 1
  • Fatemeh Bagheri
    • 3
  • Mohamadreza Baghaban Eslaminejad
    • 1
    Email author
  1. 1.Department of Stem Cells and Developmental Biology, Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECRTehranIran
  2. 2.Department of Polymer EngineeringIslamic Azad UniversitySarvestanIran
  3. 3.Department of Biotechnology, Faculty of Chemical EngineeringTarbiat Modares UniversityTehranIran

Personalised recommendations