Advertisement

Label-Free Biosensors Based on III-Nitride Semiconductors

  • Volker Cimalla
Chapter
Part of the Springer Series on Chemical Sensors and Biosensors book series (SSSENSORS, volume 16)

Abstract

Chip-based biosensor devices received an increased attention for medical and pharmaceutical screening as well as for environmental monitoring. Most semiconductor devices such as the highly developed Si-based ISFET are, however, not sufficiently stable up to date. Due to their superior chemical stability in electrolytes and their biocompatibility, group III-nitrides emerged as promising electronic transducer material for biosensors. Moreover, their transparency for visible light enables the simultaneous application of optical measurements, which are standard in biology and medicine. In this chapter, fabrication and properties of group III-nitride electronic biosensors are discussed with a main focus on AlGaN/GaN field-effect transistors. Using appropriate designs and functionalization, highly sensitive group III-nitride-based biosensors can be realized for a large variety of applications including detection of ions, biomolecules, toxins, deoxyribonucleic acid (DNA), proteins, and even explosives. In addition, other sensor concepts employing other members of the group III-nitride family (InN, AlN, and solid solutions) as well as alternative transducer concepts (optical, mechanical) are discussed shortly. Finally, the possibilities for the integration of such biosensors are addressed.

Keywords

Biosensor Field-effect transistor Group III-nitrides High-electron-mobility transistor Semiconductor 

References

  1. 1.
    Calladine CR, Drew H, Luisi BF, Travers AA (2004) Understanding DNA: the molecule and how it works. Elsevier Academic Press, San DiegoGoogle Scholar
  2. 2.
    Zourob M, Elwary S, Turner APF (eds) (2008) Principles of bacterial detection: biosensors, recognition receptors and microsystems. Springer Science & Business Media LLC, New YorkGoogle Scholar
  3. 3.
    Tüdos AJ, Besselink GAJ, Schasfoort RBM (2001) Trends in miniaturized total analysis systems for point-of-care testing in clinical chemistry. Lab Chip 1:83–95PubMedCrossRefGoogle Scholar
  4. 4.
    Rodriguez-Mozaz S, de Lopez Alda M, Barceló D (2006) Biosensors as useful tools for environmental analysis and monitoring. Anal Bioanal Chem 386:1025–1041PubMedCrossRefGoogle Scholar
  5. 5.
    LaGier MJ, Fell JW, Goodwin KD (2007) Electrochemical detection of harmful algae and other microbial contaminants in coastal waters using hand-held biosensors. Mar Pollut Bull 54:757–770PubMedCrossRefGoogle Scholar
  6. 6.
    Yu D, Blankert B, Viré JC, Kauffmann JM (2005) Biosensors in drug discovery and drug analysis. Anal Lett 38:1687–1701CrossRefGoogle Scholar
  7. 7.
    Nic M, Jirat J, Kosata B (2016) IUPAC Compendium of Chemical Terminology. http://goldbook.iupac.org/html/B/B00663.html. Accessed 02 Nov 2016
  8. 8.
    Clark LC, Lyons C (1962) Electrode systems for continuous monitoring in cardiovascular surgery. Ann N Y Acad Sci 102:29–45PubMedCrossRefGoogle Scholar
  9. 9.
    Bashir R (2004) BioMEMS: state-of-the-art in detection, opportunities and prospects. Adv Drug Deliv Rev 56:1565–1586PubMedCrossRefGoogle Scholar
  10. 10.
    Gooding J (2006) Biosensor technology for detecting biological warfare agents: recent progress and future trends. Anal Chim Acta 559:137–151CrossRefGoogle Scholar
  11. 11.
    Bergveld P (1970) Development of an ion-sensitive solid-state device for neurophysiological measurements. IEEE Trans Biomed Eng 17:70–71PubMedCrossRefGoogle Scholar
  12. 12.
    Madou MJ (1989) Chemical sensing with solid state devices. Academic Press, BostonGoogle Scholar
  13. 13.
    Chaniotakis N, Sofikiti N (2008) Novel semiconductor materials for the development of chemical sensors and biosensors: a review. Anal Chim Acta 615:1–9PubMedCrossRefGoogle Scholar
  14. 14.
    Pearton SJ, Ren F, Wang YL, Chu BH, Chen KH, Chen KH, Chang CY, Lim W, Lin J, Norton DP (2010) Recent advances in wide bandgap semiconductor biological and gas sensors. Prog Mater Sci 55:1–59CrossRefGoogle Scholar
  15. 15.
    Gil B (ed) (1998) Group III nitride semiconductor compounds: physics and applications. Clarendon Press, OxfordGoogle Scholar
  16. 16.
    Maruska HP, Tietjen JJ (1969) The preparation and properties of vapor-deposited single-crystal-line GaN. Appl Phys Lett 15:327–329CrossRefGoogle Scholar
  17. 17.
    Nakamura S, Mukai T, Senoh M, Iwasa N (1992) Thermal annealing effects on p-type Mg-doped GaN films. Jpn J Appl Phys Part 2 31:L139–L142CrossRefGoogle Scholar
  18. 18.
    Nakamura S, Mukai T, Senoh M (1994) Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes. Appl Phys Lett 64:1687–1689CrossRefGoogle Scholar
  19. 19.
    Wu J, Walukiewicz W, KM Y, Ager III JW, Haller EE, Lu H, Schaff WJ, Saito Y, Nanishi Y (2002) Unusual properties of the fundamental band gap of InN. Appl Phys Lett 80:3967–3969CrossRefGoogle Scholar
  20. 20.
    Yoshida S, Misawa S, Gonda S (1982) Properties of AlxGa1-xN films prepared by reactive molecular beam epitaxy. J Appl Phys 53:6844–6848CrossRefGoogle Scholar
  21. 21.
    Lebedev V, Cimalla I, Cimalla V, Wagner R, Kaiser U, Ambacher O (2005) Defect related absorption and emission in AlGaN solar-blind UV photodetectors. Phys Status Solidi C 2:1360–1365CrossRefGoogle Scholar
  22. 22.
    Monemar B (1974) Fundamental energy gap of GaN from photoluminescence excitation spectra. Phys Rev B 10:676–681CrossRefGoogle Scholar
  23. 23.
    Cimalla I, Will F, Tonisch K, Niebelschütz M, Cimalla V, Lebedev V, Kittler G, Himmerlich M, Krischok S, Schaefer JA, Gebinoga M, Schober A, Friedrich T, Ambacher O (2007) AlGaN/GaN biosensor – effect of device processing steps on the surface properties and biocompatibility. Sensors Actuators B 123:740–748CrossRefGoogle Scholar
  24. 24.
    Neuberger A, Müller G, Ambacher O, Stutzmann M (2001) High-electron-mobility AlGaN/GaN transistors (HEMTs) for fluid monitoring applications. Phys Status Solidi A 185:85–89CrossRefGoogle Scholar
  25. 25.
    Alifragis Y, Georgakilas A, Konstantinidis G, Iliopoulos E, Kostopoulos A, Chaniotakis NA (2005) Response to anions of AlGaN/GaN high-electron-mobility transistors. Appl Phys Lett 87:253507CrossRefGoogle Scholar
  26. 26.
    Buchheim C, Kittler G, Cimalla V, Lebedev V, Fischer M, Krischok S, Yanev V, Himmerlich M, Ecke G, Schaefer JA, Ambacher O (2006) Tuning of surface properties of AlGaN/GaN sensors for nano- and picodroplets. IEEE Sensors J 6:881–886CrossRefGoogle Scholar
  27. 27.
    Steinhoff G, Baur B, Wrobel G, Ingebrandt S, Offenhäusser A, Dadgar A, Krost A, Stutzmann M, Eickhoff M (2005) Recording of cell action potentials with AlGaN/GaN field-effect transistors. Appl Phys Lett 86:033901CrossRefGoogle Scholar
  28. 28.
    Kang BS, Mehandru R, Kim S, Ren F, Fitch RC, Gillespie JK, Moser N, Jessen G, Jenkins T, Dettmer R, Via D, Crespo A, Gila BP, Abernathy CR, Pearton SJ (2004) Hydrogen-induced reversible changes in drain current in Sc2O3/AlGaN/GaN high electron mobility transistors. Appl Phys Lett 84:46354637Google Scholar
  29. 29.
    Kokawa T, Sato T, Hasegawa H, Hashizume T (2006) Liquid-phase sensors using open-gate AlGaN/GaN high electron mobility transistor structure. J Vac Sci Technol B 24:1972–1976CrossRefGoogle Scholar
  30. 30.
    Hartmann C, Dittmar A, Wollweber J, Bickermann M (2014) Bulk AlN growth by physical vapour transport. Semicond Sci Technol 29:084002CrossRefGoogle Scholar
  31. 31.
    Ambacher O (1998) Growth and applications of group III-nitrides. J Phys D Appl Phys 31:2653–2710CrossRefGoogle Scholar
  32. 32.
    Cimalla V, Pezoldt J, Ambacher O (2007) Group III nitride and SiC based MEMS and NEMS: materials properties, technology and applications. J Phys D Appl Phys 40:6386–6434CrossRefGoogle Scholar
  33. 33.
    Ibbetson JP, Fini PT, Ness KD, DenBaars SP, Speck JS, Mishra UK (2000) Polarization effects, surface states, and the source of electrons in AlGaN/GaN heterostructure field effect transistors. Appl Phys Lett 77:250–252CrossRefGoogle Scholar
  34. 34.
    Flack TJ, Pushpakaran BN, Bayne AB (2016) GaN technology for power electronic applications: a review. J Electron Mater 45:2673–2682CrossRefGoogle Scholar
  35. 35.
    Mahboob I, Veal TD, Piper LFJ, McConville CF, Lu H, Schaff WJ, Furthmüller J, Bechstedt F (2004) Origin of electron accumulation at wurtzite InN surfaces. Phys Rev B 69:R201307CrossRefGoogle Scholar
  36. 36.
    Cimalla V, Niebelschütz M, Ecke G, Lebedev V, Ambacher O, Himmerlich M, Krischok S, Schaefer JA, Lu H, Schaff WJ (2006) Surface band bending at nominally undoped and Mg-doped InN by Auger Electron Spectroscopy. Phys Status Solidi A 203:59–65CrossRefGoogle Scholar
  37. 37.
    Eickhoff M, Schalwig J, Steinhoff G, Weidemann O, Görgens L, Neuberger R, Hermann M, Baur B, Müller G, Ambacher O, Stutzmann M (2003) Electronics and sensors based on pyroelectric AlGaN/GaN heterostructures. Phys Status Solidi C 0:1908–1918CrossRefGoogle Scholar
  38. 38.
    Pearton SJ, Kang BS, Kim S, Ren F, Gila BP, Abernathy CR, Lin J, Chu SNG (2004) GaN-based diodes and transistors for chemical, gas, biological and pressure sensing. J Phys Condens Matter 16:R961–R994CrossRefGoogle Scholar
  39. 39.
    Ambacher O, Cimalla V (2008) Polarization induced effects in GaN-based heterostructures and novel sensors. In: Wood C, Jena D (eds) Polarization effects in semiconductors: from ab initio to device application. Springer, New York, pp 27–109CrossRefGoogle Scholar
  40. 40.
    Cimalla I, Lübbers B, Cimalla V, Gebinoga M, Schober A, Ambacher O (2009) Group III-nitride based sensors – advances towards a new generation of biosensors. In: Ho-Young C (ed) Advanced semiconductor materials and devices research: III-nitrides and SiC. Transworld Research Network, Trivandrum, pp 341–374Google Scholar
  41. 41.
    Pearton SJ, Zolper JC, Shul RJ, Ren F (1999) GaN: processing, defects, and devices. J Appl Phys 86:1–78CrossRefGoogle Scholar
  42. 42.
    Young TH, Chen CR (2006) Assessment of GaN chips for culturing cerebellar granule neurons. Biomaterials 27:3361–3367PubMedCrossRefGoogle Scholar
  43. 43.
    Das A, Das A, Chang LB, Lai CS, Lin RM, Chu FC, Lin YH, Chow L, Jeng MJ (2013) GaN thin film based light addressable potentiometric sensor for pH sensing application. Appl Phys Express 6:036601CrossRefGoogle Scholar
  44. 44.
    Lübbers B, Kittler G, Ort P, Linkohr S, Wegener D, Baur B, Gebinoga M, Weise F, Eickhoff M, Maroldt S, Schober A, Ambacher O (2008) A novel GaN-based multiparameter sensor system for biochemical analysis. Phys Status Solidi C 5:2361–2363CrossRefGoogle Scholar
  45. 45.
    Wong KY, Tang W, Lau KM, Chen KJ (2007) Surface acoustic wave device on AlGaN/GaN heterostructure using two-dimensional electron gas interdigital transducers. Appl Phys Lett 90:213506CrossRefGoogle Scholar
  46. 46.
    Sang S, Wang Y, Feng Q, Wei Y, Ji J, Zhang W (2016) Progress of new label-free techniques for biosensors: a review. Crit Rev Biotechnol 36:465–468PubMedGoogle Scholar
  47. 47.
    Chaniotakis NA, Alifragis Y, Konstantinidis G, Georgakilas A (2004) Gallium nitride-based potentiometric anion sensor. Anal Chem 76:5552–5556PubMedCrossRefGoogle Scholar
  48. 48.
    Simpkins B, McCoy K, Whitman L, Pehrsson P (2007) Fabrication and characterization of DNA-functionalized GaN nanowires. Nanotechnology 18:355301CrossRefGoogle Scholar
  49. 49.
    Schöning MJ, Poghossian A (2002) Recent advances in biologically sensitive field-effect transistors (BioFETs). Analyst 127:1137–1151PubMedCrossRefGoogle Scholar
  50. 50.
    Neuberger R, Müller G, Eickhoff M, Ambacher O, Stutzmann M (2002) Observation of ion-induced changes in the channel current of high electron mobility AlGaN/GaN transistors (HEMT). Mater Sci Eng B 93:143–146CrossRefGoogle Scholar
  51. 51.
    Linkohr S, Pletschen W, Polyakov V, Himmerlich M, Lorenz P, Krischok S, Kirste L, Müller S, Ambacher O, Cimalla V (2012) Influence of plasma treatments on the properties of GaN/AlGaN/GaN HEMT structures. Phys Status Solidi C 9:1096–1098CrossRefGoogle Scholar
  52. 52.
    Binari SC, Dietrich HB, Kelner G, Rowland LB, Doverspike K, Wickenden DK (1995) H, He, and N implant isolation of n-type GaN. J Appl Phys 78:3008–3011CrossRefGoogle Scholar
  53. 53.
    Schober A, Kittler G, Buchheim C, Majdeddin A, Cimalla V, Fischer M, Yanev V, Himmerlich M, Krischok S, Schaefer JA, Romanus H, Sändig T, Burgold J, Weise F, Wurmus H, Drüe KH, Hintz M, Thust H, Gebinoga M, Kittler M, Spitznas A, Gottwald E, Weibezahn KF, Wegener D, Schwienhorst A, Ambacher O (2005) A novel class of sensors for system integrative concepts in biotechnological applications. In: Technical Proceedings of the 2005 NSTI Nanotechnology Conference and Trade Show, vol 1, pp 489–495Google Scholar
  54. 54.
    Fan Z, Mohammand SN, Kim W, Aktas O, Botchkarev AE, Morkoc H (1996) Very low resistance multilayer Ohmic contact to n-GaN. Appl Phys Lett 68:16721674Google Scholar
  55. 55.
    Kang BS, Pearton SJ, Chen JJ, Ren F, Johnson JW, Therrin RJ, Rajagopal P, Roberts JC, Piner EL, Linthicum KJ (2006) Electrical detection of deoxyribonucleic acid hybridization with AlGaN/GaN high electron mobility transistors. Appl Phys Lett 89:122102CrossRefGoogle Scholar
  56. 56.
    Kang BS, Ren F, Wang L, Lofton C, Tan WW, Pearton SJ, Dabiran A, Osinsky A, Chow PP (2005) Electrical detection of immobilized proteins with ungated AlGaN/GaN high-electron-mobility transistors. Appl Phys Lett 87:023508CrossRefGoogle Scholar
  57. 57.
    Kang BS, Wang HT, Lele TP, Tseng Y, Ren F, Pearton SJ, Johnson JW, Rajagopal P, Roberts JC, Piner EL, Linthicum KJ (2007) Prostate specific antigen detection using AlGaN/GaN high electron mobility transistors. Appl Phys Lett 91:112106CrossRefGoogle Scholar
  58. 58.
    Podolska A, Kocan M, Cabezas AMG, Wilson TD, Umana-Membreno GA, Nener BD, Parish G, Keller S, Mishra UK (2010) Ion versus pH sensitivity of ungated AlGaN/GaN heterostructure-based devices. Appl Phys Lett 97:012108CrossRefGoogle Scholar
  59. 59.
    Steinhoff G, Hermann M, Schaff WJ, Eastman LF, Stutzmann M, Eickhoff M (2003) pH response of GaN surfaces and its application for pH-sensitive field-effect-transistors. Appl Phys Lett 83:177–179CrossRefGoogle Scholar
  60. 60.
    Kittler G (2007) GaN-basierte pH-Sensoren: Empfindlichkeit, Drift und Passivierungstechnologien. Thesis, TU Ilmenau. urn:nbn:de:gbv:ilm1-2008000012Google Scholar
  61. 61.
    Yates DE, Levine S, Healy TW (1974) Site-binding model of the electrical double layer at the oxide/water interface. J Chem Soc Faraday Trans 1:1807–1818CrossRefGoogle Scholar
  62. 62.
    Bayer M, Uhl C, Vogl P (2005) Theoretical study of electrolyte gate AlGaN/GaN field effect transistors. J Appl Phys 97:33703CrossRefGoogle Scholar
  63. 63.
    Kang BS, Ren F, Kang MC, Lofton C, Ran W, Pearton SJ, Dabiran A, Osinsky A, Chow PP (2005) Detection of halide ions with AlGaN/GaN high electron mobility transistors. Appl Phys Lett 86:173502CrossRefGoogle Scholar
  64. 64.
    Alifragis Y, Volosirakis A, Chaniotakis NA, Konstantinidis G, Adikimenakis A, Georgakilas A (2007) Potassium selective chemically modified field effect transistors based on AlGaN/GaN two-dimensional electron gas heterostructures. Biosens Bioelectron 22:2796–2801PubMedCrossRefGoogle Scholar
  65. 65.
    Steinhoff G, Purrucker O, Tanaka M, Stutzmann M, Eickhoff M (2003) AlxGa1-xN – a new material for biosensors. Adv Funct Mater 13:841–846CrossRefGoogle Scholar
  66. 66.
    Mourzina YG, Schubert J, Zander W, Legin A, Vlasov YG, Lüth H, Schöning MJ (2001) Development of multisensor systems based on chalcogenide thin film chemical sensors for the simultaneous multicomponent analysis of metal ions in complex solutions. Electrochim Acta 47:251–258CrossRefGoogle Scholar
  67. 67.
    Brazzini T, Bengoechea-Encabo A, Sánchez-García MA, Calle F (2013) Investigation of AlInN barrier ISFET structures with GaN capping for pH detection. Sensors Actuators B 176:704–707CrossRefGoogle Scholar
  68. 68.
    Lübbers B (2012) AlGaN-based pH-sensors. Impedance characterisation, optimisation and application for foetal blood sampling. Thesis, TU Ilmenau. urn:nbn:de:gbv:ilm1-2012000298Google Scholar
  69. 69.
    Kittler G, Spitznas A, Lübbers B, Lebedev V, Wegener D, Gebinoga M, Weise F, Schober A, Ambacher O (2007) Advances in III-V nitride semiconductor materials and devices. In: Materials Research Society Symposium Proceedings, Warrendale, PA I14-03Google Scholar
  70. 70.
    Chaniotakis NA, Alifragis Y, Georgakilas A, Konstantinidis G (2005) GaN-based anion selective sensor: probing the origin of the induced electrochemical potential. Appl Phys Lett 86:164103CrossRefGoogle Scholar
  71. 71.
    Kang BS, Wang HT, Ren F, Hlad M, Gila BP, Abernathy CR, Pearton SJ, Li C, Low ZN, Lin J, Johnson JW, Rajagopal P, Roberts JC, Piner EL, Linthicum KJ (2008) Role of gate oxide in AlGaN/GaN high-electron-mobility transistor pH sensors. J Electron Mater 37:550–553CrossRefGoogle Scholar
  72. 72.
    Baur B, Steinhoff G, Hernando J, Purrucker O, Tanaka M, Nickel B, Stutzmann M, Eickhoff M (2005) Chemical functionalization of GaN and AlN surfaces. Appl Phys Lett 87:263901CrossRefGoogle Scholar
  73. 73.
    Abe H, Esashi M, Matsuo T (1979) ISFET’s using inorganic gate films. IEEE Trans Electron Dev 26:1939–1944CrossRefGoogle Scholar
  74. 74.
    Prabhakaran K, Andersson T, Nozawa K (1996) Nature of native oxide on GaN surface and its reaction with Al. Appl Phys Lett 69:3212–3214CrossRefGoogle Scholar
  75. 75.
    Eickhoff M, Neuberger R, Steinhoff G, Ambacher O, Müller G, Stutzmann M (2001) Wetting behaviour of GaN surfaces with Ga- or N-face polarity. Phys Status Solidi B 228:519–522CrossRefGoogle Scholar
  76. 76.
    Lide DR (2003) CRC handbook of chemistry and physics.84th edn. CRC Press, Boca RatonGoogle Scholar
  77. 77.
    Tajima M, Kotani J, Hashizume T (2009) Effects of surface oxidation of AlGaN on dc characteristics of AlGaN/GaN high-electron-mobility transistors. Jpn J Appl Phys 48:020203CrossRefGoogle Scholar
  78. 78.
    Linkohr S, Pletschen W, Kirste L, Himmerlich M, Lorenz P, Krischok S, Polyakov V, Müller S, Ambacher O, Cimalla V (2012) Plasma affected 2DEG properties on GaN/AlGaN/GaN HEMTs. Phys Status Solidi C 9:938–941CrossRefGoogle Scholar
  79. 79.
    Chen CC, Chen HI, Liu HY, Chou PC, Liou JK, Liu WC (2015) On a GaN-based ion sensitive field-effect transistor (ISFET) with a hydrogen peroxide surface treatment. Sensors Actuators B 209:658–663CrossRefGoogle Scholar
  80. 80.
    Harada N, Hori Y, Azumaishi N, Ohi K, Hashizume T (2011) Formation of recessed-oxide gate for normally-off AlGaN/GaN high electron mobility transistors using selective electrochemical oxidation. Appl Phys Express 4:021002CrossRefGoogle Scholar
  81. 81.
    Foster CM, Collazo R, Sitar Z, Ivanisevic A (2012) Aqueous stability of Ga- and N-polar gallium nitride. Langmuir 29:216–220PubMedCrossRefGoogle Scholar
  82. 82.
    King SW, Barnak JP, Bremser MD, Tracy KM, Ronning C, Davis RF, Nemanich RJ (1998) Cleaning of AlN and GaN surfaces. J Appl Phys 84:5248–5260CrossRefGoogle Scholar
  83. 83.
    Lee KN, Donovan SM, Gila B, Overberg M, Mackenzie JD, Abernathy CR, Wilson RG (2000) Surface chemical treatment for the cleaning of AlN and GaN surfaces. J Electrochem Soc 147:3087–3090CrossRefGoogle Scholar
  84. 84.
    Huh C, Kim SW, Kim HS, Lee IH, Park SJ (2000) Effective sulfur passivation of an n-type GaN surface by an alcohol-based sulfide solution. J Appl Phys 87:4591–4593CrossRefGoogle Scholar
  85. 85.
    Linkohr S, Pletschen W, Schwarz SU, Anzt J, Cimalla V, Ambacher O (2013) CIP (cleaning-in-place) stability of AlGaN/GaN pH sensors. J Biotechnol 163:354–361PubMedCrossRefGoogle Scholar
  86. 86.
    Li J, Han Q, Zhang Y, Zhang W, Dong M, Besenbacher F, Yang R, Wang C (2013) Optical regulation of protein adsorption and cell adhesion by photoresponsive GaN nanowires. ACS Appl Mater Interfaces 5:9816–9822PubMedCrossRefGoogle Scholar
  87. 87.
    Hashizume T, Hasegawa H (2004) Effects of nitrogen deficiency on electronic properties of AlGaN surfaces subjected to thermal and plasma processes. Appl Surf Sci 234:387–394CrossRefGoogle Scholar
  88. 88.
    Kim HS, Lee YH, Yeom GY, Lee JW, Kim TI (1997) Effects of inductively coupled plasma conditions on the etch properties of GaN and ohmic contact formations. Mater Sci Eng B 50:82–87CrossRefGoogle Scholar
  89. 89.
    Cimalla V, Lebedev V, Linkohr S, Cimalla I, Lübbers B, Tonisch K, Brückner K, Niebelschütz F, Hein M, Ambacher O (2008) Nitride based sensors. In: Proceedings of the 17th European Workshop on Heterostructure Technology HETECH, Venice, Italy, 3–5 November, pp 33–40Google Scholar
  90. 90.
    Cimalla I (2011) AlGaN/GaN sensors for direct monitoring of fluids and bioreactions. Universitätsverlag Ilmenau, IlmenauGoogle Scholar
  91. 91.
    Makowski MS, Kim S, Gaillard M, Janes D, Manfra MJ, Bryan I, Sitar Z, Arellano C, Xie J, Collazo R, Ivanisevic A (2013) Physisorption of functionalized gold nanoparticles on AlGaN/GaN high electron mobility transistors for sensing applications. Appl Phys Lett 102:074102PubMedCentralCrossRefGoogle Scholar
  92. 92.
    Guo Y, Wang X, Miao B, Li Y, Yao W, Xie Y, Li J, Wu D, Pei R (2015) An AuNPs-functionalized AlGaN/GaN high electron mobility transistor sensor for ultrasensitive detection of TNT. RSC Adv 5:98724–98729CrossRefGoogle Scholar
  93. 93.
    Bermudez V (2002) Functionalizing the GaN(0001)-(1×1) surface I. The chemisorption of aniline. Surf Sci 499:109–124CrossRefGoogle Scholar
  94. 94.
    Bermudez V (2002) Functionalizing the GaN(0001)-(1×1) surface II. Chemisorption of 3-pyrroline. Surf Sci 499:124–134CrossRefGoogle Scholar
  95. 95.
    Xu X, Jindal V, Shahedipour-Sandvik F, Bergkvist M, Cady NC (2009) Direct immobilization and hybridization of DNA on group III nitride semiconductors. Appl Surf Sci 255:5905–5909CrossRefGoogle Scholar
  96. 96.
    Yakimova R, Steinhoff G, Petoral RMJR, Vahlberg C, Khranovskyy V, Yazdi GR, Uvdal K, Lloyd Spetz A (2007) Novel material concepts of transducers for chemical and biosensors. Biosens Bioelectron 22:2780–2785PubMedCrossRefGoogle Scholar
  97. 97.
    Kim H, Colavita PE, Paoprasert P, Gopalan P, Kuech TF, Hamers RJ (2008) Grafting of molecular layers to oxidized gallium nitride surfaces via phosphonic acid linkages. Surf Sci 602:2382–2388CrossRefGoogle Scholar
  98. 98.
    Arranz A, Palacio C, García-Fresnadillo D, Orellana G, Navarro A, Munoz E (2008) Influence of surface hydroxylation on 3-aminopropyltriethoxysilane growth mode during chemical functionalization of GaN surfaces: an angle-resolved x-ray photoelectron spectroscopy study. Langmuir 24:8667–8671PubMedCrossRefGoogle Scholar
  99. 99.
    Arisio C, Cassou CA, Lieberman M (2013) Loss of siloxane monolayers from GaN surfaces in water. Langmuir 29:5145–5149PubMedCrossRefGoogle Scholar
  100. 100.
    Schwarz SU (2013) Biofunktionalisierung und -sensorik mit AlGaN/GaN-Feldeffekttransistoren. Thesis, Albert-Ludwigs-Universität Freiburg URN: urn:nbn:de:bsz:25-opus-93594Google Scholar
  101. 101.
    Rohrbaugh N, Bryan I, Bryan Z, Arellano C, Collazo R, Ivanisevic A (2014) AlGaN/GaN field effect transistors functionalized with recognition peptides. Appl Phys Lett 105:134103CrossRefGoogle Scholar
  102. 102.
    Stine R, Simpkins BS, Mulvaney SP, Whitman LJ, Tamanaha CR (2010) Formation of amine groups on the surface of GaN: a method for direct biofunctionalization. Appl Surf Sci 256:4171–4175CrossRefGoogle Scholar
  103. 103.
    Berg NG, Nolan M, Paskova T, Ivanisevic A (2014) Characterization of gallium nitride modified with peptides before and after exposure to ionizing radiation. Langmuir 30:15477–15485PubMedCrossRefGoogle Scholar
  104. 104.
    Kim H, Colavita PE, Metz KM, Nichols BM, Sun B, Uhlrich J, Wang X, Kuech TF, Hamers RJ (2006) Photochemical functionalization of gallium nitride thin films with molecular and biomolecular layers. Langmuir 22(19):8121–8126PubMedCrossRefGoogle Scholar
  105. 105.
    Wang C, Zhuang H, Huang N, Heuser S, Schlemper C, Zhai Z, Liu B, Staedler T, Jiang X (2016) Photochemical modification of single crystalline GaN film using n-alkene with different carbon chain lengths as biolinker. Langmuir 32:5731–5737PubMedCrossRefGoogle Scholar
  106. 106.
    Caras S, Janata J (1980) Field effect transistor sensitive to penicillin. Anal Chem 52:1935–1937CrossRefGoogle Scholar
  107. 107.
    Linkohr S, Schwarz SU, Krischok S, Lorenz P, Nakamura T, Polyakov V, Cimalla V, Nebel CE, Ambacher O (2010) A novel functionalization of AlGaN/GaN-pH-Sensors for DNA-sensors. Mater Res Soc Symp Proc 1202:I06–I02Google Scholar
  108. 108.
    Schwarz SU, Linkohr S, Lorenz P, Krischok S, Nakamura T, Cimalla V, Nebel CE, Ambacher O (2011) DNA-sensor based on AlGaN/GaN high electron mobility transistor. Phys Status Solidi A 208:1626–1629CrossRefGoogle Scholar
  109. 109.
    Wilkins SJ, Paskova T, Reynolds Jr CL, Ivanisevic A (2015) Comparison of the stability of functionalized GaN and GaP. ChemPhysChem 16:1687–1694PubMedCrossRefGoogle Scholar
  110. 110.
    Chiu CS, Lee HM, Gwo S (2010) Site-selective biofunctionalization of aluminum nitride surfaces using patterned organosilane self-assembled monolayers. Langmuir 26:2969–2974PubMedCrossRefGoogle Scholar
  111. 111.
    Chan EHM (2015) Surface functionalization of piezoelectric aluminum nitride with selected amino acid and peptides. Thesis, University of TorontoGoogle Scholar
  112. 112.
    Chen CF, CL W, Gwo S (2006) Organosilane functionalization of InN surface. Appl Phys Lett 89:252109CrossRefGoogle Scholar
  113. 113.
    Kao KW, Su YW, Lu YS, Yao DJ, Gwo S, Yeh JA (2012) Calcium ions detection using miniaturized InN-based sensor. In: Proceedings of MEMS, Paris, France, 29 January, pp 781–783Google Scholar
  114. 114.
    Bain LE, Jewett SA, Mukund AH, Bedair SM, Paskova TM, Ivanisevic A (2013) Biomolecular gradients via semiconductor gradients: characterization of amino acid adsorption to InxGa1−xN surfaces. ACS Appl Mater Interfaces 5:7236–7243PubMedCrossRefGoogle Scholar
  115. 115.
    Baur B, Howgate J, von Ribbeck HG, Gawlina Y, Bandalo V, Steinhoff G, Stutzmann M, Eickhoff M (2006) Catalytic activity of enzymes immobilized on AlGaN/GaN solution gate field-effect transistors. Appl Phys Lett 89:183901CrossRefGoogle Scholar
  116. 116.
    Müntze GM, Baur B, Schäfer W, Sasse A, Howgate J, Röth K, Eickhoff M (2015) Quantitative analysis of immobilized penicillinase using enzyme-modified AlGaN/GaN field-effect transistors. Biosens Bioelectron 64:605–610PubMedCrossRefGoogle Scholar
  117. 117.
    Chu BH, Kang BS, Ren F, Chang CY, Wang YL, Pearton SJ, Glushakov AV, Dennis DM, Johnson JW, Rajagopal P, Roberts JC, Piner EL, Linthicum KJ (2008) Enzyme-based lactic acid detection using AlGaN/GaN high electron mobility transistors with ZnO nanorods grown on the gate region. Appl Phys Lett 93:042114CrossRefGoogle Scholar
  118. 118.
    Kang BS, Wang HT, Ren F, Pearton SJ, Morey LTE, Dennis DM, Johnson JW, Rajagopal P, Roberts JC, Piner EL, Linthicum KJ (2007) Enzymatic glucose detection using ZnO nanorods on the gate region of AlGaN/GaN high electron mobility transistors. Appl Phys Lett 91:252103CrossRefGoogle Scholar
  119. 119.
    Makowski MS, Bryan I, Sitar Z, Arellano C, Xie JQ, Collazo R, Ivanisevic A (2013) Kinase detection with gallium nitride based high electron mobility transistors. Appl Phys Lett 103:013701PubMedCentralCrossRefGoogle Scholar
  120. 120.
    Wang YL, Chu BH, Chen KH, Chang CY, Lele TP, Tseng Y, Pearton SJ, Ramage J, Hooten D, Dabiran A, Chow PP, Ren F (2008) Botulinum toxin detection using AlGaN/GaN high electron mobility transistors. Appl Phys Lett 93:262101CrossRefGoogle Scholar
  121. 121.
    Chen KH, Kang BS, Wang HT, Lele TP, Ren F, Wang YL, Chang CY, Pearton SJ, Dennis DM, Johnson JW, Rajagopal P, Roberts JC, Piner EL, Linthicum KJ (2008) c-erbB-2 sensing using AlGaN/GaN high electron mobility transistors for breast cancer detection. Appl Phys Lett 92:192103CrossRefGoogle Scholar
  122. 122.
    Espinosa N (2016) Dynamic detection of target-DNA with AlGaN/GaN high electron mobility transistors. Thesis, Albert-Ludwigs-Universität Freiburg.  https://doi.org/10.6094/UNIFR/11557
  123. 123.
    Chen KH, Wang HW, Kang BS, Chang CY, Wang YL, Lele TP, Ren F, Pearton SJ, Dabiran A, Osinsky A, Chow PP (2008) Low Hg(II) ion concentration electrical detection with AlGaN/GaN high electron mobility transistors. Sens Actuators B 134:386–389CrossRefGoogle Scholar
  124. 124.
    Bergveld P (1996) The future of biosensors. Sens Actuators A Phys 56:65–73CrossRefGoogle Scholar
  125. 125.
    Thapa R, Alur S, Kim K, Tong F, Sharma Y, Kim M, Ahyi C, Dai J, Hong JW, Bozack M, Williams J, Son A, Dabiran A, Park M (2012) Biofunctionalized AlGaN/GaN high electron mobility transistor for DNA hybridization detection. Appl Phys Lett 100:232109CrossRefGoogle Scholar
  126. 126.
    Espinosa N, Schwarz SU, Cimalla V, Podolska A, Ambacher O (2015) Dynamic detection of target-DNA with AlGaN/GaN high electron mobility transistors. Proc Eng 120:908–911CrossRefGoogle Scholar
  127. 127.
    Espinosa N, Schwarz SU, Cimalla V, Podolska A, Ambacher O (2015) Impedance characterization of DNA-functionalization layers on AlGaN/GaN high electron mobility transistors. Proc Eng 120:912–915CrossRefGoogle Scholar
  128. 128.
    Zeggai O, Ould-Abbas A, Bouchaour M, Zeggai H, Sahouane N, Madani M, Trari D, Boukais M, Chabane-Sari NE (2014) Biological detection by high electron mobility transistor (HEMT) based AlGaN/GaN. Phys Status Solidi C 11:274–279CrossRefGoogle Scholar
  129. 129.
    Wen XJ, Gupta S, Wang YJ, Nicholson TR, Lee SC, Lu W (2011) High sensitivity AlGaN/GaN field effect transistor protein sensors operated in the subthreshold regime by a control gate electrode. Appl Phys Lett 99:043701CrossRefGoogle Scholar
  130. 130.
    Gupta S, Elias M, Wen X, Shapiro J, Brillson L, Lu W, Lee SC (2008) Detection of clinically relevant levels of protein analyte under physiologic buffer using planar field effect transistors. Biosens Bioelectron 24:505–511PubMedCrossRefGoogle Scholar
  131. 131.
    Huang CC, Lee GY, Chyi JI, Cheng HT, Hsu CP, Hsu YR, Hsu CH, Huang YF, Sun YC, Chen CC, Li SS, Yeh JA, Yao DJ, Ren F, Wang YL (2013) AlGaN/GaN high electron mobility transistors for protein-peptide binding affinity study. Biosens Bioelectron 41:717–722PubMedCrossRefGoogle Scholar
  132. 132.
    Li JD, Cheng JJ, Miao B, Wei XW, Xie J, Zhang JC, Zhang ZQ, DM W (2014) Detection of prostate-specific antigen with biomolecule-gated AlGaN/GaN high electron mobility transistors. J Micromech Microeng 24:075023CrossRefGoogle Scholar
  133. 133.
    Huq HF, Trevino IIH, Castillo J (2016) Characteristics of AlGaN/GaN HEMTs for detection of MIG. J Mod Phys 7:1712–1724CrossRefGoogle Scholar
  134. 134.
    Casal P, Wen XJ, Gupta S, Nicholson T, Wang YJ, Theiss A, Bhushan B, Brillson L, Lu W, Lee SC (2012) Immuno FET feasibility in physiological salt environments. Phil Trans R Soc A 370:2474–2488PubMedCrossRefGoogle Scholar
  135. 135.
    Chu BH, Chang CY, Kroll K, Denslow N, Wang YL, Pearton SJ, Dabiran AM, Wowchak AM, Cui B, Chow PP, Ren F (2010) Detection of an endocrine disrupter biomarker, vitellogenin, in largemouth bass serum using AlGaN/GaN high electron mobility transistors. Appl Phys Lett 96:013701CrossRefGoogle Scholar
  136. 136.
    Wang HT, Kang BS, Ren F, Pearton SJ, Johnson JW, Wang HT, Kang BS, Ren F, Pearton SJ, Johnson JW, Rajagopal P, Roberts JC, Piner EL, Linthicum KJ (2007) Electrical detection of kidney injury molecule-1 with AlGaN/GaN high electron mobility transistors. Appl Phys Lett 91:222101CrossRefGoogle Scholar
  137. 137.
    Ren F, Pearton SJ, Kang BS, Chu BW (2011) AlGaN/GaN high electron mobility transistor based sensors for bio-applications. In: Serra PA (ed) Biosensors for health, environment and biosecurity. InTech, Rijeka, ISBN: 978-953-307-443-6Google Scholar
  138. 138.
    Lee HH, Bae M, Jo SH, Shin JK, Son DH, Won CH, Jeong HM, Lee JH, Kang SW (2015) AlGaN/GaN high electron mobility transistor-based biosensor for the detection of C-reactive protein. Sensors 15:18416–18426PubMedCrossRefGoogle Scholar
  139. 139.
    Wang Y, Lu W (2011) AlGaN/GaN FET for DNA hybridization detection. Phys Status Solidi A 208:1623–1625CrossRefGoogle Scholar
  140. 140.
    Espinosa N, Schwarz SU, Cimalla V, Ambacher O (2015) Detection of different target-DNA concentrations with highly sensitive AlGaN/GaN high electron mobility transistors. Sens Actuators B 210:633–639CrossRefGoogle Scholar
  141. 141.
    Fahrenkopf NM, Shahedipour-Sandvik F, Tokranova N, Bergkvist M, Cady NC (2010) Direct attachment or DNA to semiconducting surfaces for biosensor applications. J Biotechnol 150:312–314PubMedCrossRefGoogle Scholar
  142. 142.
    Gao XPA, Zheng G, Lieber CM (2010) Subthreshold regime has the optimal sensitivity for nanowire biosensors. Nano Lett 10:547–552PubMedPubMedCentralCrossRefGoogle Scholar
  143. 143.
    Ingebrandt S, Han Y, Nakamura F, Poghossian A, Schöning MJ, Offenhäusser A (2007) Label-free detection of single nucleotide polymorphisms utilizing the differential transfer function of field-effect transistors. Biosens Bioelectron 22:2834–2840CrossRefPubMedGoogle Scholar
  144. 144.
    Witte H, Lippelt T, Warnke C, Dadgar A, Hauser MJB, Krost A (2014) High-frequency detection of cell activity of Physarum polycephalum by a planar open gate AlGaN/GaN HEMT. J Phys D Appl Phys 47:425401CrossRefGoogle Scholar
  145. 145.
    Ozasa K, Nemoto S, Hara M, Maeda M (2006) Modification/oxidation of GaAs surface in electrolytes for cell-culture bio-sensing devices. Phys Status Solidi A 203:2287–2293CrossRefGoogle Scholar
  146. 146.
    Jewett SA, Makowski MS, Andrews B, Manfra MJ, Ivanisevic A (2012) Gallium nitride is biocompatible and non-toxic before and after functionalization with peptides. Acta Biomater 8:728–733PubMedCrossRefGoogle Scholar
  147. 147.
    Foster CM, Collazo R, Sitar Z, Ivanisevic A (2013) Cell behavior on gallium nitride surfaces: peptide affinity attachment versus covalent functionalization. Langmuir 29:837783–837784Google Scholar
  148. 148.
    Podolska A, Tham S, Hart RD, Seeber RM, Kocan M, Kocan M, Mishra UK, Pfleger KDG, Parish G, Nener PD (2012) Biocompatibility of semiconducting AlGaN/GaN material with living cells. Sens Actuators B 169:401–406CrossRefGoogle Scholar
  149. 149.
    Gebinoga M, Cimalla I, Silveira L, Klett M, Lebedev V, Tonisch K, Will F, Ambacher O, Schober A (2009) Response of nerve cell to inhibitor recorded by aluminum-gallium-nitride FET. In: Baraton MI (ed) Sensors for environment, health and security: advanced materials and technologies. Springer, New York, pp 311–318CrossRefGoogle Scholar
  150. 150.
    Podolska A, Hool LC, Pfleger KDG, Mishra UK, Parish G, Nener BD (2013) AlGaN/GaN-based biosensor for label-free detection of biological activity. Sens Actuators B 177:577–582CrossRefGoogle Scholar
  151. 151.
    Kumari TV, Vasudev U, Anil K, Menon B (2002) Cell surface interaction in the study of biocompatibility. Trends Biomater Artif Organs 15:37–41Google Scholar
  152. 152.
    Yu J, Jha SK, Xiao L, Liu Q, Wang P, Surya C, Yang M (2007) AlGaN/GaN heterostructures for non-invasive cell electrophysiological measurements. Biosens Bioelectron 23:513–519PubMedCrossRefGoogle Scholar
  153. 153.
    Hofstetter M, Howgate J, Schmid M, Schoell S, Sachsenhauser M, Adigüzel D, Stutzmann M, Sharp ID, Thalhammer S (2012) In vitro bio-functionality of gallium nitride sensors for radiation biophysics. Biochem Biophys Res Commun 424:348–353PubMedCrossRefGoogle Scholar
  154. 154.
    Cimalla V, Niebelschutz F, Tonisch K, Foerster C, Brueckner K, Cimalla I, Friedrich T, Pezoldt J, Stephan R, Hein M, Ambacher O (2007) Nanoelectromechanical devices for sensing applications. Sens Actuators B 126:24–34CrossRefGoogle Scholar
  155. 155.
    Linkohr S (2011) AlGaN/GaN-basierte-pH-Sensoren für biochemische Anwendungen. Thesis, Albert Ludwig Universität Freiburg. URN: urn:nbn:de:bsz:25-opus-84035Google Scholar
  156. 156.
    Anzt J, unpublished resultsGoogle Scholar
  157. 157.
    Berg NG, Paskova T, Ivanisevic A (2017) Tuning the biocompatibility of aluminum nitride. Mater Lett 189:1–4CrossRefGoogle Scholar
  158. 158.
    Bain LE, Collazo R, Hsu SH, Pfiester LN, Manfra MJ, Ivanisevic A (2014) Surface topography and chemistry shape cellular behavior on wide band-gap semiconductors. Acta Biomater 10:2455–2462PubMedCrossRefGoogle Scholar
  159. 159.
    Cimalla I, Gebinoga M, Schober A, Polyakov V, Lebedev V, Cimalla V (2011) AlGaN/GaN sensors for direct monitoring of nerve cell response to inhibitors. In: Ren F, Pearton SJ (eds) Semiconductor device-based sensors for gas, chemical, and biomedical applications. CRC Press, Boca Raton, pp 1–43Google Scholar
  160. 160.
    Gebinoga M, Mai P, Donahue M, Kittler M, Cimalla I, Lübbers B, Klett M, Lebedev V, Silveira L, Singh S, Schober A (2012) Nerve cell response to inhibitors recorded with an aluminum-galliumnitride/galliumnitride field-effect transistor. J Neurosci Methods 206:195–199PubMedCrossRefGoogle Scholar
  161. 161.
    Gebinoga M, Silveira L, Cimalla I, Dumitrescu A, Kittler M, Lübbers B, Becker A, Lebedev V, Schober A (2010) Nanosensors for label-free measurement of sodium ion fluxes of neuronal cells. Mater Sci Eng B 169:182–185CrossRefGoogle Scholar
  162. 162.
    Warnke C, Witte H, Mair T, Hauser MJB, Dadgar A, Krost A (2010) Monitoring glycolytic oscillations using AlGaN/GaN high electron mobility transistors (HEMTs). Sens Actuators B 149:310–313CrossRefGoogle Scholar
  163. 163.
    Wang YL, Chu BH, Chen KH, Chang CY, Lele TP, Papad G, Coleman JK, Sheppard BJ, Dungen CF, Pearton SJ, Johnson JW, Rajagopal P, Roberts JC, Piner EL, Linthicum KJ, Ren F (2009) Fast detection of a protozoan pathogen, Perkinsus marinus, using AlGaN/GaN high electron mobility transistors. Appl Phys Lett 94:243901CrossRefGoogle Scholar
  164. 164.
    Kang YW, Lee GY, Chyi JI, Hsu CP, Hsu YR, Hsu CH, Huang YF, Sun YC, Chen CC, Hung SC, Ren F, Yeh JA, Wang YL (2013) Human immunodeficiency virus drug development assisted with AlGaN/GaN high electron mobility transistors and binding-site models. Appl Phys Lett 102:173704CrossRefGoogle Scholar
  165. 165.
    Chen CP, Ganguly A, Wang CH, Hsu CW, Chattopadhyay S, Hsu YK, Chang YC, Chen KH, Chen LC (2009) Label-free dual sensing of DNA molecules using GaN nanowires. Anal Chem 81:36–42PubMedCrossRefGoogle Scholar
  166. 166.
    Chen CP, Ganguly A, Lu CY, Chen TY, Kuo CC, Chen RS, Tu WH, Fischer WB, Chen KH, Chen LC (2011) Ultrasensitive in situ label-free DNA detection using a GaN nanowire-based extended-gate field-effect-transistor sensor. Anal Chem 83:1938–1943PubMedCrossRefGoogle Scholar
  167. 167.
    Williams EH, Davydov AV, Oleshko VP, Steffens KL, Levin I, Lin NJ, Bertness KA, Manocchi AK, Schreifels JA, Rao MV (2014) Solution-based functionalization of galliumnitride nanowires for protein sensor development. Surf Sci 627:23–28CrossRefGoogle Scholar
  168. 168.
    Sahoo P, Suresh S, Dhara S, Saini G, Rangarajan S, Tyagi AK (2013) Direct label free ultrasensitive impedimetric DNA biosensor using dendrimer functionalized GaN nanowires. Biosens Bioelectron 44:164–170PubMedCrossRefGoogle Scholar
  169. 169.
    Bo L, Xiao C, Hualin C, Mohammad MA, Xiangguang T, Luqi T, Yi Y, Tianling R (2016) Surface acoustic wave devices for sensor applications. J Semicond 37:021001CrossRefGoogle Scholar
  170. 170.
    Cai HL, Yang Y, Chen X, Mohammad MA, Ye TX, Guo CR, Yi LT, Zhou CJ, Liu J, Ren TL (2015) A third-order mode high frequency biosensor with atomic resolution. Biosens Bioelectron 71:261–268PubMedCrossRefGoogle Scholar
  171. 171.
    Chiu CS, Lee HM, Kuo CT, Gwo S (2008) Immobilization of DNA-Au nanoparticles on aminosilane-functionalized aluminum nitride epitaxial films for surface acoustic wave sensing. Appl Phys Lett 93:163106CrossRefGoogle Scholar
  172. 172.
    Shigekawa N, Nishimura K, Yokoyama H, Hohkawa K (2008) Surface acoustic waves in reverse-biased AlGaN/GaN heterostructures. IEEE Trans Electron Dev 55:1585–1591CrossRefGoogle Scholar
  173. 173.
    Lalinský T, Rýger I, Vanko G, Tomáška M, Kostic I, Hašcíka Š, Vallo M (2010) AlGaN/GaN based SAW-HEMT structures for chemical gas sensors. Proc Eng 5:152–155CrossRefGoogle Scholar
  174. 174.
    Duhamel R, Robert L, Jia H, Li F, Lardet-Vieudrin F, Manceau J-F, Bastien F (2006) Sensitivity of a Lamb wave sensor with 2 μm AlN membrane. Ultrasonics 44:e893–e897PubMedCrossRefGoogle Scholar
  175. 175.
    Rey-Mermet S, Lanz R, Muralt P (2006) Bulk acoustic wave resonator operating at 8 GHz for gravimetric sensing of organic films. Sens Actuators B 114:681–686CrossRefGoogle Scholar
  176. 176.
    YQ F, Cherng JS, Luo JK, Desmulliez MPY, Li Y, Walton AJ, Placido F (2010) Aluminium nitride thin film acoustic wave device for microfluidic and biosensing applications. In: Dissanayake DW (ed) Acoustic waves. Sciyo, Rijeka, pp 263–298Google Scholar
  177. 177.
    Shih HY, Chen TT, Wang CH, Chen KY, Chen YF (2008) Optical detection of deoxyribonucleic acid hybridization with InGaN/GaN multiple quantum wells. Appl Phys Lett 92:261910CrossRefGoogle Scholar
  178. 178.
    Heinz D, Huber F, Spiess M, Asad M, Wu L, Rettig O, Wu D, Neuschl B, Bauer S, Wu Y, Chakrabortty S, Hibst N, Strehle S, Weil T, Thonke K, Scholz F (2017) GaInN quantum wells as optochemical transducers for chemical sensors and biosensors. IEEE J Sel Top Quantum Electron 23:1900109CrossRefGoogle Scholar
  179. 179.
    Berg NG, Franke A, Kirste R, Collazo R, Ivanisevic A (2016) Photoluminescence changes of III-nitride lateral polarity structures after chemical functionalization. Mater Res Exp 3:125906CrossRefGoogle Scholar
  180. 180.
    Weidemann O, Kandaswamy PK, Monroy E, Jegert G, Stutzmann M, Eickhoff M (2009) GaN quantum dots as optical transducers for chemical sensors. Appl Phys Lett 94:113108CrossRefGoogle Scholar
  181. 181.
    Maier K, Helwig A, Müller G, Becker P, Hille P, Schörmann J, Teubert J, Eickhoff M (2014) Detection of oxidising gases using an optochemical sensor system based on GaN/InGaN nanowires. Sens Actuators B 197:87–94CrossRefGoogle Scholar
  182. 182.
    Kleindienst R, Becker P, Cimalla V, Grewe A, Hille P, Krüger M, Schörmann J, Schwarz UT, Teubert J, Eickhoff M, Sinzinger S (2015) Integration of an opto-chemical detector based on group III-nitride nanowire heterostructures. Appl Opt 54:839–847PubMedCrossRefGoogle Scholar
  183. 183.
    Riedel M, Hölzel S, Hille P, Schörmann J, Eickhoff M, Lisdat F (2017) InGaN/GaN nanowires as a new platform for photoelectrochemical sensors – detection of NADH. Biosens Bioelectron 94:298–304PubMedCrossRefGoogle Scholar
  184. 184.
    Li Z, Waldron J, Detchprohm T, Wetzel C, Karlicek Jr RF, Chow TP (2013) Monolithic integration of light-emitting diodes and power metal-oxide-semiconductor channel high-electron-mobility transistors for light-emitting power integrated circuits in GaN on sapphire substrate. Appl Phys Lett 102:192107CrossRefGoogle Scholar
  185. 185.
    Hofmann M, Hauguth-Frank S, Lebedev V, Ambacher O, Sinzinger S (2008) Sapphire-GaN-based planar integrated free-space optical system. Appl Opt 47:2950–2955PubMedCrossRefGoogle Scholar
  186. 186.
    Lu YS, Ho CL, Yeh JA, Lin HW, Gwo S (2008) Anion detection using ultrathin InN ion selective field effect transistors. Appl Phys Lett 92:212102CrossRefGoogle Scholar
  187. 187.
    Stutzmann M, Garrido JA, Eickhoff M, Brandt MS (2006) Direct biofunctionalization of semiconductors. A survey. Phys Status Solidi A 203:3424–3437CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Fraunhofer Institute for Applied Solid State PhysicsFreiburgGermany

Personalised recommendations