Advertisement

A Survey of Graphene-Based Field Effect Transistors for Bio-sensing

  • Cy R. TamanahaEmail author
Chapter
Part of the Springer Series on Chemical Sensors and Biosensors book series (SSSENSORS, volume 17)

Abstract

There have been numerous investigations to implement graphene’s unique electronic and physical characteristics in devices ranging from batteries to reinforced structures. This chapter surveys the significant effort that has been made to successfully integrate graphene into a practical, cheap, highly sensitive biosensor. The biologically active field effect transistor (BioFET) is a class of biosensors based on ion selective FET (ISFET) technology which operates on the detection of charged molecules; when a charged molecule is present, changes in the electrostatic field at the BioFET transducing surface result in a measurable change in current through the transistor (Schoning and Poghossian, Analyst 127:1137–1151, 2002). The chapter titled “Graphene-Based Chemical and Biosensors,” in Volume 14 of the Springer Series on Chemical Sensors and Biosensors, provided a comprehensive look at the chemical and electrochemical aspects of graphene-based chemical sensors (Wisitsoraat A and Tuantranont A, Graphene-based chemical and biosensors. In: Tuantranont A (ed) Applications of nanomaterials in sensors and diagnostics. Springer, Berlin Heidelberg, pp. 103–141, 2013). In the present chapter of the same series, we supplement that excellent work with the current state of graphene-based field effect transistors (FET), and concentrate on graphene’s high sensitivity to changes in electric fields for sensing biomolecules such as DNA, proteins, and neurotransmitters.

Keywords

BioFET Bio-sensing Field effect transistor Graphene 

References

  1. 1.
    Schoning MJ, Poghossian A (2002) Recent advances in biologically sensitive field-effect transistors (BioFETs). Analyst 127:1137–1151CrossRefGoogle Scholar
  2. 2.
    Wisitsoraat A, Tuantranont A (2013) Graphene-based chemical and biosensors. In: Tuantranont A (ed) Applications of nanomaterials in sensors and diagnostics. Springer, Berlin Heidelberg, pp 103–141CrossRefGoogle Scholar
  3. 3.
    Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666–669. doi: 10.1126/science.1102896CrossRefGoogle Scholar
  4. 4.
    Novoselov KS, Geim AK, Morozov SV, Jiang D, Katsnelson MI, Grigorieva IV, Dubonos SV, Firsov AA (2005) Two-dimensional gas of massless Dirac fermions in graphene. Nature 438:197–200. doi: 10.1038/nature04233CrossRefPubMedGoogle Scholar
  5. 5.
    Novoselov KS, Jiang D, Schedin F, Booth TJ, Khotkevich VV, Morozov SV, Geim AK (2005) Two-dimensional atomic crystals. Proc Natl Acad Sci U S A 102:10451–10453. doi: 10.1073/pnas.0502848102CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Boehm H-P, Stumpp E (2007) Citation errors concerning the first report on exfoliated graphite. Carbon 45:1381–1383. doi: 10.1016/j.carbon.2006.12.016CrossRefGoogle Scholar
  7. 7.
    Meyer JC, Geim AK, Katsnelson MI, Novoselov KS, Booth TJ, Roth S (2007) The structure of suspended graphene sheets. Nature 446:60–63. doi: 10.1038/nature05545CrossRefPubMedGoogle Scholar
  8. 8.
    The 2010 Nobel Prize in physics. Press Release. http://www.nobelprize.org/nobel_prizes/physics/laureates/2010/press.html. Accessed 5 Oct 2010
  9. 9.
    Dreyer DR, Ruoff RS, Bielawski CW (2010) From conception to realization: an historial account of graphene and some perspectives for its future. Angew Chem Int Ed 49:9336–9344. doi: 10.1002/anie.201003024CrossRefGoogle Scholar
  10. 10.
    Burnett TL, Yakimova R, Kazakova O (2012) Identification of epitaxial graphene domains and adsorbed species in ambient conditions using quantified topography measurements. J Appl Phys 112:054308. doi: 10.1063/1.4748957CrossRefGoogle Scholar
  11. 11.
    Hass J, Millán-Otoya JE, First PN, Conrad EH (2008) Interface structure of epitaxial graphene grown on 4H-SiC(0001). Phys Rev B 78:205424. doi: 10.1103/PhysRevB.78.205424CrossRefGoogle Scholar
  12. 12.
    Stankovich S, Dikin DA, Dommett GHB, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS (2006) Graphene-based composite materials. Nature 442:282–286. doi: 10.1038/nature04969CrossRefGoogle Scholar
  13. 13.
    Chen J-H, Jang C, Xiao S, Ishigami M, Fuhrer MS (2008) Intrinsic and extrinsic performance limits of graphene devices on SiO2. Nat Nanotechnol 3:206–209. doi: 10.1038/nnano.2008.58CrossRefPubMedGoogle Scholar
  14. 14.
    Bolotin KI, Sikes KJ, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P, Stormer HL (2008) Ultrahigh electron mobility in suspended graphene. Solid State Commun 146:351–355. doi: 10.1016/j.ssc.2008.02.024CrossRefGoogle Scholar
  15. 15.
    Hu Z, Sinha DP, Lee JU, Liehr M (2014) Substrate dielectric effects on graphene field effect transistors. J Appl Phys 115:194507. doi: 10.1063/1.4879236CrossRefGoogle Scholar
  16. 16.
    Choi W, Lahiri I, Seelaboyina R, Kang YS (2010) Synthesis of graphene and its applications: a review. Crit Rev Solid State Mater Sci 35:52–71. doi: 10.1080/10408430903505036CrossRefGoogle Scholar
  17. 17.
    Elias DC, Gorbachev RV, Mayorov AS, Morozov SV, Zhukov AA, Blake P, Ponomarenko LA, Grigorieva IV, Novoselov KS, Guinea F, Geim AK (2011) Dirac cones reshaped by interaction effects in suspended graphene. Nat Phys 7:701–704. doi: 10.1038/nphys2049CrossRefGoogle Scholar
  18. 18.
    Han MY, Özyilmaz B, Zhang Y, Kim P (2007) Energy band-gap engineering of graphene nanoribbons. Phys Rev Lett 98:206805. doi: 10.1103/PhysRevLett.98.206805CrossRefPubMedGoogle Scholar
  19. 19.
    Lee C, Wei X, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321:385–388. doi: 10.1126/science.1157996CrossRefPubMedGoogle Scholar
  20. 20.
    Frank IW, Tanenbaum DM, van der Zande AM, McEuen PL (2007) Mechanical properties of suspended graphene sheets. J Vac Sci Technol B 25:2558–2561. doi: 10.1116/1.2789446CrossRefGoogle Scholar
  21. 21.
    Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau CN (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8:902–907. doi: 10.1021/nl0731872CrossRefPubMedGoogle Scholar
  22. 22.
    Nair RR, Blake P, Grigorenko AN, Novoselov KS, Booth TJ, Stauber T, Peres NMR, Geim AK (2008) Fine structure constant defines visual transparency of graphene. Science 320:1308–1308. doi: 10.1126/science.1156965CrossRefPubMedGoogle Scholar
  23. 23.
    Zhang P, Ma L, Fan F, Zeng Z, Peng C, Loya PE, Liu Z, Gong Y, Zhang J, Zhang X, Ajayan PM, Zhu T, Lou J (2014) Fracture toughness of graphene. Nat Commun 5:3782. doi: 10.1038/ncomms4782CrossRefPubMedGoogle Scholar
  24. 24.
    Lee J-H, Loya PE, Lou J, Thomas EL (2014) Dynamic mechanical behavior of multilayer graphene via supersonic projectile penetration. Science 346:1092–1096. doi: 10.1126/science.1258544CrossRefPubMedGoogle Scholar
  25. 25.
    Hu S, Lozada-Hidalgo M, Wang FC, Mishchenko A, Schedin F, Nair RR, Hill EW, Boukhvalov DW, Katsnelson MI, Dryfe RAW, Grigorieva IV, Wu HA, Geim AK (2014) Proton transport through one-atom-thick crystals. Nature 516:227–230. doi: 10.1038/nature14015CrossRefPubMedGoogle Scholar
  26. 26.
    Gaska R, Yang JW, Osinsky A, Chen Q, Khan MA, Orlov AO, Snider GL, Shur MS (1998) Electron transport in AlGaN–GaN heterostructures grown on 6H–SiC substrates. Appl Phys Lett 72:707–709. doi: 10.1063/1.120852CrossRefGoogle Scholar
  27. 27.
    Balandin AA (2013) Low-frequency 1/f noise in graphene devices. Nat Nanotechnol 8:549–555. doi: 10.1038/nnano.2013.144CrossRefPubMedGoogle Scholar
  28. 28.
    Zhang Y, Tang T-T, Girit C, Hao Z, Martin MC, Zettl A, Crommie MF, Shen YR, Wang F (2009) Direct observation of a widely tunable bandgap in bilayer graphene. Nature 459:820–823. doi: 10.1038/nature08105CrossRefPubMedGoogle Scholar
  29. 29.
    Schwierz F (2010) Graphene transistors. Nat Nanotechnol 5:487–496. doi: 10.1038/nnano.2010.89CrossRefPubMedGoogle Scholar
  30. 30.
    Rickhaus P, Makk P, Liu M-H, Tóvári E, Weiss M, Maurand R, Richter K, Schönenberger C (2015) Snake trajectories in ultraclean graphene p–n junctions. Nat Commun 6:6470. doi: 10.1038/ncomms7470CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Grieshaber D, MacKenzie R, Vörös J, Reimhult E (2008) Electrochemical biosensors – sensor principles and architectures. Sensors 8:1400–1458. doi: 10.3390/s8031400CrossRefPubMedGoogle Scholar
  32. 32.
    Singh V, Joung D, Zhai L, Das S, Khondaker SI, Seal S (2011) Graphene based materials: past, present and future. Prog Mater Sci 56:1178–1271. doi: 10.1016/j.pmatsci.2011.03.003CrossRefGoogle Scholar
  33. 33.
    Martin J, Akerman N, Ulbricht G, Lohmann T, Smet JH, von Klitzing K, Yacoby A (2008) Observation of electron–hole puddles in graphene using a scanning single-electron transistor. Nat Phys 4:144–148. doi: 10.1038/nphys781CrossRefGoogle Scholar
  34. 34.
    Dean CR, Young AF, Meric I, Lee C, Wang L, Sorgenfrei S, Watanabe K, Taniguchi T, Kim P, Shepard KL, Hone J (2010) Boron nitride substrates for high-quality graphene electronics. Nat Nanotechnol 5:722–726. doi: 10.1038/nnano.2010.172CrossRefPubMedGoogle Scholar
  35. 35.
    Zhang Y, Brar VW, Girit C, Zettl A, Crommie MF (2009) Origin of spatial charge inhomogeneity in graphene. Nat Phys 5:722–726. doi: 10.1038/nphys1365CrossRefGoogle Scholar
  36. 36.
    Chen S-Y, Ho P-H, Shiue R-J, Chen C-W, Wang W-H (2012) Transport/magnetotransport of high-performance graphene transistors on organic molecule-functionalized substrates. Nano Lett 12:964–969. doi: 10.1021/nl204036dCrossRefPubMedGoogle Scholar
  37. 37.
    Park SJ, Kwon OS, Lee SH, Song HS, Park TH, Jang J (2012) Ultrasensitive flexible graphene based field-effect transistor (FET)-type bioelectronic nose. Nano Lett 12:5082–5090. doi: 10.1021/nl301714xCrossRefPubMedGoogle Scholar
  38. 38.
    Shin D-W, Lee HM, Yu SM, Lim K-S, Jung JH, Kim M-K, Kim S-W, Han J-H, Ruoff RS, Yoo J-B (2012) A facile route to recover intrinsic graphene over large scale. ACS Nano 6:7781–7788. doi: 10.1021/nn3017603CrossRefPubMedGoogle Scholar
  39. 39.
    Lee W-K, Robinson JT, Gunlycke D, Stine RR, Tamanaha CR, King WP, Sheehan PE (2011) Chemically isolated graphene nanoribbons reversibly formed in fluorographene using polymer nanowire masks. Nano Lett 11:5461–5464. doi: 10.1021/nl203225wCrossRefPubMedGoogle Scholar
  40. 40.
    Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183–191. doi: 10.1038/nmat1849CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Mass production of high quality graphene: an analysis of worldwide patents. http://www.nanowerk.com/spotlight/spotid=25744.php. Accessed 18 Mar 2015
  42. 42.
    Stankovich S, Piner RD, Chen X, Wu N, Nguyen ST, Ruoff RS (2006) Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly(sodium 4-styrenesulfonate). J Mater Chem 16:155. doi: 10.1039/b512799hCrossRefGoogle Scholar
  43. 43.
    Li X, Cai W, An J, Kim S, Nah J, Yang D, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee SK, Colombo L, Ruoff RS (2009) Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324:1312–1314. doi: 10.1126/science.1171245CrossRefPubMedGoogle Scholar
  44. 44.
    Wang J, Zhu M, Outlaw RA, Zhao X, Manos DM, Holloway BC (2004) Synthesis of carbon nanosheets by inductively coupled radio-frequency plasma enhanced chemical vapor deposition. Carbon 42:2867–2872. doi: 10.1016/j.carbon.2004.06.035CrossRefGoogle Scholar
  45. 45.
    Gao L, Ren W, Xu H, Jin L, Wang Z, Ma T, Ma L-P, Zhang Z, Fu Q, Peng L-M, Bao X, Cheng H-M (2012) Repeated growth and bubbling transfer of graphene with millimetre-size single-crystal grains using platinum. Nat Commun 3:699. doi: 10.1038/ncomms1702CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Berger C, Song Z, Li X, Wu X, Brown N, Naud C, Mayou D, Li T, Hass J, Marchenkov AN, Conrad EH, First PN, de Heer WA (2006) Electronic confinement and coherence in patterned epitaxial graphene. Science 312:1191–1196. doi: 10.1126/science.1125925CrossRefPubMedGoogle Scholar
  47. 47.
    Wang X, Zhi L, Mullen K (2008) Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Lett 8:323–327. doi: 10.1021/nl072838rCrossRefPubMedGoogle Scholar
  48. 48.
    Cano-Márquez AG, Rodríguez-Macías FJ, Campos-Delgado J, Espinosa-González CG, Tristán-López F, Ramírez-González D, Cullen DA, Smith DJ, Terrones M, Vega-Cantú YI (2009) Ex-MWNTs: graphene sheets and ribbons produced by lithium intercalation and exfoliation of carbon nanotubes. Nano Lett 9:1527–1533. doi: 10.1021/nl803585sCrossRefPubMedGoogle Scholar
  49. 49.
    Kosynkin DV, Higginbotham AL, Sinitskii A, Lomeda JR, Dimiev A, Price BK, Tour JM (2009) Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 458:872–876. doi: 10.1038/nature07872CrossRefGoogle Scholar
  50. 50.
    Su C-Y, Fu D, Lu A-Y, Liu K-K, Xu Y, Juang Z-Y, Li L-J (2011) Transfer printing of graphene strip from the graphene grown on copper wires. Nanotechnology 22:185309. doi: 10.1088/0957-4484/22/18/185309CrossRefPubMedGoogle Scholar
  51. 51.
    Lin J, Peng Z, Liu Y, Ruiz-Zepeda F, Ye R, Samuel ELG, Yacaman MJ, Yakobson BI, Tour JM (2014) Laser-induced porous graphene films from commercial polymers. Nat Commun 5:5714. doi: 10.1038/ncomms6714CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Subrahmanyam KS, Panchakarla LS, Govindaraj A, Rao CNR (2009) Simple method of preparing graphene flakes by an arc-discharge method. J Phys Chem C 113:4257–4259. doi: 10.1021/jp900791yCrossRefGoogle Scholar
  53. 53.
    Li N, Wang Z, Zhao K, Shi Z, Gu Z, Xu S (2010) Large scale synthesis of N-doped multi-layered graphene sheets by simple arc-discharge method. Carbon 48:255–259. doi: 10.1016/j.carbon.2009.09.013CrossRefGoogle Scholar
  54. 54.
    Seifert M, Drieschner S, Blaschke BM, Hess LH, Garrido JA (2014) Induction heating-assisted repeated growth and electrochemical transfer of graphene on millimeter-thick metal substrates. Diam Relat Mater 47:46–52. doi: 10.1016/j.diamond.2014.05.007CrossRefGoogle Scholar
  55. 55.
    Han P, Akagi K, Federici Canova F, Mutoh H, Shiraki S, Iwaya K, Weiss PS, Asao N, Hitosugi T (2014) Bottom-up graphene-nanoribbon fabrication reveals chiral edges and enantioselectivity. ACS Nano 8:9181–9187. doi: 10.1021/nn5028642CrossRefPubMedGoogle Scholar
  56. 56.
    Van Noorden R (2012) Production: beyond sticky tape. Nature 483:S32–S33. doi: 10.1038/483S32aCrossRefPubMedGoogle Scholar
  57. 57.
    Kovtyukhova NI, Wang Y, Berkdemir A, Cruz-Silva R, Terrones M, Crespi VH, Mallouk TE (2014) Non-oxidative intercalation and exfoliation of graphite by Brønsted acids. Nat Chem 6:957–963. doi: 10.1038/nchem.2054CrossRefPubMedGoogle Scholar
  58. 58.
    Hernandez Y, Nicolosi V, Lotya M, Blighe FM, Sun Z, De S, McGovern IT, Holland B, Byrne M, Gun’Ko YK, Boland JJ, Niraj P, Duesberg G, Krishnamurthy S, Goodhue R, Hutchison J, Scardaci V, Ferrari AC, Coleman JN (2008) High-yield production of graphene by liquid-phase exfoliation of graphite. Nat Nanotechnol 3:563–568. doi: 10.1038/nnano.2008.215CrossRefPubMedGoogle Scholar
  59. 59.
    Lotya M, Hernandez Y, King PJ, Smith RJ, Nicolosi V, Karlsson LS, Blighe FM, De S, Wang Z, McGovern IT, Duesberg GS, Coleman JN (2009) Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions. J Am Chem Soc 131:3611–3620. doi: 10.1021/ja807449uCrossRefPubMedGoogle Scholar
  60. 60.
    Green AA, Hersam MC (2009) Solution phase production of graphene with controlled thickness via density differentiation. Nano Lett 9:4031–4036. doi: 10.1021/nl902200bCrossRefPubMedGoogle Scholar
  61. 61.
    Nethravathi C, Rajamathi M (2008) Chemically modified graphene sheets produced by the solvothermal reduction of colloidal dispersions of graphite oxide. Carbon 46:1994–1998. doi: 10.1016/j.carbon.2008.08.013CrossRefGoogle Scholar
  62. 62.
    Jia J, Kan C-M, Lin X, Shen X, Kim J-K (2014) Effects of processing and material parameters on synthesis of monolayer ultralarge graphene oxide sheets. Carbon 77:244–254. doi: 10.1016/j.carbon.2014.05.027CrossRefGoogle Scholar
  63. 63.
    Li D, Müller MB, Gilje S, Kaner RB, Wallace GG (2008) Processable aqueous dispersions of graphene nanosheets. Nat Nanotechnol 3:101–105. doi: 10.1038/nnano.2007.451CrossRefPubMedGoogle Scholar
  64. 64.
    Pan S, Aksay IA (2011) Factors controlling the size of graphene oxide sheets produced via the graphite oxide route. ACS Nano 5:4073–4083. doi: 10.1021/nn200666rCrossRefPubMedGoogle Scholar
  65. 65.
    Mohanty N, Berry V (2008) Graphene-based single-bacterium resolution biodevice and DNA transistor: interfacing graphene derivatives with nanoscale and microscale biocomponents. Nano Lett 8:4469–4476. doi: 10.1021/nl802412nCrossRefPubMedGoogle Scholar
  66. 66.
    Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu Y, Nguyen ST, Ruoff RS (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45:1558–1565. doi: 10.1016/j.carbon.2007.02.034CrossRefGoogle Scholar
  67. 67.
    Heller I, Chatoor S, Männik J, Zevenbergen MAG, Oostinga JB, Morpurgo AF, Dekker C, Lemay SG (2010) Charge noise in graphene transistors. Nano Lett 10:1563–1567. doi: 10.1021/nl903665gCrossRefPubMedGoogle Scholar
  68. 68.
    Kim E, An H, Jang H, Cho W-J, Lee N, Lee W-G, Jung J (2011) Growth of few-layer graphene on a thin cobalt film on a Si/SiO2 substrate. Chem Vap Depos 17:9–14. doi: 10.1002/cvde.201004296CrossRefGoogle Scholar
  69. 69.
    Losurdo M, Giangregorio MM, Capezzuto P, Bruno G (2011) Graphene CVD growth on copper and nickel: role of hydrogen in kinetics and structure. Phys Chem Chem Phys 13:20836–20843. doi: 10.1039/C1CP22347JCrossRefPubMedGoogle Scholar
  70. 70.
    Batzill M (2012) The surface science of graphene: metal interfaces, CVD synthesis, nanoribbons, chemical modifications, and defects. Surf Sci Rep 67:83–115. doi: 10.1016/j.surfrep.2011.12.001CrossRefGoogle Scholar
  71. 71.
    Hao Y, Bharathi MS, Wang L, Liu Y, Chen H, Nie S, Wang X, Chou H, Tan C, Fallahazad B, Ramanarayan H, Magnuson CW, Tutuc E, Yakobson BI, McCarty KF, Zhang Y-W, Kim P, Hone J, Colombo L, Ruoff RS (2013) The role of surface oxygen in the growth of large single-crystal graphene on copper. Science 342:720–723. doi: 10.1126/science.1243879CrossRefPubMedGoogle Scholar
  72. 72.
    Lee J-H, Lee EK, Joo W-J, Jang Y, Kim B-S, Lim JY, Choi S-H, Ahn SJ, Ahn JR, Park M-H, Yang C-W, Choi BL, Hwang S-W, Whang D (2014) Wafer-scale growth of single-crystal monolayer graphene on reusable hydrogen-terminated germanium. Science 344:286–289. doi: 10.1126/science.1252268CrossRefPubMedGoogle Scholar
  73. 73.
    Li X, Magnuson CW, Venugopal A, Tromp RM, Hannon JB, Vogel EM, Colombo L, Ruoff RS (2011) Large-area graphene single crystals grown by low-pressure chemical vapor deposition of methane on copper. J Am Chem Soc 133:2816–2819. doi: 10.1021/ja109793sCrossRefPubMedGoogle Scholar
  74. 74.
    Robinson JT, Perkins FK, Snow ES, Wei Z, Sheehan PE (2008) Reduced graphene oxide molecular sensors. Nano Lett 8:3137–3140. doi: 10.1021/nl8013007CrossRefPubMedGoogle Scholar
  75. 75.
    Gilje S, Han S, Wang M, Wang KL, Kaner RB (2007) A chemical route to graphene for device applications. Nano Lett 7:3394–3398. doi: 10.1021/nl0717715CrossRefPubMedGoogle Scholar
  76. 76.
    Dua V, Surwade SP, Ammu S, Agnihotra SR, Jain S, Roberts KE, Park S, Ruoff RS, Manohar SK (2010) All-organic vapor sensor using inkjet-printed reduced graphene oxide. Angew Chem 122:2200–2203. doi: 10.1002/ange.200905089CrossRefGoogle Scholar
  77. 77.
    Eda G, Fanchini G, Chhowalla M (2008) Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat Nanotechnol 3:270–274. doi: 10.1038/nnano.2008.83CrossRefPubMedGoogle Scholar
  78. 78.
    Wei Z, Barlow DE, Sheehan PE (2008) The assembly of single-layer graphene oxide and graphene using molecular templates. Nano Lett 8:3141–3145. doi: 10.1021/nl801301aCrossRefPubMedGoogle Scholar
  79. 79.
    Bae S, Kim H, Lee Y, Xu X, Park J-S, Zheng Y, Balakrishnan J, Lei T, Ri Kim H, Song YI, Kim Y-J, Kim KS, Özyilmaz B, Ahn J-H, Hong BH, Iijima S (2010) Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat Nanotechnol 5:574–578. doi: 10.1038/nnano.2010.132CrossRefPubMedGoogle Scholar
  80. 80.
    Reina A, Jia X, Ho J, Nezich D, Son H, Bulovic V, Dresselhaus MS, Kong J (2009) Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett 9:30–35. doi: 10.1021/nl801827vCrossRefPubMedGoogle Scholar
  81. 81.
    Yu Q, Lian J, Siriponglert S, Li H, Chen YP, Pei S-S (2008) Graphene segregated on Ni surfaces and transferred to insulators. Appl Phys Lett 93:113103. doi: 10.1063/1.2982585CrossRefGoogle Scholar
  82. 82.
    Ambrosi A, Pumera M (2013) The CVD graphene transfer procedure introduces metallic impurities which alter the graphene electrochemical properties. Nanoscale 6:472–476. doi: 10.1039/C3NR05230CCrossRefPubMedGoogle Scholar
  83. 83.
    Pirkle A, Chan J, Venugopal A, Hinojos D, Magnuson CW, McDonnell S, Colombo L, Vogel EM, Ruoff RS, Wallace RM (2011) The effect of chemical residues on the physical and electrical properties of chemical vapor deposited graphene transferred to SiO2. Appl Phys Lett 99:122108. doi: 10.1063/1.3643444CrossRefGoogle Scholar
  84. 84.
    Cheng Z, Zhou Q, Wang C, Li Q, Wang C, Fang Y (2011) Toward intrinsic graphene surfaces: a systematic study on thermal annealing and wet-chemical treatment of SiO2-supported graphene devices. Nano Lett 11:767–771. doi: 10.1021/nl103977dCrossRefPubMedGoogle Scholar
  85. 85.
    Dong X, Shi Y, Huang W, Chen P, Li L-J (2010) Electrical detection of DNA hybridization with single-base specificity using transistors based on CVD-grown graphene sheets. Adv Mater 22:1649–1653. doi: 10.1002/adma.200903645CrossRefPubMedGoogle Scholar
  86. 86.
    Baraket M, Stine R, Lee WK, Robinson JT, Tamanaha CR, Sheehan PE, Walton SG (2012) Aminated graphene for DNA attachment produced via plasma functionalization. Appl Phys Lett 100:233123. doi: 10.1063/1.4711771CrossRefGoogle Scholar
  87. 87.
    Zhang D, Jin Z, Shi J, Wang X, Peng S, Wang S (2015) The electrochemical transfer of CVD-graphene using agarose gel as solid electrolyte and mechanical support layer. Chem Commun 51:2987–2990. doi: 10.1039/C4CC09404BCrossRefGoogle Scholar
  88. 88.
    Lu A-Y, Wei S-Y, Wu C-Y, Hernandez Y, Chen T-Y, Liu T-H, Pao C-W, Chen F-R, Li L-J, Juang Z-Y (2012) Decoupling of CVD graphene by controlled oxidation of recrystallized Cu. RSC Adv 2:3008–3013. doi: 10.1039/C2RA01281BCrossRefGoogle Scholar
  89. 89.
    Tian J, Cao H, Wu W, Yu Q, Chen YP (2011) Direct imaging of graphene edges: atomic structure and electronic scattering. Nano Lett 11:3663–3668. doi: 10.1021/nl201590fCrossRefPubMedGoogle Scholar
  90. 90.
    Ritter KA, Lyding JW (2009) The influence of edge structure on the electronic properties of graphene quantum dots and nanoribbons. Nat Mater 8:235–242. doi: 10.1038/nmat2378CrossRefPubMedGoogle Scholar
  91. 91.
    Liu Y, Dobrinsky A, Yakobson BI (2010) Graphene edge from armchair to zigzag: the origins of nanotube chirality? Phys Rev Lett 105:235502. doi: 10.1103/PhysRevLett.105.235502CrossRefPubMedGoogle Scholar
  92. 92.
    Shao L, Chen G, Ye H, Niu H, Wu Y, Zhu Y, Ding B (2014) Sulfur dioxide molecule sensors based on zigzag graphene nanoribbons with and without Cr dopant. Phys Lett A 378:667–671. doi: 10.1016/j.physleta.2013.12.042CrossRefGoogle Scholar
  93. 93.
    Rezapour MR, Rajan AC, Kim KS (2014) Molecular sensing using armchair graphene nanoribbon. J Comput Chem 35:1916–1920. doi: 10.1002/jcc.23705CrossRefPubMedGoogle Scholar
  94. 94.
    Owens FJ (2008) Electronic and magnetic properties of armchair and zigzag graphene nanoribbons. J Chem Phys 128:194701. doi: 10.1063/1.2905215CrossRefPubMedGoogle Scholar
  95. 95.
    Lee H, Qi Y, Kwon S, Salmeron M, Park JY (2015) Large changes of graphene conductance as a function of lattice orientation between stacked layers. Nanotechnology 26:015702. doi: 10.1088/0957-4484/26/1/015702CrossRefPubMedGoogle Scholar
  96. 96.
    Zhang B, Cui T (2013) Suspended graphene nanoribbon ion-sensitive field-effect transistors formed by shrink lithography for pH/cancer biomarker sensing. J Microelectromech Syst 22:1140–1146. doi: 10.1109/JMEMS.2013.2254701CrossRefGoogle Scholar
  97. 97.
    Ohno Y, Maehashi K, Matsumoto K (2010) Label-free biosensors based on aptamer-modified graphene field-effect transistors. J Am Chem Soc 132:18012–18013. doi: 10.1021/ja108127rCrossRefPubMedGoogle Scholar
  98. 98.
    Stine R, Robinson JT, Sheehan PE, Tamanaha CR (2010) Real-time DNA detection using reduced graphene oxide field effect transistors. Adv Mater 22:5297–5300. doi: 10.1002/adma.201002121CrossRefPubMedGoogle Scholar
  99. 99.
    Dankerl M, Hauf MV, Lippert A, Hess LH, Birner S, Sharp ID, Mahmood A, Mallet P, Veuillen J-Y, Stutzmann M, Garrido JA (2010) Graphene solution-gated field-effect transistor array for sensing applications. Adv Funct Mater 20:3117–3124. doi: 10.1002/adfm.201000724CrossRefGoogle Scholar
  100. 100.
    Wang QH, Hersam MC (2009) Room-temperature molecular-resolution characterization of self-assembled organic monolayers on epitaxial graphene. Nat Chem 1:206–211. doi: 10.1038/nchem.212CrossRefPubMedGoogle Scholar
  101. 101.
    Hurch S, Nolan H, Hallam T, Berner NC, McEvoy N, Duesberg GS (2014) Inkjet-defined field-effect transistors from chemical vapour deposited graphene. Carbon 71:332–337. doi: 10.1016/j.carbon.2014.01.063CrossRefGoogle Scholar
  102. 102.
    Mao HY, Lu YH, Lin JD, Zhong S, Wee ATS, Chen W (2013) Manipulating the electronic and chemical properties of graphene via molecular functionalization. Prog Surf Sci 88:132–159. doi: 10.1016/j.progsurf.2013.02.001CrossRefGoogle Scholar
  103. 103.
    Huang Y, Dong X, Shi Y, Li CM, Li L-J, Chen P (2010) Nanoelectronic biosensors based on CVD grown graphene. Nanoscale 2:1485–1488. doi: 10.1039/C0NR00142BCrossRefPubMedGoogle Scholar
  104. 104.
    Ohno Y, Maehashi K, Inoue K, Matsumoto K (2011) Label-free aptamer-based immunoglobulin sensors using graphene field-effect transistors. Jpn J Appl Phys 50:070120. doi: 10.1143/JJAP.50.070120CrossRefGoogle Scholar
  105. 105.
    Akca S, Foroughi A, Frochtzwajg D, Postma HWC (2011) Competing interactions in DNA assembly on graphene. PLoS One 6:e18442. doi: 10.1371/journal.pone.0018442CrossRefPubMedPubMedCentralGoogle Scholar
  106. 106.
    Mao S, Lu G, Yu K, Bo Z, Chen J (2010) Specific protein detection using thermally reduced graphene oxide sheet decorated with gold nanoparticle-antibody conjugates. Adv Mater 22:3521–3526. doi: 10.1002/adma.201000520CrossRefPubMedGoogle Scholar
  107. 107.
    Mao S, Yu K, Chang J, Steeber DA, Ocola LE, Chen J (2013) Direct growth of vertically-oriented graphene for field-effect transistor biosensor. Sci Rep 3:1696. doi: 10.1038/srep01696CrossRefPubMedPubMedCentralGoogle Scholar
  108. 108.
    Hirtz M, Oikonomou A, Georgiou T, Fuchs H, Vijayaraghavan A (2013) Multiplexed biomimetic lipid membranes on graphene by dip-pen nanolithography. Nat Commun 4:2591. doi: 10.1038/ncomms3591CrossRefPubMedPubMedCentralGoogle Scholar
  109. 109.
    Mulvaney SP, Stine R, Long NC, Tamanaha CR, Sheehan PE (2014) Graphene veils: a versatile surface chemistry for sensors. BioTechniques 57:21–30. doi: 10.2144/000114188CrossRefPubMedGoogle Scholar
  110. 110.
    Stern E, Wagner R, Sigworth FJ, Breaker R, Fahmy TM, Reed MA (2007) Importance of the Debye screening length on nanowire field effect transistor sensors. Nano Lett 7:3405–3409. doi: 10.1021/nl071792zCrossRefPubMedPubMedCentralGoogle Scholar
  111. 111.
    Kurkina T, Sundaram S, Sundaram RS, Re F, Masserini M, Kern K, Balasubramanian K (2012) Self-assembled electrical biodetector based on reduced graphene oxide. ACS Nano 6:5514–5520. doi: 10.1021/nn301429kCrossRefPubMedGoogle Scholar
  112. 112.
    Bekyarova E, Itkis ME, Ramesh P, Berger C, Sprinkle M, de Heer WA, Haddon RC (2009) Chemical modification of epitaxial graphene: spontaneous grafting of aryl groups. J Am Chem Soc 131:1336–1337. doi: 10.1021/ja8057327CrossRefPubMedGoogle Scholar
  113. 113.
    Farmer DB, Golizadeh-Mojarad R, Perebeinos V, Lin Y-M, Tulevski GS, Tsang JC, Avouris P (2009) Chemical doping and electron−hole conduction asymmetry in graphene devices. Nano Lett 9:388–392. doi: 10.1021/nl803214aCrossRefPubMedGoogle Scholar
  114. 114.
    Lomeda JR, Doyle CD, Kosynkin DV, Hwang W-F, Tour JM (2008) Diazonium functionalization of surfactant-wrapped chemically converted graphene sheets. J Am Chem Soc 130:16201–16206. doi: 10.1021/ja806499wCrossRefPubMedGoogle Scholar
  115. 115.
    Kasry A, Afzali AA, Oida S, Han S-J, Menges B, Tulevski GS (2011) Detection of biomolecules via benign surface modification of graphene. Chem Mater 23:4879–4881. doi: 10.1021/cm201577kCrossRefGoogle Scholar
  116. 116.
    Steenackers M, Gigler AM, Zhang N, Deubel F, Seifert M, Hess LH, Lim CHYX, Loh KP, Garrido JA, Jordan R, Stutzmann M, Sharp ID (2011) Polymer brushes on graphene. J Am Chem Soc 133:10490–10498. doi: 10.1021/ja201052qCrossRefPubMedGoogle Scholar
  117. 117.
    Hess LH, Lyuleeva A, Blaschke BM, Sachsenhauser M, Seifert M, Garrido JA, Deubel F (2014) Graphene transistors with multifunctional polymer brushes for biosensing applications. ACS Appl Mater Interfaces 6:9705–9710. doi: 10.1021/am502112xCrossRefPubMedGoogle Scholar
  118. 118.
    Blaszykowski C, Sheikh S, Thompson M (2012) Surface chemistry to minimize fouling from blood-based fluids. Chem Soc Rev 41:5599–5612. doi: 10.1039/C2CS35170FCrossRefPubMedGoogle Scholar
  119. 119.
    Liu B, Sun Z, Zhang X, Liu J (2013) Mechanisms of DNA sensing on graphene oxide. Anal Chem 85:7987–7993. doi: 10.1021/ac401845pCrossRefPubMedGoogle Scholar
  120. 120.
    Yan L, Zheng YB, Zhao F, Li S, Gao X, Xu B, Weiss PS, Zhao Y (2011) Chemistry and physics of a single atomic layer: strategies and challenges for functionalization of graphene and graphene-based materials. Chem Soc Rev 41:97–114. doi: 10.1039/C1CS15193BCrossRefPubMedGoogle Scholar
  121. 121.
    Park JS, Goo N-I, Kim D-E (2014) Mechanism of DNA adsorption and desorption on graphene oxide. Langmuir 30:12587–12595. doi: 10.1021/la503401dCrossRefPubMedGoogle Scholar
  122. 122.
    Hu W, Peng C, Luo W, Lv M, Li X, Li D, Huang Q, Fan C (2010) Graphene-based antibacterial paper. ACS Nano 4:4317–4323. doi: 10.1021/nn101097vCrossRefPubMedGoogle Scholar
  123. 123.
    He J, Zhu X, Qi Z, Wang C, Mao X, Zhu C, He Z, Li M, Tang Z (2015) Killing dental pathogens using antibacterial graphene oxide. ACS Appl Mater Interfaces 7:5605–5611. doi: 10.1021/acsami.5b01069CrossRefPubMedGoogle Scholar
  124. 124.
    Mao S, Yu K, Lu G, Chen J (2011) Highly sensitive protein sensor based on thermally-reduced graphene oxide field-effect transistor. Nano Res 4:921–930. doi: 10.1007/s12274-011-0148-3CrossRefGoogle Scholar
  125. 125.
    Guo S, Dong S (2011) Graphene and its derivative-based sensing materials for analytical devices. J Mater Chem 21:18503–18516. doi: 10.1039/C1JM13228HCrossRefGoogle Scholar
  126. 126.
    Huang Y, Dong X, Liu Y, Li L-J, Chen P (2011) Graphene-based biosensors for detection of bacteria and their metabolic activities. J Mater Chem 21:12358–12362. doi: 10.1039/C1JM11436KCrossRefGoogle Scholar
  127. 127.
    Ameri SK, Singh PK, Sonkusale SR (2014) Liquid gated three dimensional graphene network transistor. Carbon 79:572–577. doi: 10.1016/j.carbon.2014.08.018CrossRefGoogle Scholar
  128. 128.
    Chen T-Y, Loan PTK, Hsu C-L, Lee Y-H, Tse-Wei Wang J, Wei K-H, Lin C-T, Li L-J (2013) Label-free detection of DNA hybridization using transistors based on CVD grown graphene. Biosens Bioelectron 41:103–109. doi: 10.1016/j.bios.2012.07.059CrossRefPubMedGoogle Scholar
  129. 129.
    Chang J, Mao S, Zhang Y, Cui S, Zhou G, Wu X, Yang C-H, Chen J (2013) Ultrasonic-assisted self-assembly of monolayer graphene oxide for rapid detection of Escherichia coli bacteria. Nanoscale 5:3620–3626. doi: 10.1039/C3NR00141ECrossRefPubMedGoogle Scholar
  130. 130.
    Chen Y, Michael ZP, Kotchey GP, Zhao Y, Star A (2014) Electronic detection of bacteria using holey reduced graphene oxide. ACS Appl Mater Interfaces 6:3805–3810. doi: 10.1021/am500364fCrossRefPubMedPubMedCentralGoogle Scholar
  131. 131.
    Hasegawa M, Hirayama Y, Ohno Y, Maehashi K, Matsumoto K (2014) Characterization of reduced graphene oxide field-effect transistor and its application to biosensor. Jpn J Appl Phys 53:05FD05. doi: 10.7567/JJAP.53.05FD05CrossRefGoogle Scholar
  132. 132.
    Inaba A, Yoo K, Takei Y, Matsumoto K, Shimoyama I (2014) Ammonia gas sensing using a graphene field–effect transistor gated by ionic liquid. Sens Actuators B Chem 195:15–21. doi: 10.1016/j.snb.2013.12.118CrossRefGoogle Scholar
  133. 133.
    Jiang S, Cheng R, Wang X, Xue T, Liu Y, Nel A, Huang Y, Duan X (2013) Real-time electrical detection of nitric oxide in biological systems with sub-nanomolar sensitivity. Nat Commun 4:2225. doi: 10.1038/ncomms3225CrossRefPubMedGoogle Scholar
  134. 134.
    Jung JH, Sohn IY, Kim DJ, Kim BY, Jang M, Lee N-E (2013) Enhancement of protein detection performance in field-effect transistors with polymer residue-free graphene channel. Carbon 62:312–321. doi: 10.1016/j.carbon.2013.05.069CrossRefGoogle Scholar
  135. 135.
    Kakatkar A, Abhilash TS, Alba RD, Parpia JM, Craighead HG (2015) Detection of DNA and poly-l-lysine using CVD graphene-channel FET biosensors. Nanotechnology 26:125502. doi: 10.1088/0957-4484/26/12/125502CrossRefPubMedGoogle Scholar
  136. 136.
    Khatayevich D, Page T, Gresswell C, Hayamizu Y, Grady W, Sarikaya M (2014) Selective detection of target proteins by peptide-enabled graphene biosensor. Small 10:1505–1513. doi: 10.1002/smll.201302188CrossRefPubMedGoogle Scholar
  137. 137.
    Kim D-J, Park H-C, Sohn IY, Jung J-H, Yoon OJ, Park J-S, Yoon M-Y, Lee N-E (2013) Electrical graphene aptasensor for ultra-sensitive detection of anthrax toxin with amplified signal transduction. Small 9:3352–3360. doi: 10.1002/smll.201203245CrossRefPubMedGoogle Scholar
  138. 138.
    Kim D-J, Sohn IY, Jung J-H, Yoon OJ, Lee N-E, Park J-S (2013) Reduced graphene oxide field-effect transistor for label-free femtomolar protein detection. Biosens Bioelectron 41:621–626. doi: 10.1016/j.bios.2012.09.040CrossRefPubMedGoogle Scholar
  139. 139.
    Lerner MB, Matsunaga F, Han GH, Hong SJ, Xi J, Crook A, Perez-Aguilar JM, Park YW, Saven JG, Liu R, Johnson ATC (2014) Scalable production of highly sensitive nanosensors based on graphene functionalized with a designed G protein-coupled receptor. Nano Lett 14:2709–2714. doi: 10.1021/nl5006349CrossRefPubMedPubMedCentralGoogle Scholar
  140. 140.
    Liu F, Kim YH, Cheon DS, Seo TS (2013) Micropatterned reduced graphene oxide based field-effect transistor for real-time virus detection. Sens Actuators B Chem 186:252–257. doi: 10.1016/j.snb.2013.05.097CrossRefGoogle Scholar
  141. 141.
    Maehashi K, Sofue Y, Okamoto S, Ohno Y, Inoue K, Matsumoto K (2013) Selective ion sensors based on ionophore-modified graphene field-effect transistors. Sens Actuators B Chem 187:45–49. doi: 10.1016/j.snb.2012.09.033CrossRefGoogle Scholar
  142. 142.
    Park JW, Park SJ, Kwon OS, Lee C, Jang J (2014) High-performance Hg2+ FET-type sensors based on reduced graphene oxide–polyfuran nanohybrids. Analyst 139:3852–3855. doi: 10.1039/C4AN00403ECrossRefPubMedGoogle Scholar
  143. 143.
    Park JW, Lee C, Jang J (2015) High-performance field-effect transistor-type glucose biosensor based on nanohybrids of carboxylated polypyrrole nanotube wrapped graphene sheet transducer. Sens Actuators B Chem 208:532–537. doi: 10.1016/j.snb.2014.11.085CrossRefGoogle Scholar
  144. 144.
    Saltzgaber G, Wojcik P, Sharf T, Leyden MR, Wardini JL, Heist CA, Adenuga AA, Remcho VT, Minot ED (2013) Scalable graphene field-effect sensors for specific protein detection. Nanotechnology 24:355502. doi: 10.1088/0957-4484/24/35/355502CrossRefPubMedGoogle Scholar
  145. 145.
    Sohn I-Y, Kim D-J, Jung J-H, Yoon OJ, Nguyen Thanh T, Tran Quang T, Lee N-E (2013) pH sensing characteristics and biosensing application of solution-gated reduced graphene oxide field-effect transistors. Biosens Bioelectron 45:70–76. doi: 10.1016/j.bios.2013.01.051CrossRefPubMedGoogle Scholar
  146. 146.
    Traversi F, Raillon C, Benameur SM, Liu K, Khlybov S, Tosun M, Krasnozhon D, Kis A, Radenovic A (2013) Detecting the translocation of DNA through a nanopore using graphene nanoribbons. Nat Nanotechnol 8:939–945. doi: 10.1038/nnano.2013.240CrossRefPubMedGoogle Scholar
  147. 147.
    Woszczyna M, Winter A, Grothe M, Willunat A, Wundrack S, Stosch R, Weimann T, Ahlers F, Turchanin A (2014) All-carbon vertical van der Waals heterostructures: non-destructive functionalization of graphene for electronic applications. Adv Mater 26:4831–4837. doi: 10.1002/adma.201400948CrossRefPubMedGoogle Scholar
  148. 148.
    Xie T, Xie G, Zhou Y, Huang J, Wu M, Jiang Y, Tai H (2014) Thin film transistors gas sensors based on reduced graphene oxide poly(3-hexylthiophene) bilayer film for nitrogen dioxide detection. Chem Phys Lett 614:275–281. doi: 10.1016/j.cplett.2014.09.028CrossRefGoogle Scholar
  149. 149.
    Xu G, Abbott J, Qin L, Yeung KYM, Song Y, Yoon H, Kong J, Ham D (2014) Electrophoretic and field-effect graphene for all-electrical DNA array technology. Nat Commun 5:4866. doi: 10.1038/ncomms5866CrossRefPubMedGoogle Scholar
  150. 150.
    Zhang X, Zhang Y, Liao Q, Song Y, Ma S (2013) Reduced graphene oxide-functionalized high electron mobility transistors for novel recognition pattern label-free DNA sensors. Small 9:4045–4050. doi: 10.1002/smll.201300793CrossRefPubMedGoogle Scholar
  151. 151.
    Zhou G, Chang J, Cui S, Pu H, Wen Z, Chen J (2014) Real-time, selective detection of Pb2+ in water using a reduced graphene oxide/gold nanoparticle field-effect transistor device. ACS Appl Mater Interfaces 6:19235–19241. doi: 10.1021/am505275aCrossRefPubMedGoogle Scholar
  152. 152.
    Lu C-H, Yang H-H, Zhu C-L, Chen X, Chen G-N (2009) A graphene platform for sensing biomolecules. Angew Chem Int Ed 48:4785–4787. doi: 10.1002/anie.200901479CrossRefGoogle Scholar
  153. 153.
    Karimi H, Yusof R, Rahmani R, Hosseinpour H, Ahmadi MT (2014) Development of solution-gated graphene transistor model for biosensors. Nanoscale Res Lett 9:71. doi: 10.1186/1556-276X-9-71CrossRefPubMedPubMedCentralGoogle Scholar
  154. 154.
    Kennedy J, Eberhart R (1995) Particle swarm optimization. Proc IEEE Int Conf Neural Netw 4:1942–1948CrossRefGoogle Scholar
  155. 155.
    Thompson IM, Pauler DK, Goodman PJ, Tangen CM, Lucia MS, Parnes HL, Minasian LM, Ford LG, Lippman SM, Crawford ED, Crowley JJ, Coltman CA (2004) Prevalence of prostate cancer among men with a prostate-specific antigen level ≤4.0 ng per milliliter. N Engl J Med 350:2239–2246. doi: 10.1056/NEJMoa031918CrossRefPubMedGoogle Scholar
  156. 156.
    Jensen-Jarolim E, Achatz G, Turner MC, Karagiannis S, Legrand F, Capron M, Penichet ML, Rodríguez JA, Siccardi AG, Vangelista L, Riemer AB, Gould H (2008) AllergoOncology: the role of IgE-mediated allergy in cancer. Allergy 63:1255–1266. doi: 10.1111/j.1398-9995.2008.01768.xCrossRefPubMedPubMedCentralGoogle Scholar
  157. 157.
    Winter WE, Hardt NS, Fuhrman S (2000) Immunoglobulin E. Arch Pathol Lab Med 124:1382–1385. doi: 10.1043/0003-9985(2000)124<1382:IE>2.0.CO;2CrossRefPubMedGoogle Scholar
  158. 158.
    Schultz W (2000) Multiple reward signals in the brain. Nat Rev Neurosci 1:199–207. doi: 10.1038/35044563CrossRefPubMedGoogle Scholar
  159. 159.
    Kim J-H, Auerbach JM, Rodríguez-Gómez JA, Velasco I, Gavin D, Lumelsky N, Lee S-H, Nguyen J, Sánchez-Pernaute R, Bankiewicz K, McKay R (2002) Dopamine neurons derived from embryonic stem cells function in an animal model of Parkinson’s disease. Nature 418:50–56. doi: 10.1038/nature00900CrossRefPubMedGoogle Scholar
  160. 160.
    Howes ODKJ (2012) The nature of dopamine dysfunction in schizophrenia and what this means for treatment: meta-analysis of imaging studies. Arch Gen Psychiatry 69:776–786. doi: 10.1001/archgenpsychiatry.2012.169CrossRefPubMedPubMedCentralGoogle Scholar
  161. 161.
  162. 162.
    He Q, Sudibya HG, Yin Z, Wu S, Li H, Boey F, Huang W, Chen P, Zhang H (2010) Centimeter-long and large-scale micropatterns of reduced graphene oxide films: fabrication and sensing applications. ACS Nano 4:3201–3208. doi: 10.1021/nn100780vCrossRefPubMedGoogle Scholar
  163. 163.
    Rhoads DD, Wolcott RD, Sun Y, Dowd SE (2012) Comparison of culture and molecular identification of bacteria in chronic wounds. Int J Mol Sci 13:2535–2550. doi: 10.3390/ijms13032535CrossRefPubMedPubMedCentralGoogle Scholar
  164. 164.
    Wolcott RD (2012) Methods for microbial identification in chronic wounds. Wounds Int 3:10–13Google Scholar
  165. 165.
    Nakagami G (2012) Innovations in wound infection management. Wounds Int 3:13–15Google Scholar
  166. 166.
    Asada M, Nakagami G, Minematsu T, Nagase T, Akase T, Huang L, Yoshimura K, Sanada H (2012) Novel biomarkers for the detection of wound infection by wound fluid RT-PCR in rats. Exp Dermatol 21:118–122. doi: 10.1111/j.1600-0625.2011.01404.xCrossRefPubMedGoogle Scholar
  167. 167.
    Desborough JP (2000) The stress response to trauma and surgery. Br J Anaesth 85:109–117. doi: 10.1093/bja/85.1.109CrossRefPubMedGoogle Scholar
  168. 168.
    Ouattara A, Lecomte P, Le Manach Y, Landi M, Jacqueminet S, Platonov I, Bonnet N, Riou B, Coriat P (2005) Poor intraoperative blood glucose control is associated with a worsened hospital outcome after cardiac surgery in diabetic patients. Anesthesiology 103:687–694CrossRefGoogle Scholar
  169. 169.
    Pearton SJ, Ren F (2012) Gallium nitride-based gas, chemical and biomedical sensors. IEEE Instrum Meas Mag 15:16–21. doi: 10.1109/MIM.2012.6145256CrossRefGoogle Scholar
  170. 170.
    Van den Berghe G, Wouters P, Weekers F, Verwaest C, Bruyninckx F, Schetz M, Vlasselaers D, Ferdinande P, Lauwers P, Bouillon R (2001) Intensive insulin therapy in critically ill patients. N Engl J Med 345:1359–1367. doi: 10.1056/NEJMoa011300CrossRefPubMedGoogle Scholar
  171. 171.
    Rice MJ, Pitkin AD, Coursin DB (2010) Glucose measurement in the operating room: more complicated than it seems. Anesth Analg 110:1056–1065. doi: 10.1213/ANE.0b013e3181cc07deCrossRefPubMedGoogle Scholar
  172. 172.
    Kwak YH, Choi DS, Kim YN, Kim H, Yoon DH, Ahn S-S, Yang J-W, Yang WS, Seo S (2012) Flexible glucose sensor using CVD-grown graphene-based field effect transistor. Biosens Bioelectron 37:82–87. doi: 10.1016/j.bios.2012.04.042CrossRefPubMedGoogle Scholar
  173. 173.
    Baker EH, Clark N, Brennan AL, Fisher DA, Gyi KM, Hodson ME, Philips BJ, Baines DL, Wood DM (2007) Hyperglycemia and cystic fibrosis alter respiratory fluid glucose concentrations estimated by breath condensate analysis. J Appl Physiol 102:1969–1975. doi: 10.1152/japplphysiol.01425.2006CrossRefPubMedGoogle Scholar
  174. 174.
    Chu BH, Kang BS, Hung SC, Chen KH, Ren F, Sciullo A, Gilla BP, Pearton SJ (2010) Aluminum gallium nitride (GaN)/GaN high electron mobility transistor-based sensors for glucose detection in exhaled breath condensate. J Diabetes Sci Technol 4:171–179CrossRefGoogle Scholar
  175. 175.
    Minh TDC, Oliver SR, Ngo J, Flores R, Midyett J, Meinardi S, Carlson MK, Rowland FS, Blake DR, Galassetti PR (2011) Noninvasive measurement of plasma glucose from exhaled breath in healthy and type 1 diabetic subjects. Am J Physiol Endocrinol Metab 300:E1166–E1175. doi: 10.1152/ajpendo.00634.2010CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.U.S. Naval Research LaboratoryWashingtonUSA

Personalised recommendations