(Bio-)chemical Sensing and Imaging by LAPS and SPIM

  • Tatsuo YoshinobuEmail author
  • Steffi Krause
  • Ko-ichiro Miyamoto
  • Carl Frederik Werner
  • Arshak Poghossian
  • Torsten Wagner
  • Michael J. Schöning
Part of the Springer Series on Chemical Sensors and Biosensors book series (SSSENSORS, volume 16)


The light-addressable potentiometric sensor (LAPS) and scanning photo-induced impedance microscopy (SPIM) are two closely related methods to visualise the distributions of chemical species and impedance, respectively, at the interface between the sensing surface and the sample solution. They both have the same field-effect structure based on a semiconductor, which allows spatially resolved and label-free measurement of chemical species and impedance in the form of a photocurrent signal generated by a scanning light beam. In this article, the principles and various operation modes of LAPS and SPIM, functionalisation of the sensing surface for measuring various species, LAPS-based chemical imaging and high-resolution sensors based on silicon-on-sapphire substrates are described and discussed, focusing on their technical details and prospective applications.


Chemical imaging Field-effect device Light-addressable potentiometric sensor Potentiometry Scanning photo-induced impedance microscopy 


  1. 1.
    Bergveld P (1970) Development of an ion-sensitive solid-state device for neurophysiological measurements. IEEE Trans Biomed Eng 17:70–71CrossRefPubMedGoogle Scholar
  2. 2.
    Hafeman DG, Parce JW, McConnell HM (1988) Light-addressable potentiometric sensor for biochemical systems. Science 240:1182–1185PubMedCrossRefGoogle Scholar
  3. 3.
    Krause S, Talabani H, Xu M, Moritz W, Griffiths J (2002) Scanning photo-induced impedance microscopy – an impedance based imaging technique. Electrochim Acta 47:2143–2148CrossRefGoogle Scholar
  4. 4.
    Yoshinobu T, Ecken H, Poghossian A, Lüth H, Iwasaki H, Schöning MJ (2001) Alternative sensor materials for light-addressable potentiometric sensors. Sensors Actuators B Chem 76:388–392CrossRefGoogle Scholar
  5. 5.
    Adami M, Alliata D, Del Carlo C, Martini M, Piras L, Sartore M, Nicolini C (1995) Characterization of silicon transducers with Si3N4 sensing surfaces by an AFM and a PAB system. Sensors Actuators B Chem 24–25:889–893CrossRefGoogle Scholar
  6. 6.
    Ismail ABM, Harada T, Yoshinobu T, Iwasaki H, Schöning MJ, Lüth H (2000) Investigation of pulsed laser-deposited Al2O3 as a high pH-sensitive layer for LAPS-based biosensing applications. Sensors Actuators B Chem 71:169–172CrossRefGoogle Scholar
  7. 7.
    Werner CF, Wagner T, Yoshinobu T, Keusgen M, Schöning MJ (2013) Frequency behaviour of light-addressable potentiometric sensors. Phys Status Solidi A 210:884–891CrossRefGoogle Scholar
  8. 8.
    Nakao M, Yoshinobu T, Iwasaki H (1994) Scanning-laser-beam semiconductor pH-imaging sensor. Sensors Actuators B Chem 20:119–123CrossRefGoogle Scholar
  9. 9.
    Wagner T, Werner CF, Miyamoto K, Schöning MJ, Yoshinobu T (2011) A high-density multi-point LAPS set-up using a VCSEL array and FPGA control. Sensors Actuators B Chem 154:124–128CrossRefGoogle Scholar
  10. 10.
    Chen L, Zhou Y, Jiang S, Kunze J, Schmuki P, Krause S (2010) High resolution LAPS and SPIM. Electrochem Commun 12:758–760CrossRefGoogle Scholar
  11. 11.
    Adami M, Sartore M, Nicolini C (1995) PAB: a newly designed potentiometric alternating biosensor system. Biosens Bioelectron 10:155–167CrossRefGoogle Scholar
  12. 12.
    Miyamoto K, Kaneko K, Matsuo A, Wagner T, Kanoh S, Schöning MJ, Yoshinobu T (2012) Miniaturized chemical imaging sensor system using an OLED display panel. Sensors Actuators B Chem 170:82–87CrossRefGoogle Scholar
  13. 13.
    Werner CF, Wagner T, Miyamoto K, Yoshinobu T, Schöning MJ (2012) High speed and high resolution chemical imaging based on a new type of OLED-LAPS set-up. Sensors Actuators B Chem 175:118–122CrossRefGoogle Scholar
  14. 14.
    Wagner T, Miyamoto K, Werner CF, Schöning MJ, Yoshinobu T (2011) Utilising digital micro-mirror device (DMD) as scanning light source for light-addressable potentiometric sensors (LAPS). Sens Lett 9:812–815CrossRefGoogle Scholar
  15. 15.
    Poghossian A, Werner CF, Buniatyan VV, Wagner T, Miamoto K, Yoshinobu T, Schöning MJ (2017) Towards addressability of light-addressable potentiometric sensors: shunting effect of non-illuminated region and cross-talk. Sensors Actuators B Chem 244:1071–1079CrossRefGoogle Scholar
  16. 16.
    Bousse L, Mostarshed S, Hafeman D, Sartore M, Adami M, Nicolini C (1994) Investigation of carrier transport through silicon wafers by photocurrent measurements. J Appl Phys 75:4000–4008CrossRefGoogle Scholar
  17. 17.
    Yoshinobu T, Ecken H, Poghossian A, Simonis A, Iwasaki H, Lüth H, Schöning MJ (2001) Constant-current-mode LAPS (CLAPS) for the detection of penicillin. Electroanalysis 13:733–736CrossRefGoogle Scholar
  18. 18.
    Miyamoto K, Sakakita S, Yoshinobu T (2016) A novel data acquisition method for visualization of large pH changes by chemical imaging sensor. ISIJ Int 56:492–494CrossRefGoogle Scholar
  19. 19.
    Miyamoto K, Wagner T, Yoshinobu T, Kanoh S, Schöning MJ (2011) Phase-mode LAPS and its application to chemical imaging. Sensors Actuators B Chem 154:28–32CrossRefGoogle Scholar
  20. 20.
    Krause S, Moritz W, Talabani H, Xu M, Sabot A, Ensell G (2006) Scanning photo-induced impedance microscopy – resolution studies and polymer characterization. Electrochim Acta 51:1423–1430CrossRefGoogle Scholar
  21. 21.
    Zhou Y, Chen L, Krause S, Chazalviel JN (2007) Scanning photoinduced impedance microscopy using amorphous silicon photodiode structures. Anal Chem 79:6208–6214PubMedCrossRefGoogle Scholar
  22. 22.
    Zhou Y, Jiang S, Krause S, Chazalviel JN (2007) Biosensor arrays based on the degradation of thin polymer films interrogated by scanning photoinduced impedance microscopy. Anal Chem 79:8974–8978PubMedCrossRefGoogle Scholar
  23. 23.
    Seki A, Motoya K, Watanabe S, Kubo I (1999) Novel sensors for potassium, calcium and magnesium ions based on a silicon transducer as a light-addressable potentiometric sensor. Anal Chim Acta 382:131–136CrossRefGoogle Scholar
  24. 24.
    Wu Y, Wang P, Ye X, Zhang Q, Li R, Yan W, Zheng X (2001) A novel microphysiometer based on MLAPS for drugs screening. Biosens Bioelectron 16:277–286CrossRefGoogle Scholar
  25. 25.
    Ermolenko YE, Yoshinobu T, Mourzina Y, Levichev S, Furuichi K, Vlasov YG, Schöning MJ, Iwasaki H (2002) Photocurable membranes for ion-selective light-addressable potentiometric sensor. Sensors Actuators B Chem 85:79–85CrossRefGoogle Scholar
  26. 26.
    Mourzina YG, Ermolenko YE, Yoshinobu T, Vlasov YG, Iwasaki H, Schöning MJ (2003) Anion-selective light-addressable potentiometric sensors (LAPS) for the determination of nitrate and sulphate ions. Sensors Actuators B Chem 91:32–38CrossRefGoogle Scholar
  27. 27.
    Yoshinobu T, Iwasaki H, Ui Y, Furuichi K, Ermolenko YE, Mourzina Y, Wagner T, Näther N, Schöning MJ (2005) The light-addressable potentiometric sensor for multi-ion sensing and imaging. Methods 37:94–102PubMedCrossRefGoogle Scholar
  28. 28.
    Ha D, Hu N, Wu CX, Kirsanov D, Legin A, Khaydukova M, Wang P (2012) Novel structured light-addressable potentiometric sensor array based on PVC membrane for determination of heavy metals. Sensors Actuators B Chem 174:59–64CrossRefGoogle Scholar
  29. 29.
    Ismail ABM, Furuichi K, Yoshinobu T, Iwasaki H (2002) Light-addressable potentiometric fluoride (F) sensor. Sensors Actuators B Chem 86:94–97CrossRefGoogle Scholar
  30. 30.
    Kloock JP, Moreno L, Bratov A, Huachupoma S, Xu J, Wagner T, Yoshinobu T, Ermolenko YE, Vlasov YG, Schöning MJ (2006) PLD-prepared cadmium sensors based on chalcogenide glasses–ISFET, LAPS and μISE semiconductor structures. Sensors Actuators B Chem 118:149–155CrossRefGoogle Scholar
  31. 31.
    Lue CE, Lai CS, Chen HY, Yang CM (2010) Light addressable potentiometric sensor with fluorine-terminated hafnium oxide layer for sodium detection. Jpn J Appl Phys 49:04DL05Google Scholar
  32. 32.
    Wang JC, Ye YR, Lin YH (2015) Light-addressable potentiometric sensor with nitrogen-incorporated ceramic Sm2O3 membrane for chloride ions detection. J Am Ceram Soc 98:443–447CrossRefGoogle Scholar
  33. 33.
    Mourzina Y, Yoshinobu T, Schubert J, Lüth H, Iwasaki H, Schöning MJ (2001) Ion-selective light-addressable potentiometric sensor (LAPS) with chalcogenide thin film prepared by pulsed laser deposition. Sensors Actuators B Chem 80:136–140CrossRefGoogle Scholar
  34. 34.
    Kloock JP, Mourzina YG, Ermolenko YE, Doll T, Schubert J, Schöning MJ (2004) Inorganic thin-film sensor membranes with PLD-prepared chalcogenide glasses: challenges and implementation. Sensors 4:156–162CrossRefGoogle Scholar
  35. 35.
    Men H, Zou SF, Legin A, Wang P (2005) A novel mercury ion selective thin film sensor. Chin J Anal Chem 33:428–431Google Scholar
  36. 36.
    Hu W, Cai H, Fu J, Wang P, Yang G (2008) Line-scanning LAPS array for measurement of heavy metal ions with micro-lens array based on MEMS. Sensors Actuators B Chem 129:397–403CrossRefGoogle Scholar
  37. 37.
    Ermolenko YE, Yoshinobu T, Mourzina YG, Vlasov YG, Schöning MJ, Iwasaki H (2004) Laser-scanned silicon transducer (LSST) as a multisensor system. Sensors Actuators B Chem 103:457–462CrossRefGoogle Scholar
  38. 38.
    Yang JH, Lu TF, Wang JC, Yang CM, Pijanowska DG, Chin CH, Lue CE, Lai CS (2013) LAPS with nanoscaled and highly polarized HfO2 by CF4 plasma for NH4 + detection. Sensors Actuators B Chem 180:71–76CrossRefGoogle Scholar
  39. 39.
    Seki A, Ikeda S, Kubo I, Karube I (1998) Biosensors based on light-addressable potentiometric sensors for urea, penicillin and glucose. Anal Chim Acta 373:9–13CrossRefGoogle Scholar
  40. 40.
    Poghossian A, Yoshinobu T, Simonis A, Ecken H, Lüth H, Schöning MJ (2001) Penicillin detection by means of field-effect based sensors: EnFET, capacitive EIS sensor or LAPS? Sensors Actuators B Chem 78:237–242CrossRefGoogle Scholar
  41. 41.
    Jang SW, Lee SY, Yuan H, Kim DE, Kwon DH, Kang SW (2007) High-sensitivity membranes of light addressable potentiometric sensor for penicillin detection. Sens Mater 18:115–124Google Scholar
  42. 42.
    Siqueira JR, Werner CF, Bäcker M, Poghossian A, Zucolotto V, Oliveira ON, Schöning MJ (2009) Layer-by-layer assembly of carbon nanotubes incorporated in light-addressable potentiometric sensors. J Phys Chem C 113:14765–14770CrossRefGoogle Scholar
  43. 43.
    Bousse L, Kirk G, Sigal G (1990) Biosensors for detection of enzymes immobilized in microvolume reaction chambers. Sensors Actuators B Chem 1:555–560CrossRefGoogle Scholar
  44. 44.
    Paddeu S, Fanigliulo A, Lanzi M, Dubrovsky T, Nicolini C (1995) LB-based PAB immunosystem: activity of an immobilized urease monolayer. Sensors Actuators B Chem 25:876–882CrossRefGoogle Scholar
  45. 45.
    Miyamoto K, Yoshida M, Sakai T, Matsuzaka A, Wagner T, Kanoh S, Yoshinobu T, Schöning MJ (2011) Differential setup of light-addressable potentiometric sensor with an enzyme reactor in a flow channel. Jpn J Appl Phys 50:04DL08CrossRefGoogle Scholar
  46. 46.
    Mourzina IG, Yoshinobu T, Ermolenko YE, Vlasov YG, Schöning MJ, Iwasaki H (2004) Immobilization of urease and cholinesterase on the surface of semiconductor transducer for the development of light-addressable potentiometric sensors. Microchim Acta 144:41–50CrossRefGoogle Scholar
  47. 47.
    Adami M, Piras L, Lanzi M, Fanigliulo A, Vakula S, Nicoli C (1994) Monitoring of enzymatic activity and quantitative measurements of substrates by means of a newly designed silicon-based potentiometric sensor. Sensors Actuators B Chem 18:178–182CrossRefGoogle Scholar
  48. 48.
    Werner CF, Takenaga S, Taki H, Sawada K, Schöning MJ (2013) Comparison of label-free ACh-imaging sensors based on CCD and LAPS. Sensors Actuators B Chem 177:745–752CrossRefGoogle Scholar
  49. 49.
    Abouzar MH, Poghossian A, Siqueira JR, Oliveira ON, Moritz W, Schöning MJ (2010) Capacitive electrolyte – insulator – semiconductor structures functionalised with a polyelectrolyte/enzyme multilayer: new strategy for enhanced field-effect biosensing. Phys Status Solidi A 207:884–890CrossRefGoogle Scholar
  50. 50.
    Sassolas A, Blum LJ, Leca-Bouvier BD (2012) Immobilization strategies to develop enzymatic biosensors. Biotechnol Adv 30:489–511PubMedCrossRefGoogle Scholar
  51. 51.
    Colston JT, Kumar P, Rael ED, Tsin ATC, Valdes JJ, Chambers JP (1993) Detection of sub-nanogram quantities of Mojave toxin via enzyme immunoassay with light addressable potentiometric detector. Biosens Bioelectron 8:117–121PubMedCrossRefGoogle Scholar
  52. 52.
    Gehring AG, Patterson DL, Tu SI (1998) Use of a light-addressable potentiometric sensor for the detection of Escherichia coli O157:H7. Anal Biochem 258:293–298PubMedCrossRefGoogle Scholar
  53. 53.
    Dill K, Stanker LH, Young CR (1999) Detection of salmonella in poultry using a silicon chip-based biosensor. J Biochem Biophys Methods 41:61–67PubMedCrossRefGoogle Scholar
  54. 54.
    Lee WE, Thompson HG, Hall JG, Bader DE (2000) Rapid detection and identification of biological and chemical agents by immunoassay, gene probe assay and enzyme inhibition using a silicon-based biosensor. Biosens Bioelectron 14:795–804PubMedCrossRefGoogle Scholar
  55. 55.
    Hu WG, Thompson HG, Alvi AZ, Nagata LP, Suresh MR, Fulton RE (2004) Development of immunofiltration assay by light addressable potentiometric sensor with genetically biotinylated recombinant antibody for rapid identification of Venezuelan equine encephalitis virus. J Immunol Methods 289:27–35PubMedCrossRefGoogle Scholar
  56. 56.
    Mosiello L, Laconi C, Del Gallo M, Ercole C, Lepidi A (2003) Development of a monoclonal antibody based potentiometric biosensor for terbuthylazine detection. Sensors Actuators B Chem 95:315–320CrossRefGoogle Scholar
  57. 57.
    Liang J, Guan M, Huang G, Qiu H, Chen Z, Li G, Huang Y (2016) Highly sensitive covalently functionalized light-addressable potentiometric sensor for determination of biomarker. Mater Sci Eng C 63:185–191CrossRefGoogle Scholar
  58. 58.
    Jia Y, Gao C, Feng D, Wu M, Liu Y, Chen X, Xing K, Feng X (2011) Bio-initiated light addressable potentiometric sensor for unlabeled biodetection and its MEDICI simulation. Analyst 136:4533–4538PubMedCrossRefGoogle Scholar
  59. 59.
    Ercole C, Gallo MD, Mosiello L, Baccella S, Lepidi A (2003) Escherichia coli detection in vegetable food by a potentiometric biosensor. Sensors Actuators B Chem 91:163–168CrossRefGoogle Scholar
  60. 60.
    Wu C, Du L, Zou L, Zhao L, Wang P (2012) An ATP sensitive light addressable biosensor for extracellular monitoring of single taste receptor cell. Biomed Microdevices 14:1047–1053PubMedCrossRefGoogle Scholar
  61. 61.
    Jia Y, Qin M, Zhang H, Niu W, Li X, Wang L, Li X, Bai Y, Cao Y, Feng X (2007) Label-free biosensor: a novel phage-modified light addressable potentiometric sensor system for cancer cell monitoring. Biosens Bioelectron 22:3261–3266PubMedCrossRefGoogle Scholar
  62. 62.
    Jia YF, Gao CY, He J, Feng DF, Xing KL, Wu M, Liu Y, Cai WS, Feng XZ (2012) Unlabeled multi tumor marker detection system based on bioinitiated light addressable potentiometric sensor. Analyst 137:3806–3813PubMedCrossRefGoogle Scholar
  63. 63.
    Zong X, Wu C, Wu X, Lu Y, Wang P (2009) A non-labeled DNA biosensor based on light addressable potentiometric sensor modified with TiO2 thin film. J Zhejiang Univ Sci B 10:860–866PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Wu C, Bronder TS, Poghossian A, Werner CF, Bäcker M, Schöning MJ (2014) Label-free electrical detection of DNA with a multi-spot LAPS: first step towards light-addressable DNA chips. Phys Status Solidi A 211:1423–1428CrossRefGoogle Scholar
  65. 65.
    Poghossian A, Schöning MJ (2014) Label-free sensing of biomolecules with field-effect devices for clinical applications. Electroanalysis 26:1197–1213CrossRefGoogle Scholar
  66. 66.
    Bronder TS, Poghossian A, Scheja S, Wu C, Keusgen M, Mewes D, Schöning MJ (2015) DNA immobilization and hybridization detection by the intrinsic molecular charge using capacitive field-effect sensors modified with a charged weak polyelectrolyte layer. ACS Appl Mater Interfaces 7:20068–20075PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Zhang GJ, Zhang G, Chua JH, Chee RE, Wong EH, Agarwal A, Buddharaju KD, Singh N, Gao Z, Balasubramanian N (2008) DNA sensing by silicon nanowire: charge layer distance dependence. Nano Lett 8:1066–1070PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Poghossian A, Schöning MJ (2017) Nanomaterial-modified capacitive field-effect biosensors (Chapter 1). In: Springer series on chemical sensors and biosensors (Methods and applications). Springer, Heidelberg (this volume)Google Scholar
  69. 69.
    Wu C, Bronder TS, Poghossian A, Werner CF, Schoning MJ (2015) Label-free detection of DNA using a light-addressable potentiometric sensor modified with a positively charged polyelectrolyte layer. Nanoscale 7:6143–6150PubMedCrossRefGoogle Scholar
  70. 70.
    Wu C, Poghossian A, Bronder TS, Schöning MJ (2016) Sensing of double-stranded DNA molecules by their intrinsic molecular charge using the light-addressable potentiometric sensor. Sensors Actuators B Chem 229:506–512CrossRefGoogle Scholar
  71. 71.
    Evtugyn GA, Hianik T (2011) Layer-by-layer polyelectrolyte assembles involving DNA as a platform for DNA sensors. Curr Anal Chem 7:8–34CrossRefGoogle Scholar
  72. 72.
    Yoshinobu T, Miyamoto K, Wagner T, Schöning MJ (2015) Recent developments of chemical imaging sensor systems based on the principle of the light-addressable potentiometric sensor. Sensors Actuators B Chem 207:926–932CrossRefGoogle Scholar
  73. 73.
    Yoshinobu T, Miyamoto K, Werner CF, Poghossian A, Wagner T, Schöning MJ (2017) Light-addressable potentiometric sensors for quantitative spatial imaging of chemical species. Annu Rev Anal Chem 10:225–246CrossRefGoogle Scholar
  74. 74.
    Inoue S, Nakao M, Yoshinobu T, Iwasaki H (1996) Chemical-imaging sensor using enzyme. Sensors Actuators B Chem 32:23–26CrossRefGoogle Scholar
  75. 75.
    Uchida H, Zhang WY, Katsube T (1996) High-speed chemical image sensor with digital LAPS system. Sensors Actuators B Chem 34:446–449CrossRefGoogle Scholar
  76. 76.
    Das A, Chen TC, Yang CM, Lai CS (2014) A high-speed, flexible-scanning chemical imaging system using a light-addressable potentiometric sensor integrated with an analog micromirror. Sensors Actuators B Chem 198:225–232CrossRefGoogle Scholar
  77. 77.
    Wagner T, Werner CF, Miyamoto K, Schöning MJ, Yoshinobu T (2012) Development and characterisation of a compact light-addressable potentiometric sensor (LAPS) based on the digital light processing (DLP) technology for flexible chemical imaging. Sensors Actuators B Chem 170:34–39CrossRefGoogle Scholar
  78. 78.
    Sartore M, Adami M, Nicolini C, Bousse L, Mostarshed S, Hafeman D (1992) Minority-carrier diffusion length effects on light-addressable potentiometric sensor (LAPS) devices. Sens Actuators A 32:431–436CrossRefGoogle Scholar
  79. 79.
    Nakao M, Yoshinobu T, Iwasaki H (1994) Improvement of spatial-resolution of a laser-scanning pH-imaging sensor. Jpn J Appl Phys 33:L394–L397CrossRefGoogle Scholar
  80. 80.
    Nakao M, Inoue S, Yoshinobu T, Iwasaki H (1996) High-resolution pH imaging sensor for microscopic observation of microorganisms. Sensors Actuators B Chem 34:234–239CrossRefGoogle Scholar
  81. 81.
    Parak WJ, Hofmann UG, Gaub HE, Owicki JC (1997) Lateral resolution of light-addressable potentiometric sensors: an experimental and theoretical investigation. Sens Actuators A 63:47–57CrossRefGoogle Scholar
  82. 82.
    George M, Parak WJ, Gerhardt I, Moritz W, Kaesen F, Geiger H, Eisele I, Gaub HE (2000) Investigation of the spatial resolution of the light-addressable potentiometric sensor. Sens Actuators A 86:187–196CrossRefGoogle Scholar
  83. 83.
    Ito Y (1998) High-spatial resolution LAPS. Sensors Actuators B Chem 52:107–111CrossRefGoogle Scholar
  84. 84.
    Moritz W, Gerhardt I, Roden D, Xu M, Krause S (2000) Photocurrent measurements for laterally resolved interface characterization. Fresenius J Anal Chem 367:329–333PubMedCrossRefGoogle Scholar
  85. 85.
    Moritz W, Yoshinobu T, Finger F, Krause S, Martin-Fernandez M, Schöning MJ (2004) High resolution LAPS using amorphous silicon as the semiconductor material. Sensors Actuators B Chem 103:436–441CrossRefGoogle Scholar
  86. 86.
    Guo Y, Seki K, Miyamoto K, Wagner T, Schöning MJ, Yoshinobu T (2014) Novel photoexcitation method for light-addressable potentiometric sensor with higher spatial resolution. Appl Phys Express 7:067301-1–067301-4Google Scholar
  87. 87.
    Werner CF, Miyamoto K, Wagner T, Schöning MJ, Yoshinobu T (2017) Lateral resolution enhancement of pulse-driven light-addressable potentiometric sensor. Sensors Actuators B Chem 248:961–965CrossRefGoogle Scholar
  88. 88.
    Zhang Q, Wang P, Parak WJ, George M, Zhang G (2001) A novel design of multi-light LAPS based on digital compensation of frequency domain. Sensors Actuators B Chem 73:152–156CrossRefGoogle Scholar
  89. 89.
    Miyamoto K, Itabashi A, Wagner T, Schöning MJ, Yoshinobu T (2014) High-speed chemical imaging inside a microfluidic channel. Sensors Actuators B Chem 194:521–527CrossRefGoogle Scholar
  90. 90.
    Miyamoto K, Sakakita S, Wagner T, Schöning MJ, Yoshinobu T (2015) Application of chemical imaging sensor to in-situ pH imaging in the vicinity of a corroding metal surface. Electrochim Acta 183:137–142CrossRefGoogle Scholar
  91. 91.
    Kohno Y, Matsuki R, Nomura S, Mitsunari K, Nakao M (2001) Neutralization of acid droplets on plant leaf surfaces. Water Air Soil Pollut 130:977–982CrossRefGoogle Scholar
  92. 92.
    Nakao M, Inoue S, Oishi R, Yoshinobu T, Iwasaki H (1995) Observation of microorganism colonies using a scanning-laser-beam pH-sensing microscope. J Ferment Bioeng 79:163–166CrossRefGoogle Scholar
  93. 93.
    Stein B, George M, Gaub HE, Behrends JC, Parak WJ (2003) Spatially resolved monitoring of cellular metabolic activity with a semiconductor-based biosensor. Biosens Bioelectron 18:31–41PubMedCrossRefGoogle Scholar
  94. 94.
    Werner CF, Krumbe C, Schumacher K, Groebel S, Spelthahn H, Stellberg M, Wagner T, Yoshinobu T, Selmer T, Keusgen M, Baumann MEM, Schöning MJ (2011) Determination of the extracellular acidification of Escherichia coli by a light-addressable potentiometric sensor. Phys Status Solidi A 208:1340–1344CrossRefGoogle Scholar
  95. 95.
    Hiraishi N, Kitasako Y, Nikaido T, Foxton RM, Tagami J, Nomura S (2003) Acidity of conventional luting cements and their diffusion through bovine dentine. Int Endod J 36:622–628PubMedCrossRefGoogle Scholar
  96. 96.
    Murakami K, Kitasako Y, Burrow MF, Tagami J (2006) In vitro pH analysis of active and arrested dentinal caries in extracted human teeth using a micro pH sensor. Dent Mater J 25:423–429PubMedCrossRefGoogle Scholar
  97. 97.
    Miyamoto K, Ichimura H, Wagner T, Schöning MJ, Yoshinobu T (2013) Chemical imaging of the concentration profile of ion diffusion in a microfluidic channel. Sensors Actuators B Chem 189:240–245CrossRefGoogle Scholar
  98. 98.
    Wang J, Zhou Y, Watkinson M, Gautrot J, Krause S (2015) High-sensitivity light-addressable potentiometric sensors using silicon on sapphire functionalized with self-assembled organic monolayers. Sensors Actuators B Chem 209:230–236CrossRefGoogle Scholar
  99. 99.
    Wang J, Wu F, Watkinson M, Zhu J, Krause S (2015) “Click” patterning of self-assembled monolayers on hydrogen-terminated silicon surfaces and their characterization using light-addressable potentiometric sensors. Langmuir 31:9646–9654PubMedCrossRefGoogle Scholar
  100. 100.
    Wu F, Zhang DW, Wang J, Watkinson M, Krause S (2017) Copper contamination of self-assembled organic monolayer modified silicon surfaces following a ‘click’ reaction characterized with LAPS and SPIM. Langmuir 33:3170–3777PubMedCrossRefGoogle Scholar
  101. 101.
    Wang J, Campos I, Wu F, Zhu J, Sukhorukov GB, Palma M, Watkinson M, Krause S (2016) The effect of gold nanoparticles on the impedance of microcapsules visualized by scanning photo-induced impedance microscopy. Electrochim Acta 208:39–46CrossRefGoogle Scholar
  102. 102.
    Zhang DW, Wu F, Wang J, Watkinson M, Krause S (2016) Image detection of yeast Saccharomyces cerevisiae by light-addressable potentiometric sensors (LAPS). Electrochem Commun 72:41–45CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Tatsuo Yoshinobu
    • 1
    • 2
    Email author
  • Steffi Krause
    • 3
  • Ko-ichiro Miyamoto
    • 2
  • Carl Frederik Werner
    • 2
  • Arshak Poghossian
    • 4
    • 5
  • Torsten Wagner
    • 4
    • 5
  • Michael J. Schöning
    • 4
    • 5
  1. 1.Department of Biomedical EngineeringTohoku UniversitySendaiJapan
  2. 2.Department of Electronic EngineeringTohoku UniversitySendaiJapan
  3. 3.School of Engineering and Materials ScienceQueen Mary University of LondonLondonUK
  4. 4.Institute of Nano- and BiotechnologiesAachen University of Applied SciencesJülichGermany
  5. 5.Institute of Complex Systems (ICS-8), Forschungszentrum Jülich GmbHJülichGermany

Personalised recommendations