Advertisement

The Role of Reactive Oxygen Species in Adipogenic Differentiation

  • Danielle de Villiers
  • Marnie Potgieter
  • Melvin A. Ambele
  • Ladislaus Adam
  • Chrisna Durandt
  • Michael S. Pepper
Conference paper
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1083)

Abstract

Interest in reactive oxygen species and adipocyte differentiation/adipose tissue function is steadily increasing. This is due in part to a search for alternative avenues for combating obesity, which results from the excess accumulation of adipose tissue. Obesity is a major risk factor for complex disorders such as cancer, type 2 diabetes, and cardiovascular diseases. The ability of mesenchymal stromal/stem cells (MSCs) to differentiate into adipocytes is often used as a model for studying adipogenesis in vitro. A key focus is the effect of both intra- and extracellular reactive oxygen species (ROS) on adipogenesis. The consensus from the majority of studies is that ROS, irrespective of the source, promote adipogenesis.

The effect of ROS on adipogenesis is suppressed by antioxidants or ROS scavengers. Reactive oxygen species are generated during the process of adipocyte differentiation as well as by other cell metabolic processes. Despite many studies in this field, it is still not possible to state with certainty whether ROS measured during adipocyte differentiation are a cause or consequence of this process. In addition, it is still unclear what the exact sources are of the ROS that initiate and/or drive adipogenic differentiation in MSCs in vivo. This review provides an overview of our understanding of the role of ROS in adipocyte differentiation as well as how certain ROS scavengers and antioxidants might affect this process.

Keywords

Adipogenic differentiation Adipose-derived stromal cells Mesenchymal stem/stromal cells Reactive oxygen species ROS scavengers 

Abbreviations

ASCs

Adipose-derived stem/stromal cells

ATP

Adenosine triphosphate

BAT

Brown adipose tissue

BMAL1

Brain and muscle ARNT-like protein 1

BM-MSCs

Bone marrow-derived MSCs

BMP

Bone morphogenic protein

C/EBP

CCAAT enhancer-binding protein

C/EBPα

CCAAT enhancer-binding protein alpha

C/EBPβ

CCAAT enhancer-binding protein beta

C/EBPδ

CCAAT enhancer-binding protein delta

CAT

Catalase

CCL2

C-C motif chemokine 2 precursor

CoQ

Oxidized ubiquinone

CoQH2

Reduced ubiquinol

CREB

Cyclic AMP response element-binding protein

Cyt

Cytochrome

DPI

Diphenyleneiodonium

e

electron

eNOS

Endothelial nitric oxide

EPAS1

Endothelial PAS domain protein 1

ETC

Electron transport chain

FABP4

Fatty acid-binding protein 4

FAT

Fatty acid translocase (CD36)

FOXA2

Forkhead box A2

FOXO1

Forkhead box O1

Ga

One billion years

GATA2

GATA binding protein 2

GATA3

GATA binding protein 3

GPx

Glutathione peroxidase

GSTA4

Glutathione S-transferase A4

H+

Proton

H2O

Water

H2O2

Hydrogen peroxide

IDII

Standard adipogenic induction cocktail

IL10

Interleukin 10

IL6

Interleukin 6

IL8

Interleukin 8

iNOS

Inducible nitric oxide synthase

KLF

Kruppel-like factor

LPL

Lipoprotein lipase

M1

Classically activated macrophage phenotype

MEFs

Immortalized murine embryonic fibroblasts

mESCs

Murine embryonic stem cells

MKP-1

MAP kinase phosphatase-1

mMSCs

Murine mesenchymal stem/stromal cells

MSCs

Mesenchymal stem/stromal cells

NAC

N-acetyl-L-cysteine

NEFA

Nonesterified fatty acid

NO

Nitric oxide

NOS

Nitric oxide synthase

NOX

NADPH oxidase

O2

Oxygen

O2

Superoxide

PPARγ

Proliferator-activated receptor-gamma

Pref-1

Preadipocyte factor-1

Prx3

Peroxiredoxin 3

ROS

Reactive oxygen species

SIRT1

Histone deacetylase sirtuin 1

SOD

Superoxide dismutase

SOD2

Superoxide dismutase 2

SREBP1c

Sterol regulatory element-binding transcription factor 1

STAT5a

Signal transducer and activator of transcription-5a

TAZ

Transcriptional coactivator with PDZ-binding motif

TG

Triacylglycerol

TNFα

Tumor necrosis factor alpha

WAT

White adipose tissue

ZFP423

Zinc finger protein 423

Notes

Acknowledgements

This research was funded by the South African Medical Research Council in terms of the SAMRC's Flagship Award Project SAMRC-RFA-UFSP-01-2013/STEM CELLS, the SAMRC Extramural Unit for Stem Cell Research and Therapy and the Institute for Cellular and Molecular Medicine of the University of Pretoria.

Conflicts of Interest Statement

The authors have no conflicts of interest to declare.

Author Contributions

Danielle de Villiers drafted the first version of the manuscript with input from Marnie Potgieter and Michael Pepper. Melvin Ambele, Chrisna Durandt, and Ladislaus Adam provided intellectual input and contributed to the writing of the manuscript. All authors vetted and approved the final version of the manuscript. Michael Pepper conceived the project.

References

  1. Alfadda, A. A., & Sallam, R. M. (2012a). Reactive oxygen species in health and disease. Journal of Biomedicine and Biotechnology, 2012, 14.  https://doi.org/10.1155/2012/936486.CrossRefGoogle Scholar
  2. Alfadda, A. A., & Sallam, R. M. (2012b). Reactive oxygen species in health and disease. Journal of Biomedicine & Biotechnology, 2012, 936486.  https://doi.org/10.1155/2012/936486.CrossRefGoogle Scholar
  3. Ali, A. T., Hochfeld, W. E., Myburgh, R., & Pepper, M. S. (2013). Adipocyte and adipogenesis. European Journal of Cell Biology, 92(6–7), 229–236.  https://doi.org/10.1016/j.ejcb.2013.06.001.CrossRefPubMedGoogle Scholar
  4. Ambele, M. A., & Pepper, M. S. (2017). Identification of transcription factors potentially involved in human adipogenesis in vitro. Molecular Genetics & Genomic Medicine:n/a-n/a., 5, 210.  https://doi.org/10.1002/mgg3.269.CrossRefGoogle Scholar
  5. Ambele, M. A., Dessels, C., Durandt, C., & Pepper, M. S. (2016). Genome-wide analysis of gene expression during adipogenesis in human adipose-derived stromal cells reveals novel patterns of gene expression during adipocyte differentiation. Stem Cell Research, 16(3), 725–734.  https://doi.org/10.1016/j.scr.2016.04.011.CrossRefPubMedGoogle Scholar
  6. Atashi, F., Modarressi, A., & Pepper, M. S. (2015). The role of reactive oxygen species in mesenchymal stem cell Adipogenic and osteogenic differentiation: A review. Stem Cells and Development, 24(10), 1150–1163.  https://doi.org/10.1089/scd.2014.0484.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Babior, B. M., Kipnes, R. S., & Curnutte, J. T. (1973). Biological defense mechanisms. The production by leukocytes of superoxide, a potential bactericidal agent. The Journal of Clinical Investigation, 52(3), 741–744.  https://doi.org/10.1172/jci107236.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Bassi, G., Pacelli, L., Carusone, R., Zanoncello, J., & Krampera, M. (2012). Adipose-derived stromal cells (ASCs). Transfusion and Apheresis Science : Official Journal of the World Apheresis Association : Official Journal of the European Society for Haemapheresis, 47(2), 193–198.  https://doi.org/10.1016/j.transci.2012.06.004.CrossRefGoogle Scholar
  9. Bedard, K., & Krause, K. H. (2007). The NOX family of ROS-generating NADPH oxidases: Physiology and pathophysiology. Physiological Reviews, 87(1), 245–313.  https://doi.org/10.1152/physrev.00044.2005.CrossRefPubMedGoogle Scholar
  10. Bekker, A., Holland, H. D., Wang, P. L., Rumble, D., 3rd, Stein, H. J., Hannah, J. L., Coetzee, L. L., & Beukes, N. J. (2004). Dating the rise of atmospheric oxygen. Nature, 427(6970), 117–120.  https://doi.org/10.1038/nature02260.CrossRefPubMedGoogle Scholar
  11. Bremer, A. A., & Jialal, I. (2013). Adipose tissue dysfunction in nascent metabolic syndrome. Journal of Obesity, 2013, 393192.  https://doi.org/10.1155/2013/393192.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Carriere, A., Fernandez, Y., Rigoulet, M., Penicaud, L., & Casteilla, L. (2003). Inhibition of preadipocyte proliferation by mitochondrial reactive oxygen species. FEBS Letters, 550(1–3), 163–167.CrossRefPubMedGoogle Scholar
  13. Castro, J. P., Grune, T., & Speckmann, B. (2016). The two faces of reactive oxygen species (ROS) in adipocyte function and dysfunction. Biological Chemistry, 397(8), 709–724.  https://doi.org/10.1515/hsz-2015-0305.CrossRefPubMedGoogle Scholar
  14. Chen, Y., & Junger, W. G. (2012). Measurement of oxidative burst in neutrophils. Methods in Molecular Biology (Clifton, NJ), 844, 115–124.  https://doi.org/10.1007/978-1-61779-527-5_8.CrossRefGoogle Scholar
  15. Chen, J.-X., & Stinnett, A. (2008). Ang-1 gene therapy inhibits hypoxia-inducible factor-1α (HIF-1α)-Prolyl-4-Hydroxylase-2, stabilizes HIF-1α expression, and normalizes immature vasculature in db/db mice. Diabetes, 57(12), 3335–3343.  https://doi.org/10.2337/db08-0503.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Commoner, B., Townsend, J., & Pake, G. E. (1954). Free radicals in biological materials. Nature, 174(4432), 689–691.CrossRefPubMedGoogle Scholar
  17. Cotillard, A., Poitou, C., Torcivia, A., Bouillot, J. L., Dietrich, A., Kloting, N., Gregoire, C., Lolmede, K., Bluher, M., & Clement, K. (2014). Adipocyte size threshold matters: Link with risk of type 2 diabetes and improved insulin resistance after gastric bypass. The Journal of Clinical Endocrinology and Metabolism, 99(8), E1466–E1470.  https://doi.org/10.1210/jc.2014-1074.CrossRefPubMedGoogle Scholar
  18. Curtis, J. M., Grimsrud, P. A., Wright, W. S., Xu, X., Foncea, R. E., Graham, D. W., Brestoff, J. R., Wiczer, B. M., Ilkayeva, O., Cianflone, K., Muoio, D. E., Arriaga, E. A., & Bernlohr, D. A. (2010). Downregulation of adipose glutathione S-transferase A4 leads to increased protein carbonylation, oxidative stress, and mitochondrial dysfunction. Diabetes, 59(5), 1132–1142.  https://doi.org/10.2337/db09-1105.CrossRefPubMedPubMedCentralGoogle Scholar
  19. D’Autreaux, B., & Toledano, M. B. (2007). ROS as signalling molecules: Mechanisms that generate specificity in ROS homeostasis. Nature Reviews Molecular Cell Biology, 8(10), 813–824.  https://doi.org/10.1038/nrm2256.CrossRefPubMedGoogle Scholar
  20. Den Hartigh, L. J., Omer, M., Goodspeed, L., Wang, S., Wietecha, T., O’Brien, K. D., & Han, C. Y. (2016). Adipocyte-specific deficiency of NADPH oxidase 4 delays the onset of insulin resistance and attenuates adipose tissue inflammation in obesity. Arteriosclerosis, Thrombosis, and Vascular Biology, 37(3), 466–475.CrossRefGoogle Scholar
  21. Drehmer, D. L., de Aguiar, A. M., Brandt, A. P., Petiz, L., Cadena, S. M., Rebelatto, C. K., Brofman, P. R., Filipak Neto, F., Dallagiovanna, B., & Abud, A. P. (2016). Metabolic switches during the first steps of adipogenic stem cells differentiation. Stem Cell Research, 17(2), 413–421.  https://doi.org/10.1016/j.scr.2016.09.001.CrossRefPubMedGoogle Scholar
  22. Droge, W. (2002). Free radicals in the physiological control of cell function. Physiological Reviews, 82(1), 47–95.  https://doi.org/10.1152/physrev.00018.2001.CrossRefPubMedGoogle Scholar
  23. Drong, A. W., Lindgren, C. M., & McCarthy, M. I. (2012). The genetic and epigenetic basis of type 2 diabetes and obesity. Clinical Pharmacology and Therapeutics, 92(6), 707–715.  https://doi.org/10.1038/clpt.2012.149.CrossRefPubMedGoogle Scholar
  24. Drose, S., & Brandt, U. (2008). The mechanism of mitochondrial superoxide production by the cytochrome bc1 complex. The Journal of Biological Chemistry, 283(31), 21649–21654.  https://doi.org/10.1074/jbc.M803236200.CrossRefPubMedGoogle Scholar
  25. Durandt, C., van Vollenstee, F. A., Dessels, C., Kallmeyer, K., de Villiers, D., Murdoch, C., Potgieter, M., & Pepper, M. S. (2016). Novel flow cytometric approach for the detection of adipocyte sub-populations during adipogenesis. Journal of Lipid Research, 57(4), 729–742.  https://doi.org/10.1194/jlr.D065664.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Eseberri, I., Miranda, J., Lasa, A., Churruca, I., & Portillo, M. P. (2015). Doses of quercetin in the range of serum concentrations exert delipidating effects in 3T3-L1 preadipocytes by acting on different stages of adipogenesis, but not in mature adipocytes. Oxidative Medicine and Cellular Longevity, 2015, 480943.  https://doi.org/10.1155/2015/480943.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Finkel, T. (2011). Signal transduction by reactive oxygen species. The Journal of Cell Biology, 194(1), 7–15.  https://doi.org/10.1083/jcb.201102095.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Furukawa, S., Fujita, T., Shimabukuro, M., Iwaki, M., Yamada, Y., Nakajima, Y., Nakayama, O., Makishima, M., Matsuda, M., & Shimomura, I. (2004). Increased oxidative stress in obesity and its impact on metabolic syndrome. The Journal of Clinical Investigation, 114(12), 1752–1761.  https://doi.org/10.1172/jci21625.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Furuyashiki, T., Nagayasu, H., Aoki, Y., Bessho, H., Hashimoto, T., Kanazawa, K., & Ashida, H. (2004). Tea catechin suppresses adipocyte differentiation accompanied by down-regulation of PPARgamma2 and C/EBPalpha in 3T3-L1 cells. Bioscience, Biotechnology, and Biochemistry, 68(11), 2353–2359.  https://doi.org/10.1271/bbb.68.2353.CrossRefPubMedGoogle Scholar
  30. Galinier, A., Carriere, A., Fernandez, Y., Carpene, C., Andre, M., Caspar-Bauguil, S., Thouvenot, J. P., Periquet, B., Penicaud, L., & Casteilla, L. (2006). Adipose tissue proadipogenic redox changes in obesity. The Journal of Biological Chemistry, 281(18), 12682–12687.  https://doi.org/10.1074/jbc.M506949200.CrossRefPubMedGoogle Scholar
  31. Gregoire, F. M., Smas, C. M., & Sul, H. S. (1998). Understanding adipocyte differentiation. Physiological Reviews, 78(3), 783–809.CrossRefPubMedGoogle Scholar
  32. Guilherme, A., Virbasius, J. V., Puri, V., & Czech, M. P. (2008). Adipocyte dysfunctions linking obesity to insulin resistance and type 2 diabetes. Nature Reviews Molecular Cell Biology, 9(5), 367–377.  https://doi.org/10.1038/nrm2391.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Han, C. Y. (2016). Roles of reactive oxygen species on insulin resistance in adipose tissue. Diabetes & Metabolism Journal, 40(4), 272–279.  https://doi.org/10.4093/dmj.2016.40.4.272.CrossRefGoogle Scholar
  34. Harman, D. (1956). Aging: A theory based on free radical and radiation chemistry. Journal of Gerontology, 11(3), 298–300.CrossRefPubMedGoogle Scholar
  35. Higuchi, M., Dusting, G. J., Peshavariya, H., Jiang, F., Hsiao, S. T., Chan, E. C., & Liu, G. S. (2013). Differentiation of human adipose-derived stem cells into fat involves reactive oxygen species and Forkhead box O1 mediated upregulation of antioxidant enzymes. Stem Cells and Development, 22(6), 878–888.  https://doi.org/10.1089/scd.2012.0306.CrossRefPubMedGoogle Scholar
  36. Hinkle, P. C., Butow, R. A., Racker, E., & Chance, B. (1967). Partial resolution of the enzymes catalyzing oxidative phosphorylation. XV. Reverse electron transfer in the flavin-cytochrome beta region of the respiratory chain of beef heart submitochondrial particles. The Journal of Biological Chemistry, 242(22), 5169–5173.PubMedGoogle Scholar
  37. Holzerova, E., & Prokisch, H. (2015). Mitochondria: Much ado about nothing? How dangerous is reactive oxygen species production? The International Journal of Biochemistry & Cell Biology, 63, 16–20.  https://doi.org/10.1016/j.biocel.2015.01.021.CrossRefGoogle Scholar
  38. Hou, Y., Xue, P., Bai, Y., Liu, D., Woods, C. G., Yarborough, K., Fu, J., Zhang, Q., Sun, G., Collins, S., Chan, J. Y., Yamamoto, M., Andersen, M. E., & Pi, J. (2012). Nuclear factor erythroid-derived factor 2-related factor 2 regulates transcription of CCAAT/enhancer-binding protein beta during adipogenesis. Free Radical Biology & Medicine, 52(2), 462–472.  https://doi.org/10.1016/j.freeradbiomed.2011.10.453.CrossRefGoogle Scholar
  39. Imhoff, B. R., & Hansen, J. M. (2011). Differential redox potential profiles during adipogenesis and osteogenesis. Cellular & Molecular Biology Letters, 16(1), 149–161.  https://doi.org/10.2478/s11658-010-0042-0.CrossRefGoogle Scholar
  40. Iyer, G. Y. N., Islam, M. F., & Quastel, J. H. (1961). Biochemical aspects of phagocytosis. Nature, 192(4802), 535–541.CrossRefGoogle Scholar
  41. Jiang, F., Zhang, Y., & Dusting, G. J. (2011). NADPH oxidase-mediated redox signaling: Roles in cellular stress response, stress tolerance, and tissue repair. Pharmacological Reviews, 63(1), 218–242.  https://doi.org/10.1124/pr.110.002980.CrossRefPubMedGoogle Scholar
  42. Jiang, Y., Jo, A. Y., & Graff, J. M. (2012). SnapShot: Adipocyte life cycle. Cell, 150(1), 234–234.e232.  https://doi.org/10.1016/j.cell.2012.06.022.CrossRefPubMedGoogle Scholar
  43. Kanda, Y., Hinata, T., Kang, S. W., & Watanabe, Y. (2011). Reactive oxygen species mediate adipocyte differentiation in mesenchymal stem cells. Life Sciences, 89(7–8), 250–258.  https://doi.org/10.1016/j.lfs.2011.06.007.CrossRefPubMedGoogle Scholar
  44. Kawagishi, H., & Finkel, T. (2014). Unraveling the truth about antioxidants: ROS and disease: Finding the right balance. Nature Medicine, 20(7), 711–713.  https://doi.org/10.1038/nm.3625.CrossRefPubMedGoogle Scholar
  45. Krieger-Brauer, H. I., Medda, P. K., & Kather, H. (1997). Insulin-induced activation of NADPH-dependent H2O2 generation in human adipocyte plasma membranes is mediated by Galphai2. The Journal of Biological Chemistry, 272(15), 10135–10143.CrossRefPubMedGoogle Scholar
  46. Lalucque, H., & Silar, P. (2003). NADPH oxidase: An enzyme for multicellularity? Trends in Microbiology, 11(1), 9–12.CrossRefPubMedGoogle Scholar
  47. Le Lay, S., Simard, G., Martinez, M. C., & Andriantsitohaina, R. (2014). Oxidative stress and metabolic pathologies: From an adipocentric point of view. Oxidative Medicine and Cellular Longevity, 2014, 18.  https://doi.org/10.1155/2014/908539.CrossRefGoogle Scholar
  48. Lee, H., Lee, Y. J., Choi, H., Ko, E. H., & J-w, K. (2009). Reactive oxygen species facilitate adipocyte differentiation by accelerating mitotic clonal expansion. The Journal of Biological Chemistry, 284(16), 10601–10609.  https://doi.org/10.1074/jbc.M808742200.CrossRefPubMedPubMedCentralGoogle Scholar
  49. Lefterova, M. I., & Lazar, M. A. (2009). New developments in adipogenesis. Trends in Endocrinology and Metabolism: TEM, 20(3), 107–114.  https://doi.org/10.1016/j.tem.2008.11.005.CrossRefPubMedGoogle Scholar
  50. Li, N., Ragheb, K., Lawler, G., Sturgis, J., Rajwa, B., Melendez, J. A., & Robinson, J. P. (2003). Mitochondrial complex I inhibitor rotenone induces apoptosis through enhancing mitochondrial reactive oxygen species production. The Journal of Biological Chemistry, 278(10), 8516–8525.  https://doi.org/10.1074/jbc.M210432200.CrossRefPubMedGoogle Scholar
  51. Li, Y., Mouche, S., Sajic, T., Veyrat-Durebex, C., Supale, R., Pierroz, D., Ferrari, S., Negro, F., Hasler, U., Feraille, E., Moll, S., Meda, P., Deffert, C., Montet, X., Krause, K. H., & Szanto, I. (2012). Deficiency in the NADPH oxidase 4 predisposes towards diet-induced obesity. International Journal of Obesity, 36(12), 1503–1513.  https://doi.org/10.1038/ijo.2011.279.CrossRefPubMedGoogle Scholar
  52. Lindahl, P. E., & Oberg, K. E. (1960). Mechanism of the physiological action of rotenone. Nature, 187, 784.CrossRefPubMedGoogle Scholar
  53. Liu, G.-S., Chan, E. C., Higuchi, M., Dusting, G. J., & Jiang, F. (2012a). Redox mechanisms in regulation of adipocyte differentiation: Beyond a general stress response. Cell, 1(4), 976–993.  https://doi.org/10.3390/cells1040976.CrossRefGoogle Scholar
  54. Liu, H., Yang, X., Zhang, Y., Dighe, A., Li, X., & Cui, Q. (2012b). Fullerol antagonizes dexamethasone-induced oxidative stress and adipogenesis while enhancing osteogenesis in a cloned bone marrow mesenchymal stem cell. Journal of Orthopaedic Research: Official Publication of the Orthopaedic Research Society, 30(7), 1051–1057.  https://doi.org/10.1002/jor.22054.CrossRefGoogle Scholar
  55. Loschen, G., Azzi, A., Richter, C., & Flohe, L. (1974). Superoxide radicals as precursors of mitochondrial hydrogen peroxide. FEBS Letters, 42(1), 68–72.CrossRefPubMedGoogle Scholar
  56. MacFie, T. S., Poulsom, R., Parker, A., Warnes, G., Boitsova, T., Nijhuis, A., Suraweera, N., Poehlmann, A., Szary, J., Feakins, R., Jeffery, R., Harper, R. W., Jubb, A. M., Lindsay, J. O., & Silver, A. (2014). DUOX2 and DUOXA2 form the predominant enzyme system capable of producing the reactive oxygen species H2O2 in active ulcerative colitis and are modulated by 5-aminosalicylic acid. Inflammatory Bowel Diseases, 20(3), 514–524.  https://doi.org/10.1097/01.MIB.0000442012.45038.0e.CrossRefPubMedGoogle Scholar
  57. Mahadev, K., Motoshima, H., Wu, X., Ruddy, J. M., Arnold, R. S., Cheng, G., Lambeth, J. D., & Goldstein, B. J. (2004). The NAD(P)H oxidase homolog Nox4 modulates insulin-stimulated generation of H2O2 and plays an integral role in insulin signal transduction. Molecular and Cellular Biology, 24(5), 1844–1854.CrossRefPubMedPubMedCentralGoogle Scholar
  58. McCord, J. M., & Fridovich, I. (1969). Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). The Journal of Biological Chemistry, 244(22), 6049–6055.PubMedGoogle Scholar
  59. Meier, B., Cross, A. R., Hancock, J. T., Kaup, F. J., & Jones, O. T. (1991). Identification of a superoxide-generating NADPH oxidase system in human fibroblasts. The Biochemical Journal, 275(Pt 1), 241–245.CrossRefPubMedPubMedCentralGoogle Scholar
  60. Mitchell, J. B., Xavier, S., DeLuca, A. M., Sowers, A. L., Cook, J. A., Krishna, M. C., Hahn, S. M., & Russo, A. (2003). A low molecular weight antioxidant decreases weight and lowers tumor incidence. Free Radical Biology & Medicine, 34(1), 93–102.CrossRefGoogle Scholar
  61. Moseti, D., Regassa, A., & Kim, W. K. (2016). Molecular regulation of Adipogenesis and potential anti-Adipogenic bioactive molecules. International Journal of Molecular Sciences, 17(1), 124.  https://doi.org/10.3390/ijms17010124.CrossRefPubMedCentralGoogle Scholar
  62. Mouche, S., Mkaddem, S. B., Wang, W., Katic, M., Tseng, Y. H., Carnesecchi, S., Steger, K., Foti, M., Meier, C. A., Muzzin, P., Kahn, C. R., Ogier-Denis, E., & Szanto, I. (2007). Reduced expression of the NADPH oxidase NOX4 is a hallmark of adipocyte differentiation. Biochimica et Biophysica Acta, 1773(7), 1015–1027.  https://doi.org/10.1016/j.bbamcr.2007.03.003.CrossRefPubMedGoogle Scholar
  63. Munekata, K., & Sakamoto, K. (2009). Forkhead transcription factor Foxo1 is essential for adipocyte differentiation. In Vitro Cellular & Developmental Biology Animal, 45(10), 642–651.  https://doi.org/10.1007/s11626-009-9230-5.CrossRefGoogle Scholar
  64. Murphy, S., Martin, S., & Parton, R. G. (2009). Lipid droplet-organelle interactions; sharing the fats. Biochimica et Biophysica Acta, 1791(6), 441–447.  https://doi.org/10.1016/j.bbalip.2008.07.004.CrossRefPubMedGoogle Scholar
  65. Nakae, J., Kitamura, T., Kitamura, Y., Biggs, W. H., 3rd, Arden, K. C., & Accili, D. (2003). The forkhead transcription factor Foxo1 regulates adipocyte differentiation. Developmental Cell, 4(1), 119–129.CrossRefPubMedGoogle Scholar
  66. Nam, W. S., Park, K. M., & Park, J. W. (2012). RNA interference targeting cytosolic NADP(+)-dependent isocitrate dehydrogenase exerts anti-obesity effect in vitro and in vivo. Biochimica et Biophysica Acta, 1822(8), 1181–1188.  https://doi.org/10.1016/j.bbadis.2012.04.003.CrossRefPubMedGoogle Scholar
  67. Nguyen, A., Guo, J., Banyard, D. A., Fadavi, D., Toranto, J. D., Wirth, G. A., Paydar, K. Z., Evans, G. R., & Widgerow, A. D. (2016). Stromal vascular fraction: A regenerative reality? Part 1: Current concepts and review of the literature. Journal of Plastic, Reconstructive & Aesthetic Surgery: JPRAS, 69(2), 170–179.  https://doi.org/10.1016/j.bjps.2015.10.015.CrossRefGoogle Scholar
  68. Otto, T. C., & Lane, M. D. (2005). Adipose development: From stem cell to adipocyte. Critical Reviews in Biochemistry and Molecular Biology, 40(4), 229–242.  https://doi.org/10.1080/10409230591008189.CrossRefPubMedGoogle Scholar
  69. Panday, A., Sahoo, M. K., Osorio, D., & Batra, S. (2015). NADPH oxidases: An overview from structure to innate immunity-associated pathologies. Cellular & Molecular Immunology, 12(1), 5–23.  https://doi.org/10.1038/cmi.2014.89.CrossRefGoogle Scholar
  70. Pieralisi, A., Martini, C., Soto, D., Vila, M. C., Calvo, J. C., & Guerra, L. N. (2016). N-acetylcysteine inhibits lipid accumulation in mouse embryonic adipocytes. Redox Biology, 9, 39–44.  https://doi.org/10.1016/j.redox.2016.05.006.CrossRefPubMedPubMedCentralGoogle Scholar
  71. Quinlan, C. L., Orr, A. L., Perevoshchikova, I. V., Treberg, J. R., Ackrell, B. A., & Brand, M. D. (2012). Mitochondrial complex II can generate reactive oxygen species at high rates in both the forward and reverse reactions. The Journal of Biological Chemistry, 287(32), 27255–27264.  https://doi.org/10.1074/jbc.M112.374629.CrossRefPubMedPubMedCentralGoogle Scholar
  72. Riordan, N. H., Ichim, T. E., Min, W. P., Wang, H., Solano, F., Lara, F., Alfaro, M., Rodriguez, J. P., Harman, R. J., Patel, A. N., Murphy, M. P., Lee, R. R., & Minev, B. (2009). Non-expanded adipose stromal vascular fraction cell therapy for multiple sclerosis. Journal of Translational Medicine, 7, 29.  https://doi.org/10.1186/1479-5876-7-29.CrossRefPubMedPubMedCentralGoogle Scholar
  73. Rosen, E. D., & MacDougald, O. A. (2006). Adipocyte differentiation from the inside out. Nature Reviews Molecular Cell Biology, 7(12), 885–896.  https://doi.org/10.1038/nrm2066.CrossRefPubMedGoogle Scholar
  74. Rossi, F., & Zatti, M. (1964). Biochemical aspects of phagocytosis in polymorphonuclear leucocytes. NADH and NADPH oxidation by the granules of resting and phagocytizing cells. Experientia, 20(1), 21–23.CrossRefPubMedGoogle Scholar
  75. Roy, J., Galano, J.-M., Durand, T., Le Guennec, J.-Y., & Lee, J. C.-Y. (2017). Physiological role of reactive oxygen species as promoters of natural defenses. The FASEB Journal, 31, 3729.  https://doi.org/10.1096/fj.201700170R.CrossRefPubMedGoogle Scholar
  76. Ryu, J. M., Lee, H. J., Jung, Y. H., Lee, K. H., Kim, D. I., Kim, J. Y., Ko, S. H., Choi, G. E., Chai, I. I., Song, E. J., JY, O., Lee, S. J., & Han, H. J. (2015). Regulation of stem cell fate by ROS-mediated alteration of metabolism. International Journal of Stem Cells, 8(1), 24–35.  10.15283/ijsc.2015.8.1.24.CrossRefPubMedPubMedCentralGoogle Scholar
  77. Sabharwal, S. S., & Schumacker, P. T. (2014). Mitochondrial ROS in cancer: Initiators, amplifiers or an Achilles’ heel? Nature Reviews Cancer, 14(11), 709–721.  https://doi.org/10.1038/nrc3803.CrossRefPubMedPubMedCentralGoogle Scholar
  78. Saitoh, Y., Xiao, L., Mizuno, H., Kato, S., Aoshima, H., Taira, H., Kokubo, K., & Miwa, N. (2010). Novel polyhydroxylated fullerene suppresses intracellular oxidative stress together with repression of intracellular lipid accumulation during the differentiation of OP9 preadipocytes into adipocytes. Free Radical Research, 44(9), 1072–1081.  https://doi.org/10.3109/10715762.2010.499905.CrossRefPubMedGoogle Scholar
  79. Samuelsson, L., Stromberg, K., Vikman, K., Bjursell, G., & Enerback, S. (1991). The CCAAT/enhancer binding protein and its role in adipocyte differentiation: Evidence for direct involvement in terminal adipocyte development. The EMBO Journal, 10(12), 3787–3793.CrossRefPubMedPubMedCentralGoogle Scholar
  80. Samuni, Y., Cook, J. A., Choudhuri, R., Degraff, W., Sowers, A. L., Krishna, M. C., & Mitchell, J. B. (2010). Inhibition of adipogenesis by Tempol in 3T3-L1 cells. Free Radical Biology & Medicine, 49(4), 667–673.  https://doi.org/10.1016/j.freeradbiomed.2010.05.028.CrossRefGoogle Scholar
  81. Satish, L., Krill-Burger, J. M., Gallo, P. H., Etages, S. D., Liu, F., Philips, B. J., Ravuri, S., Marra, K. G., LaFramboise, W. A., Kathju, S., & Rubin, J. P. (2015). Expression analysis of human adipose-derived stem cells during in vitro differentiation to an adipocyte lineage. BMC Medical Genomics, 8, 41.  https://doi.org/10.1186/s12920-015-0119-8.CrossRefPubMedPubMedCentralGoogle Scholar
  82. Sbarra, A. J., & Karnovsky, M. L. (1959). The biochemical basis of phagocytosis. I. Metabolic changes during the ingestion of particles by polymorphonuclear leukocytes. The Journal of Biological Chemistry, 234(6), 1355–1362.PubMedGoogle Scholar
  83. Schroder, K., Wandzioch, K., Helmcke, I., & Brandes, R. P. (2009). Nox4 acts as a switch between differentiation and proliferation in preadipocytes. Arteriosclerosis, Thrombosis, and Vascular Biology, 29(2), 239–245.  https://doi.org/10.1161/atvbaha.108.174219.CrossRefPubMedGoogle Scholar
  84. Slauch, J. M. (2011). How does the oxidative burst of macrophages kill bacteria? Still an open question. Molecular Microbiology, 80(3), 580–583.  https://doi.org/10.1111/j.1365-2958.2011.07612.x.CrossRefPubMedPubMedCentralGoogle Scholar
  85. Stephens, J. M. (2012). The fat controller: Adipocyte development. PLoS Biology, 10(11), e1001436.  https://doi.org/10.1371/journal.pbio.1001436.CrossRefPubMedPubMedCentralGoogle Scholar
  86. Tahara, E. B., Navarete, F. D., & Kowaltowski, A. J. (2009). Tissue-, substrate-, and site-specific characteristics of mitochondrial reactive oxygen species generation. Free Radical Biology & Medicine, 46(9), 1283–1297.  https://doi.org/10.1016/j.freeradbiomed.2009.02.008.CrossRefGoogle Scholar
  87. Thomas, D., & Apovian, C. (2017). Macrophage functions in lean and obese adipose tissue. Metabolism: Clinical and Experimental, 72, 120–143.  https://doi.org/10.1016/j.metabol.2017.04.005.CrossRefGoogle Scholar
  88. Tormos, K. V., Anso, E., Hamanaka, R. B., Eisenbart, J., Joseph, J., Kalyanaraman, B., & Chandel, N. S. (2011). Mitochondrial complex III ROS regulate adipocyte differentiation. Cell Metabolism, 14(4), 537–544.  https://doi.org/10.1016/j.cmet.2011.08.007.CrossRefPubMedPubMedCentralGoogle Scholar
  89. Turrens, J. F. (2003). Mitochondrial formation of reactive oxygen species. The Journal of Physiology, 552(Pt 2), 335–344.  https://doi.org/10.1113/jphysiol.2003.049478.CrossRefPubMedPubMedCentralGoogle Scholar
  90. Vigilanza, P., Aquilano, K., Baldelli, S., Rotilio, G., & Ciriolo, M. R. (2011). Modulation of intracellular glutathione affects adipogenesis in 3T3-L1 cells. Journal of Cellular Physiology, 226(8), 2016–2024.  https://doi.org/10.1002/jcp.22542.CrossRefPubMedGoogle Scholar
  91. Virtue, S., & Vidal-Puig, A. (2010). Adipose tissue expandability, lipotoxicity and the metabolic syndrome--an allostatic perspective. Biochimica et Biophysica Acta, 1801(3), 338–349.  https://doi.org/10.1016/j.bbalip.2009.12.006.CrossRefPubMedGoogle Scholar
  92. Wang, Y., Hudak, C., & Sul, H. S. (2010a). Role of preadipocyte factor 1 in adipocyte differentiation. Clinical Lipidology, 5(1), 109–115.  https://doi.org/10.2217/clp.09.80.CrossRefPubMedPubMedCentralGoogle Scholar
  93. Wang, Y., Zhao, L., Smas, C., & Sul, H. S. (2010b). Pref-1 interacts with fibronectin to inhibit adipocyte differentiation. Molecular and Cellular Biology, 30(14), 3480–3492.  https://doi.org/10.1128/mcb.00057-10.CrossRefPubMedPubMedCentralGoogle Scholar
  94. Wang, W., Zhang, Y., Lu, W., & Liu, K. (2015). Mitochondrial reactive oxygen species regulate adipocyte differentiation of mesenchymal stem cells in hematopoietic stress induced by arabinosylcytosine. PLoS One, 10(3), e0120629.  https://doi.org/10.1371/journal.pone.0120629.CrossRefPubMedPubMedCentralGoogle Scholar
  95. Weisberg, S. P., McCann, D., Desai, M., Rosenbaum, M., Leibel, R. L., & Ferrante, A. W., Jr. (2003). Obesity is associated with macrophage accumulation in adipose tissue. The Journal of Clinical Investigation, 112(12), 1796–1808.  https://doi.org/10.1172/jci19246.CrossRefPubMedPubMedCentralGoogle Scholar
  96. Yan, H., Aziz, E., Shillabeer, G., Wong, A., Shanghavi, D., Kermouni, A., Abdel-Hafez, M., & Lau, D. C. (2002). Nitric oxide promotes differentiation of rat white preadipocytes in culture. Journal of Lipid Research, 43(12), 2123–2129.CrossRefPubMedGoogle Scholar
  97. Yang, J. Y., Della-Fera, M. A., Rayalam, S., Ambati, S., Hartzell, D. L., Park, H. J., & Baile, C. A. (2008). Enhanced inhibition of adipogenesis and induction of apoptosis in 3T3-L1 adipocytes with combinations of resveratrol and quercetin. Life Sciences, 82(19–20), 1032–1039.  https://doi.org/10.1016/j.lfs.2008.03.003.CrossRefPubMedGoogle Scholar
  98. Yoshihara, A., Hara, T., Kawashima, A., Akama, T., Tanigawa, K., Wu, H., Sue, M., Ishido, Y., Hiroi, N., Ishii, N., Yoshino, G., & Suzuki, K. (2012). Regulation of dual oxidase expression and H2O2 production by thyroglobulin. Thyroid : Official Journal of the American Thyroid Association, 22(10), 1054–1062.  https://doi.org/10.1089/thy.2012.0003.CrossRefGoogle Scholar
  99. Younce, C., & Kolattukudy, P. (2012). MCP-1 induced protein promotes adipogenesis via oxidative stress, endoplasmic reticulum stress and autophagy. Cellular Physiology and Biochemistry : International Journal of Experimental Cellular Physiology, Biochemistry, and Pharmacology, 30(2), 307–320.  https://doi.org/10.1159/000339066.CrossRefGoogle Scholar
  100. Zhang, M., Ikeda, K., JW, X., Yamori, Y., Gao, X. M., & Zhang, B. L. (2009). Genistein suppresses adipogenesis of 3T3-L1 cells via multiple signal pathways. Phytotherapy Research: PTR, 23(5), 713–718.  https://doi.org/10.1002/ptr.2724.CrossRefPubMedGoogle Scholar
  101. Zhao, W.-E., Fan, J., Gao, R., & Ngoc, N. B. (2017). Suppressive effects of carotenoids on proliferation and differentiation of 3T3-L1 Preadipocytes. Journal of Food and Nutrition Research, 5(2), 129–136.  10.12691/jfnr-5-2-9.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Danielle de Villiers
    • 1
  • Marnie Potgieter
    • 1
    • 2
  • Melvin A. Ambele
    • 1
    • 3
  • Ladislaus Adam
    • 1
  • Chrisna Durandt
    • 1
  • Michael S. Pepper
    • 1
  1. 1.Department of Immunology and Institute for Cellular and Molecular Medicine; SAMRC Extramural Unit for Stem Cell Research and Therapy; Faculty of Health SciencesUniversity of PretoriaPretoriaSouth Africa
  2. 2.Center for Microbial Ecology and Genomics, Department of Genetics, Faculty of Natural and Agricultural SciencesUniversity of PretoriaPretoriaSouth Africa
  3. 3.Department of Oral Pathology and Oral Biology, School of Dentistry, Faculty of Health SciencesUniversity of PretoriaPretoriaSouth Africa

Personalised recommendations