Advertisement

Graphene-Based Electrochemical Sensors

  • Edward P. RandviirEmail author
  • Craig E. BanksEmail author
Chapter
Part of the Springer Series on Chemical Sensors and Biosensors book series (SSSENSORS, volume 17)

Abstract

Since graphene was isolated and characterised in 2004 and 2005, its applications have been researched intensively for a broad range of applications, none more so than the field of electrochemical sensors, which aim to exploit the unique charge carrier mobility associated with graphene structures. This chapter explores graphene and its incorporation into electrochemical sensors. The chapter discusses graphene structure and the electrochemical responses arising from such structures on a macro-scale and examines production methods of graphene and how these affect the observed currents in electrochemical reactions as a result of such methods. The chapter subsequently explores sensors designed from a range of different graphenes, including surfactant-exfoliated graphene, surfactant-free graphene, chemical vapour deposition graphene, and reduced graphene oxide. The chapter finds that reduced graphene oxide is the most commonly employed route for graphene-based electrochemical sensors, owing to the scale of production being large, and its relatively cheap and straightforward production.

Keywords

Electrochemical sensors Fabrication Graphene Nanocomposites Reduced graphene oxide 

References

  1. 1.
    Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666–669PubMedCrossRefGoogle Scholar
  2. 2.
    Novoselov KS, Jiang D, Schedin F, Booth TJ, Khotkevich VV, Morozov SV, Geim AK (2005) Two-dimensional atomic crystals. Proc Natl Acad Sci U S A 102:10451–10453PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Brownson DAC, Kampouris DK, Banks CE (2012) Graphene electrochemistry: fundamental concepts through to prominent applications. Chem Soc Rev 41:6944–6976PubMedCrossRefGoogle Scholar
  4. 4.
    Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183–191PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Brownson DAC, Munro LJ, Kampouris DK, Banks CE (2011) Electrochemistry of graphene: not such a beneficial electrode material? RSC Adv 1:978–988CrossRefGoogle Scholar
  6. 6.
    Brownson DAC, Banks CE (2011) CVD graphene electrochemistry: the role of graphitic islands. Phys Chem Chem Phys 13:15825–15828PubMedCrossRefGoogle Scholar
  7. 7.
    Brownson DAC, Banks CE (2014) The handbook of graphene electrochemistry. Springer, LondonCrossRefGoogle Scholar
  8. 8.
    Shen A, Zou Y, Wang Q, Dryfe RAW, Huang X, Dou S, Dai L, Wang S (2014) Oxygen reduction reaction in a droplet on graphite: direct evidence that the edge is more active than the basal plane. Angew Chem Int Ed 53:10804–10808CrossRefGoogle Scholar
  9. 9.
    Toth PS, Valota AT, Velicky M, Kinloch IA, Novoselov KS, Hill EW, Dryfe RAW (2014) Electrochemistry in a drop: a study of the electrochemical behaviour of mechanically exfoliated graphene on photoresist coated silicon substrate. Chem Sci 5:582–589CrossRefGoogle Scholar
  10. 10.
    Velický M, Bradley DF, Cooper AJ, Hill EW, Kinloch IA, Mishchenko A, Novoselov KS, Patten HV, Toth PS, Valota AT, Worrall SD, Dryfe RAW (2014) Electron transfer kinetics on mono- and multilayer graphene. ACS Nano 8:10089–10100PubMedCrossRefGoogle Scholar
  11. 11.
    El-Kady MF, Strong V, Dubin S, Kaner RB (2012) Laser scribing of high-performance and flexible graphene-based electrochemical capacitors. Science 335:1326–1330PubMedCrossRefGoogle Scholar
  12. 12.
    Kosynkin DV, Higginbotham AL, Sinitskii A, Lomeda JR, Dimiev A, Price BK, Tour JM (2009) Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 458:872–876PubMedCrossRefGoogle Scholar
  13. 13.
    Paton KR, Varrla E, Backes C, Smith RJ, Khan U, O’Neill A, Boland C, Lotya M, Istrate OM, King P, Higgins T, Barwich S, May P, Puczkarski P, Ahmed I, Moebius M, Pettersson H, Long E, Coelho J, O’Brien SE, McGuire EK, Sanchez BM, Duesberg GS, Mcevoy N, Pennycook TJ, Downing C, Crossley A, Nicolosi V, Coleman JN (2014) Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids. Nat Mater 13:624–630PubMedCrossRefGoogle Scholar
  14. 14.
    Novoselov KS, Falko VI, Colombo L, Gellert PR, Schwab MG, Kim K (2012) A roadmap for graphene. Nature 490:192–200PubMedCrossRefGoogle Scholar
  15. 15.
    Knieke C, Berger A, Voigt M, Taylor RNK, RÖhrl J, Peukert W (2010) Scalable production of graphene sheets by mechanical delamination. Carbon 48:3196–3204CrossRefGoogle Scholar
  16. 16.
    Goh M, Pumera M (2011) Graphene-based electrochemical sensor for detection of 2,4,6-trinitrotoluene (TNT) in seawater: the comparison of single-, few-, and multilayer graphene nanoribbons and graphite microparticles. Anal Bioanal Chem 399:127–131PubMedCrossRefGoogle Scholar
  17. 17.
    Banks CE, Davies TJ, Wildgoose GG, Compton RG (2005) Electrocatalysis at graphite and carbon nanotube modified electrodes: edge-plane sites and tube ends are the reactive sites. Chem Commun 7:829–841CrossRefGoogle Scholar
  18. 18.
    Yuan W, Zhou Y, Li Y, Li C, Peng H, Zhang J, Liu Z, Dai L, Shi G (2013) The edge- and basal-plane-specific electrochemistry of a single-layer graphene sheet. Sci Rep 3:2248PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Kampouris DK, Banks CE (2010) Exploring the physicoelectrochemical properties of graphene. Chem Commun 46:8986–8988CrossRefGoogle Scholar
  20. 20.
    Lavagnini I, Antiochia R, Magno F (2004) An extended method for the practical evaluation of the standard rate constant from cyclic voltammetric data. Electroanalysis 16:505–506CrossRefGoogle Scholar
  21. 21.
    Brownson DAC, Banks CE (2011) Graphene electrochemistry: surfactants inherent to graphene inhibit metal analysis. Electrochem Commun 13:111–113CrossRefGoogle Scholar
  22. 22.
    Brownson DAC, Banks CE (2012) Fabricating graphene supercapacitors: highlighting the impact of surfactants and moieties. Chem Commun 48:1425–1427CrossRefGoogle Scholar
  23. 23.
    Li W, Tan C, Lowe MA, Abruña HD, Ralph DC (2011) Electrochemistry of individual monolayer graphene sheets. ACS Nano 5:2264–2270PubMedCrossRefGoogle Scholar
  24. 24.
    Chen R, Nioradze N, Santhosh P, Li Z, Surwade SP, Shenoy GJ, Parobek DG, Kim MA, Liu H, Amemiya S (2015) Ultrafast electron transfer kinetics of graphene grown by chemical vapor deposition. Angew Chem Int Ed 54:15134–15137CrossRefGoogle Scholar
  25. 25.
    Lim CX, Hoh HY, Ang PK, Loh KP (2010) Direct voltammetric detection of DNA and pH sensing on epitaxial graphene: an insight into the role of oxygenated defects. Anal Chem 82:7387–7393PubMedCrossRefGoogle Scholar
  26. 26.
    Li K, Jiang J, Dong Z, Luo H, Qu L (2015) A linear graphene edge nanoelectrode. Chem Commun 51:8765–8768CrossRefGoogle Scholar
  27. 27.
    Poh HL, Sanek F, Ambrosi A, Zhao G, Sofer Z, Pumera M (2012) Graphenes prepared by Staudenmaier, Hofmann and Hummers methods with consequent thermal exfoliation exhibit very different electrochemical properties. Nanoscale 4:3515–3522PubMedCrossRefGoogle Scholar
  28. 28.
    Mazaheri M, Aashuri H, Simchi A (2017) Three-dimensional hybrid graphene/nickel electrodes on zinc oxide nanorod arrays as non-enzymatic glucose biosensors. Sensors Actuators B Chem 251:462–471CrossRefGoogle Scholar
  29. 29.
    Güell AG, Cuharuc AS, Kim Y-R, Zhang G, Tan S-Y, Ebejer N, Unwin PR (2015) Redox-dependent spatially resolved electrochemistry at graphene and graphite step edges. ACS Nano 9:3558–3571PubMedCrossRefGoogle Scholar
  30. 30.
    Brownson DAC, Lacombe AC, Kampouris DK, Banks CE (2012) Graphene electroanalysis: inhibitory effects in the stripping voltammetry of cadmium with surfactant free graphene. Analyst 137:420–423PubMedCrossRefGoogle Scholar
  31. 31.
    Randviir EP, Banks CE (2012) Electrochemical measurement of the DNA bases adenine and guanine at surfactant-free graphene modified electrodes. RSC Adv 2:5800–5805CrossRefGoogle Scholar
  32. 32.
    Brownson DAC, Banks CE (2012) The electrochemistry of CVD graphene: progress and prospects. Phys Chem Chem Phys 14:8264–8281PubMedCrossRefGoogle Scholar
  33. 33.
    Brownson DAC, Gomez-Mingot M, Banks CE (2011) CVD graphene electrochemistry: biologically relevant molecules. Phys Chem Chem Phys 13:20284–20288PubMedCrossRefGoogle Scholar
  34. 34.
    Keeley GP, Mcevoy N, Nolan H, Holzinger M, Cosnier S, Duesberg GS (2014) Electroanalytical sensing properties of pristine and functionalized multilayer graphene. Chem Mater 26:1807–1812CrossRefGoogle Scholar
  35. 35.
    Salmi Z, Koefoed L, Jensen BBE, Čabo AG, Hofmann P, Pedersen SU, Daasbjerg K (2016) Electroinduced intercalation of tetraalkylammonium ions at the interface of graphene grown on copper, platinum, and iridium. ChemElectroChem 3:2202–2211CrossRefGoogle Scholar
  36. 36.
    Marcano DC, Kosynkin DV, Berlin JM, Sinitskii A, Sun Z, Slesarev A, Alemany LB, Lu W, Tour JM (2010) Improved synthesis of graphene oxide. ACS Nano 4:4806–4814PubMedCrossRefGoogle Scholar
  37. 37.
    Randviir EP, Brownson DAC, Gomez-Mingot M, Kampouris DK, Iniesta J, Banks CE (2012) Electrochemistry of Q-graphene. Nanoscale 4:6470–6480PubMedCrossRefGoogle Scholar
  38. 38.
    Hadish F, Jou S, Huang B-R, Kuo H-A, Tu C-W (2017) Functionalization of CVD grown graphene with downstream oxygen plasma treatment for glucose sensors. J Electrochem Soc 164:B336–B341CrossRefGoogle Scholar
  39. 39.
    Jiang J, Zhang P, Liu Y, Luo H (2017) A novel non-enzymatic glucose sensor based on a Cu-nanoparticle-modified graphene edge nanoelectrode. Anal Methods 9:2205–2210CrossRefGoogle Scholar
  40. 40.
    Liu L, Qi W, Gao X, Wang C, Wang G (2018) Synergistic effect of metal ion additives on graphitic carbon nitride nanosheet-templated electrodeposition of Cu@CuO for enzyme-free glucose detection. J Alloys Compd 745:155–163CrossRefGoogle Scholar
  41. 41.
    Song H, Li X, Cui P, Guo S, Liu W, Wang X (2017) Sensitivity investigation for the dependence of monolayer and stacking graphene NH3 gas sensor. Diam Relat Mater 73:56–61CrossRefGoogle Scholar
  42. 42.
    Feng X, Irle S, Witek H, Morokuma K, Vidic R, Borguet E (2005) Sensitivity of ammonia interaction with single-walled carbon nanotube bundles to the presence of defect sites and functionalities. J Am Chem Soc 127:10533–10538PubMedCrossRefGoogle Scholar
  43. 43.
    Compton OC, Nguyen ST (2010) Graphene oxide, highly reduced graphene oxide, and graphene: versatile building blocks for carbon-based materials. Small 6:711–723PubMedCrossRefGoogle Scholar
  44. 44.
    Moo JGS, Khezri B, Webster RD, Pumera M (2014) Graphene oxides prepared by Hummers’, Hofmann’s, and Staudenmaier’s methods: dramatic influences on heavy-metal-ion adsorption. ChemPhysChem 15:2922–2929PubMedCrossRefGoogle Scholar
  45. 45.
    Ong BK, Poh HL, Chua CK, Pumera M (2012) Graphenes prepared by Hummers, Staudenmaier and Hofmann methods for analysis of TNT-based nitroaromatic explosives in seawater. Electroanalysis 24:2085–2093CrossRefGoogle Scholar
  46. 46.
    Jia Y, Zhang L, Du A, Gao G, Chen J, Yan X, Brown CL, Yao X (2016) Defect graphene as a trifunctional catalyst for electrochemical reactions. Adv Mater 28:9532–9538PubMedCrossRefGoogle Scholar
  47. 47.
    Hui KH, Ambrosi A, Pumera M, Bonanni A (2016) Improving the analytical performance of graphene oxide towards the assessment of polyphenols. Chem Eur J 22:3830–3834PubMedCrossRefGoogle Scholar
  48. 48.
    Li W, Geng X, Guo Y, Rong J, Gong Y, Wu L, Zhang X, Li P, Xu J, Cheng G, Sun M, Liu L (2011) Reduced graphene oxide electrically contacted graphene sensor for highly sensitive nitric oxide detection. ACS Nano 5:6955–6961PubMedCrossRefGoogle Scholar
  49. 49.
    Chung MG, Kim D-H, Seo DK, Kim T, Im HU, Lee HM, Yoo J-B, Hong S-H, Kang TJ, Kim YH (2012) Flexible hydrogen sensors using graphene with palladium nanoparticle decoration. Sensors Actuators B Chem 169:387–392CrossRefGoogle Scholar
  50. 50.
    Guo S, Wen D, Zhai Y, Dong S, Wang E (2010) Platinum nanoparticle ensemble-on-graphene hybrid nanosheet: one-pot, rapid synthesis, and used as new electrode material for electrochemical sensing. ACS Nano 4:3959–3968PubMedCrossRefGoogle Scholar
  51. 51.
    Gong J, Zhou T, Song D, Zhang L (2010) Monodispersed Au nanoparticles decorated graphene as an enhanced sensing platform for ultrasensitive stripping voltammetric detection of mercury(II). Sensors Actuators B Chem 150:491–497CrossRefGoogle Scholar
  52. 52.
    Chen S, Yuan R, Chai Y, Hu F (2013) Electrochemical sensing of hydrogen peroxide using metal nanoparticles: a review. Microchim Acta 180:15–32CrossRefGoogle Scholar
  53. 53.
    Kamat PV (2010) Graphene-based nanoarchitectures. Anchoring semiconductor and metal nanoparticles on a two-dimensional carbon support. J Phys Chem Lett 1:520–527CrossRefGoogle Scholar
  54. 54.
    Xu C, Wang X, Zhu J (2008) Graphene−metal particle nanocomposites. J Phys Chem C 112:19841–19845CrossRefGoogle Scholar
  55. 55.
    Yin PT, Shah S, Chhowalla M, Lee K-B (2015) Design, synthesis, and characterization of graphene–nanoparticle hybrid materials for bioapplications. Chem Rev 115:2483–2531PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Khan A, Khan AAP, Asiri AM, Khan I (2017) Facial synthesis, characterization of graphene oxide-zirconium tungstate (GO-Zr(WO4)2) nanocomposite and its application as modified microsensor for dopamine. J Alloys Compd 723:811–819CrossRefGoogle Scholar
  57. 57.
    Kaçar C, Erden PE, Kiliç E (2017) Amperometric l-lysine biosensor based on carboxylated multiwalled carbon nanotubes-SnO2 nanoparticles-graphene composite. Appl Surf Sci 419:916–923CrossRefGoogle Scholar
  58. 58.
    Hallaj R, Haghighi N (2017) Photoelectrochemical amperometric sensing of cyanide using a glassy carbon electrode modified with graphene oxide and titanium dioxide nanoparticles. Microchim Acta 184:3581–3590CrossRefGoogle Scholar
  59. 59.
    Sreejesh M, Shenoy S, Sridharan K, Kufian D, Arof AK, Nagaraja HS (2017) Melt quenched vanadium oxide embedded in graphene oxide sheets as composite electrodes for amperometric dopamine sensing and lithium ion battery applications. Appl Surf Sci 410:336–343CrossRefGoogle Scholar
  60. 60.
    Lee H, Hong JA (2017) Enhancement of catalytic activity of reduced graphene oxide via transition metal doping strategy. Nanoscale Res Lett 12:426PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Pakapongpan S, Poo-Arporn RP (2017) Self-assembly of glucose oxidase on reduced graphene oxide-magnetic nanoparticles nanocomposite-based direct electrochemistry for reagentless glucose biosensor. Mater Sci Eng C 76:398–405CrossRefGoogle Scholar
  62. 62.
    Zhao C, Wu X, Li P, Zhao C, Qian X (2017) Hydrothermal deposition of CuO/rGO/Cu2O nanocomposite on copper foil for sensitive nonenzymatic voltammetric determination of glucose and hydrogen peroxide. Microchim Acta 184:2341–2348CrossRefGoogle Scholar
  63. 63.
    Li J, Guo S, Zhai Y, Wang E (2009) High-sensitivity determination of lead and cadmium based on the Nafion-graphene composite film. Anal Chim Acta 649:196–201PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Liu M, Pan D, Pan W, Zhu Y, Hu X, Han H, Wang C, Shen D (2017) In-situ synthesis of reduced graphene oxide/gold nanoparticles modified electrode for speciation analysis of copper in seawater. Talanta 174:500–506CrossRefGoogle Scholar
  65. 65.
    Bindewald EH, Schibelbain AF, Papi MAP, Neiva EGC, Zarbin AJG, Bergamini MF, Marcolino-Júnior LH (2017) Design of a new nanocomposite between bismuth nanoparticles and graphene oxide for development of electrochemical sensors. Mater Sci Eng C 79:262–269CrossRefGoogle Scholar
  66. 66.
    Ba Hashwan SS, Ruslinda AR, Fatin MF, Arshad MKM, Hashim U (2017) Reduced graphene oxide–multiwalled carbon nanotubes composites as sensing membrane electrodes for DNA detection. Microsyst Technol 23:3421–3428CrossRefGoogle Scholar
  67. 67.
    Mao Y, Bao Y, Gan S, Li F, Niu L (2011) Electrochemical sensor for dopamine based on a novel graphene-molecular imprinted polymers composite recognition element. Biosens Bioelectron 28:291–297PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Manchester Metropolitan UniversityManchesterUK

Personalised recommendations