Carbon Dots for Bioimaging and Biosensing Applications

  • Zhenhui KangEmail author
  • Yang Liu
  • Shuit-Tong Lee
Part of the Springer Series on Chemical Sensors and Biosensors book series (SSSENSORS, volume 17)


Carbon dots (CDs, sp2 hybrid carbon particles) as a new type of biocompatible nanomaterials have received much attention because of their low toxicity, good water dispersability, ease of fabrication and functionalization, and outstanding photostability. Recently, they have been explored intensively to serve as biosensors and bioimaging agents for various bio-applications. In this chapter, we will introduce the fundamental properties of CDs and focus on their recent applications in biosensing and bioimaging. We will also summarize the recent progress in their fabrication and application in biomedical imaging, interactions with biomolecules, electrochemical biosensors. In addition, the remaining challenges and perspectives for future developments are also briefly discussed. We hope this chapter will provide some critical insights to inspire more exciting work on CDs for biological applications (sensing and imaging) in the near future.


Bioimaging Biosensing Carbon dots Properties Synthesis 


  1. 1.
    Baker SN, Baker GA (2010) Luminescent carbon nanodots: emergent nanolights. Angew Chem Int Ed 49:6726–6744. doi: 10.1002/anie.200906623CrossRefGoogle Scholar
  2. 2.
    Ming H, Ma Z, Liu Y, Pan KM, Yu H, Wang F, Kang ZH (2012) Large scale electrochemical synthesis of high quality carbon nanodots and their photocatalytic property. Dalton Trans 41:9526–9531. doi: 10.1039/c2dt30985hCrossRefPubMedGoogle Scholar
  3. 3.
    Li H, Kang Z, Liu Y, Lee ST (2012) Carbon nanodots: synthesis, properties and applications. J Mater Chem 22:24230. doi: 10.1039/C2JM34690GCrossRefGoogle Scholar
  4. 4.
    Li LL, Wu GH, Yang GH, Peng J, Zhao JW, Zhu JJ (2013) Focusing on luminescent graphene quantum dots: current status and future perspectives. Nanoscale 5:4015. doi: 10.1039/C3NR33849ECrossRefPubMedGoogle Scholar
  5. 5.
    Wang YF, Hu AG (2014) Carbon quantum dots: synthesis, properties and applications. J Mater Chem C 2:6921. doi: 10.1039/C4TC00988FCrossRefGoogle Scholar
  6. 6.
    Lim SY, Shen W, Gao ZQ (2015) Carbon quantum dots and their applications. Chem Soc Rev 44:362. doi: 10.1039/C4CS00269ECrossRefPubMedGoogle Scholar
  7. 7.
    Li HT, He XD, Kang ZH, Huang H, Liu Y, Liu JL, Lian SY, Tsang CCA, Yang XB, Lee ST (2010) Water-soluble fluorescent carbon quantum dots and catalyst design. Angew Chem Int Ed 49:4430–4434. doi: 10.1002/anie.200906154CrossRefGoogle Scholar
  8. 8.
    Sun J, Yang SW, Wang ZW, Shen H, Xu T, Sun LT, Li H, Chen WW, Jiang XY, Ding GQ, Kang ZH, Xie XM, Jiang MH (2015) Ultra-high quantum yield of graphene quantum dots: aromatic-nitrogen doping and photoluminescence mechanism. Part Part Syst Charact 32:434–440. doi: 10.1002/ppsc.201400189CrossRefGoogle Scholar
  9. 9.
    Myung N, Ding Z, Bard AJ (2002) Electrogenerated chemiluminescence of CdSe nanocrystals. Nano Lett 2:1315–1319. doi: 10.1021/nl0257824CrossRefGoogle Scholar
  10. 10.
    Bae Y, Myung N, Bard AJ (2004) Electrochemistry and electrogenerated chemiluminescence of CdTe nanoparticles. Nano Lett 4:1153–1161. doi: 10.1021/nl049516xCrossRefGoogle Scholar
  11. 11.
    Myung N, Bae Y, Bard AJ (2003) Effect of surface passivation on the electrogenerated chemiluminescence of CdSe/ZnSe nanocrystals. Nano Lett 3:1053–1055. doi: 10.1021/nl034354aCrossRefGoogle Scholar
  12. 12.
    Jie G, Huang H, Sun XL, Zhu JJ (2008) Electrochemiluminescence of CdSe quantum dots for immunosensing of human prealbumin. Biosens Bioelectron 23:1896–1899. doi: 10.1016/j.bios.2008.02.028CrossRefPubMedGoogle Scholar
  13. 13.
    Jiang H, Ju H (2007) Enzyme–quantum dots architecture for highly sensitive electrochemiluminescence biosensing of oxidase substrates. Chem Commun 4:404–406. doi: 10.1039/b616007gCrossRefGoogle Scholar
  14. 14.
    Derfus AM, Chan W, Bhatia SN (2004) Probing the cytotoxicity of semiconductor quantum dots. Nano Lett 4:11–18. doi: 10.1021/nl0347334CrossRefPubMedGoogle Scholar
  15. 15.
    Zheng LY, Chi YW, Dong YQ, Lin JP, Wang BB (2009) Electrochemiluminescence of water-soluble carbon nanocrystals released electrochemically from graphite. J Am Chem Soc 131:4564–4565. doi: 10.1021/ja809073fCrossRefPubMedGoogle Scholar
  16. 16.
    Ding Z, Quinn BM, Haram SK, Pell LE, Korgel BA, Bard AJ (2002) Electrochemistry and electrogenerated chemiluminescence from silicon nanocrystal quantum dots. Science 296:1293–1297. doi: 10.1126/science.1069336CrossRefPubMedGoogle Scholar
  17. 17.
    Li H, Liu J, Guo S, Zhang Y, Huang H, Liu Y, Kang Z (2015). J Mater Chem B 3:2378–2387. doi: 10.1039/C4TB01983KCrossRefGoogle Scholar
  18. 18.
    Henrichs SM, Sugai SF (1993) Adsorption of amino acids and glucose by sediments of Resurrection Bay, Alaska, USA: functional group effects. Geochim Cosmochim Acta 57:823. doi: 10.1016/0016-7037(93)90171-RCrossRefGoogle Scholar
  19. 19.
    Cho EC, Au L, Zhang Q, Xia YN (2010) The effects of size, shape, and surface functional group of gold nanostructures on their adsorption and internalization by cells. Small 6:517. doi: 10.1002/smll.200901622CrossRefPubMedGoogle Scholar
  20. 20.
    Liu R, Liu J, Kong W, Huang H, Han X, Zhang X, Liu Y, Kang Z (2014). Dalton Trans 43:10920–10929. doi: 10.1039/C4DT00630ECrossRefPubMedGoogle Scholar
  21. 21.
    Song YB, Zhu SJ, Yang B (2014) Bioimaging based on fluorescent carbon dots. RSC Adv 4:27184–27200. doi: 10.1039/C3RA47994CCrossRefGoogle Scholar
  22. 22.
    Markovic ZM, Ristic BZ, Arsikin KM, Klisic DG, Harhaji-Trajkovic LM, Todorovic-Markovic BM, Kepic DP, Kravic-Stevovic TK, Jovanovic SP, Milenkovic MM, Milivojevic DD, Bumbasirevic VZ, Dramicanin MD, Trajkovic VS (2012) Graphene quantum dots as autophagy-inducing photodynamic agents. Biomaterials 33:7084–7092. doi: 10.1016/j.biomaterials.2012.06.060CrossRefPubMedGoogle Scholar
  23. 23.
    Wu C, Wang C, Han T, Zhou X, Guo S, Zhang J (2013) Insight into the cellular internalization and cytotoxicity of graphene quantum dots. Adv Healthc Mater 2:1613–1619. doi: 10.1002/adhm.201300066CrossRefPubMedGoogle Scholar
  24. 24.
    Wang D, Chen JF, Dai LM (2015) Recent advances in graphene quantum dots for fluorescence bioimaging from cells through tissues to animals. Part Part Syst Charact 32:515–523. doi: 10.1002/ppsc.201400219CrossRefGoogle Scholar
  25. 25.
    Zhu S, Zhang J, Qiao C, Tang S, Li Y, Yuan W, Li B, Tian L, Liu F, Hu R, Gao H, Wei H, Zhang H, Sun H, Yang B (2011) Strongly green-photoluminescent graphene quantum dots for bioimaging applications. Chem Commun 47:6858–6860. doi: 10.1039/C1CC11122ACrossRefGoogle Scholar
  26. 26.
    Zhou L, Geng J, Liu B (2013) Graphene quantum dots from polycyclic aromatic hydrocarbon for bioimaging and sensing of Fe3+ and hydrogen peroxide. Part Part Syst Charact 30:1086–1092. doi: 10.1002/ppsc.201300170CrossRefGoogle Scholar
  27. 27.
    Zheng XT, Than A, Ananthanaraya A, Kim DH, Chen P (2013) Graphene quantum dots as universal fluorophores and their use in revealing regulated trafficking of insulin receptors in adipocytes. ACS Nano 7:6278–6286. doi: 10.1021/nn4023137CrossRefPubMedGoogle Scholar
  28. 28.
    Gokhale R, Singh P (2014) Blue luminescent graphene quantum dots by photochemical stitching of small aromatic molecules: fluorescent nanoprobes in cellular imaging. Part Part Syst Charact 31:433–438. doi: 10.1002/ppsc.201300294CrossRefGoogle Scholar
  29. 29.
    Prasad KS, Pallela R, Kim DM, Shim YB (2013) Microwave-assisted one-pot synthesis of metal-free nitrogen and phosphorus dual-doped nanocarbon for electrocatalysis and cell imaging. Part Part Syst Charact 30:557–564. doi: 10.1002/ppsc.201300020CrossRefGoogle Scholar
  30. 30.
    Sun H, Wu L, Gao N, Ren J, Qu X (2013) Improvement of photoluminescence of graphene quantum dots with a biocompatible photochemical reduction pathway and its bioimaging application. ACS Appl Mater Interfaces 5:1174–1179. doi: 10.1021/am3030849CrossRefPubMedGoogle Scholar
  31. 31.
    Qian Z, Ma J, Shan X, Shao L, Zhou J, Chen J, Feng H (2013) Surface functionalization of graphene quantum dots with small organic molecules from photoluminescence modulation to bioimaging applications: an experimental and theoretical investigation. RSC Adv 3:14571–14579. doi: 10.1039/C3RA42066CCrossRefGoogle Scholar
  32. 32.
    Zhu S, Zhang J, Tang S, Qiao C, Wang L, Wang H, Liu X, Li B, Li Y, Yu W, Wang X, Sun H, Yang B (2012) Surface chemistry routes to modulate the photoluminescence of graphene quantum dots: from fluorescence mechanism to up-conversion bioimaging applications. Adv Funct Mater 22:4732–4740. doi: 10.1002/adfm.201201499CrossRefGoogle Scholar
  33. 33.
    Liu Q, Guo B, Rao Z, Zhang B, Gong JR (2013) Strong two-photon-induced fluorescence from photostable, biocompatible nitrogen-doped graphene quantum dots for cellular and deep-tissue imaging. Nano Lett 13:2436–2441. doi: 10.1021/nl400368vCrossRefPubMedGoogle Scholar
  34. 34.
    Cai WB, Chen XY (2007) Nanoplatforms for targeted molecular imaging in living subjects. Small 3:1840–1854. doi: 10.1002/smll.200700351CrossRefPubMedGoogle Scholar
  35. 35.
    Nurunnabi M, Khatun Z, Huh KM, Park SY, Lee DY, Cho KJ, Lee Y (2013) In vivo biodistribution and toxicology of carboxylated graphene quantum dots. ACS Nano 7:6858–6867. doi: 10.1021/nn402043cCrossRefPubMedGoogle Scholar
  36. 36.
    Nurunnabi M, Khatun Z, Reeck GR, Lee DY, Lee YK (2013) Near infra-red photoluminescent graphene nanoparticles greatly expand their use in noninvasive biomedical imaging. Chem Commun 49:5079–5081. doi: 10.1039/C3CC42334DCrossRefGoogle Scholar
  37. 37.
    Tao HQ, Yang K, Ma Z, Wan JM, Zhang YJ, Kang ZH, Liu Z (2012) In vivo NIR fluorescence imaging, biodistribution, and toxicology of photoluminescent carbon dots produced from carbon nanotubes and graphite. Small 8:281–290. doi: 10.1002/smll.201101706CrossRefPubMedGoogle Scholar
  38. 38.
    Fan Z, Li SH, Yuan FL, Fan LZ (2015) Fluorescent graphene quantum dots for biosensing and bioimaging. RSC Adv 5:19773–19789. doi: 10.1039/C4RA17131DCrossRefGoogle Scholar
  39. 39.
    Ran X, Sun HJ, Pu F, Ren JS, Qu XG (2013) Ag nanoparticle-decorated graphene quantum dots for label-free, rapid and sensitive detection of Ag+ and biothiols. Chem Commun 49:1079–1081. doi: 10.1039/C2CC38403ECrossRefGoogle Scholar
  40. 40.
    He YZ, Wang XX, Sun J, Jiao SF, Chen HQ, Gao F, Wang L (2014) Fluorescent blood glucose monitor by hemin-functionalized graphene quantum dots based sensing system. Anal Chim Acta 810:71–78. doi: 10.1016/j.aca.2013.11.059CrossRefPubMedGoogle Scholar
  41. 41.
    Qu ZB, Zhou XG, Gu L, Lan RM, Sun DD, Yu DJ, Shi GY (2013) Boronic acid functionalized graphene quantum dots as a fluorescent probe for selective and sensitive glucose determination in microdialysate. Chem Commun 49:9830–9832. doi: 10.1039/C3CC44393KCrossRefGoogle Scholar
  42. 42.
    Wang Y, Zhang L, Liang RP, Bai JM, Qiu JD (2013) Using graphene quantum dots as photoluminescent probes for protein kinase sensing. Anal Chem 85:9148–9155. doi: 10.1021/ac401807bCrossRefPubMedGoogle Scholar
  43. 43.
    Fan ZT, Li YC, Li XH, Fan LZ, Zhou SX, Fang DC, Yang SH (2014) Surrounding media sensitive photoluminescence of boron-doped graphene quantum dots for highly fluorescent dyed crystals, chemical sensing and bioimaging. Carbon 70:149–156. doi: 10.1016/j.carbon.2013.12.085CrossRefGoogle Scholar
  44. 44.
    Zhang L, Zhang ZY, Liang RP, Li YH, Qiu JD (2014) Boron-doped graphene quantum dots for selective glucose sensing based on the “abnormal” aggregation-induced photoluminescence enhancement. Anal Chem 86:4423–4430. doi: 10.1021/ac500289cCrossRefPubMedGoogle Scholar
  45. 45.
    Li YH, Zhang L, Huang J, Liang RP, Qiu JD (2013) Fluorescent graphene quantum dots with a boronic acid appended bipyridinium salt to sense monosaccharides in aqueous solution. Chem Commun 49:5180–5182. doi: 10.1039/C3CC40652KCrossRefGoogle Scholar
  46. 46.
    Li X, Zhu SJ, Xu B, Ma K, Zhang JH, Yang B, Tian WJ (2013) Self-assembled graphene quantum dots induced by cytochrome c: a novel biosensor for trypsin with remarkable fluorescence enhancement. Nanoscale 5:7776–7779. doi: 10.1039/C3NR00006KCrossRefPubMedGoogle Scholar
  47. 47.
    Yang MM, Li H, Liu J, Kong WQ, Zhao SY, Li CX, Huang H, Liu Y, Kang ZH (2014) Convenient and sensitive detection of norfloxacin with fluorescent carbon dots. J Mater Chem B 2:7964–7970. doi: 10.1039/c4tb01385aCrossRefGoogle Scholar
  48. 48.
    Liu WF, Zhang J, Zhang CL, Ren L (2011) Sorption of norfloxacin by lotus stalk-based activated carbon and iron-doped activated alumina: mechanisms, isotherms and kinetics. Chem Eng J 171:431–438. doi: 10.1016/j.cej.2011.03.099CrossRefGoogle Scholar
  49. 49.
    Goyal RN, Rana ARS, Chasta H (2012) Electrochemical sensor for the sensitive determination of norfloxacin in human urine and pharmaceuticals. Bioelectrochemistry 83:46–51. doi: 10.1016/j.bioelechem.2011.08.006CrossRefPubMedGoogle Scholar
  50. 50.
    Carabineiro SAC, Thavorn-Amornsri T, Pereira MFR, Figueiredo JL (2011) Adsorption of ciprofloxacin on surface-modified carbon materials. Water Res 45:4583–4591. doi: 10.1016/j.watres.2011.06.008CrossRefPubMedGoogle Scholar
  51. 51.
    El Walily AFM, Belal SF, Bakry RS (1996) Spectrophotometric and spectrofluorimetric estimation of ciprofloxacin and norfloxacin by ternary complex formation with eosin and palladium(II). J Pharm Biomed Anal 14:561–569. doi: 10.1016/0731-7085(95)01662-7CrossRefPubMedGoogle Scholar
  52. 52.
    Nagaralli BS, Seetharamappa J, Melwanki MB (2002) Sensitive spectrophotometric methods for the determination of amoxycillin, ciprofloxacin and piroxicam in pure and pharmaceutical formulations. J Pharm Biomed Anal 29:859–864. doi: 10.1016/S0731-7085(02)00210-8CrossRefPubMedGoogle Scholar
  53. 53.
    Kassab NM, Singh AK, Hackmam ERMK, Santoro MIRM (2005) Quantitative determination of ciprofloxacin and norfloxacin in pharmaceutical preparations by high performance liquid chromatography. Braz J Pharm Sci 41:507–513. doi: 10.1590/S1516-93322005000400014CrossRefGoogle Scholar
  54. 54.
    Garcia MA, Solans C, Aramayona JJ, Rueda S, Bregante MA, De Jong A (1999) Simultaneous determination of enrofloxacin and its primary metabolite, ciprofloxacin, in plasma by HPLC with fluorescence detection. Biomed Chromatogr 13:350–353. doi: 10.1002/(SICI)1099-0801(199908)13:5<350::AID-BMC889>3.0.CO;2-CCrossRefPubMedGoogle Scholar
  55. 55.
    Mascher HJ, Kikuta C (1998) Determination of norfloxacin in human plasma and urine by high-performance liquid chromatography and fluorescence detection. J Chromatogr A 812:381–385. doi: 10.1016/S0021-9673(98)00401-4CrossRefPubMedGoogle Scholar
  56. 56.
    Nageswara RR, Nagaraju V (2004) Separation and determination of synthetic impurities of norfloxacin by reversed-phase high performance liquid chromatography. J Pharm Biomed Anal 34:1049–1056. doi: 10.1016/j.jpba.2003.11.009CrossRefGoogle Scholar
  57. 57.
    Ahmad M, Murtaza G, Khiljee S, Madni MA (2010). Proc World Acad Sci Eng Tech 4:321–324Google Scholar
  58. 58.
    Mostafa S, El-Sadek M, Alla EA (2002) Pectrophotometric determination of ciprofloxacin, enrofloxacin and pefloxacin through charge transfer complex formation. J Pharm Biomed Anal 27:133–142. doi: 10.1016/S0731-7085(01)00524-6CrossRefPubMedGoogle Scholar
  59. 59.
    Gowda BG, Seetharamappa J (2003) Extractive spectrophotometric determination of fluoroquinolones and antiallergic drugs in pure and pharmaceutical formulations. Anal Sci 19:461–464. doi: 10.2116/analsci.19.461CrossRefPubMedGoogle Scholar
  60. 60.
    Rizk M, Belal F, Ibrahim F, Ahmed S, Sheribah ZA (2001) Derivative spectrophotometric analysis of 4-quinolone antibacterials in formulations and spiked biological fluids by their Cu(II) complexes. J AOAC Int 84:368–375PubMedGoogle Scholar
  61. 61.
    Hopkala H, Kowalczuk D (2000) Application of derivative UV spectrophotometry for the determination of ciprofloxacin norfloxacin and ofloxacin in tablets. Acta Pol Pharm 57:3–13PubMedGoogle Scholar
  62. 62.
    Barrón D, Jiménez-Lozano E, Bailac S, Barbosa J (2003) Simultaneous determination of flumequine and oxolinic acid in chicken tissues by solid phase extraction and capillary electrophoresis. Anal Chim Acta 477:21–27. doi: 10.1016/S0003-2670(02)01398-3CrossRefGoogle Scholar
  63. 63.
    Cheng CL, Fu CH, Chou CH (2007) Determination of norfloxacin in rat liver perfusate using capillary electrophoresis with laser-induced fluorescence detection. J Chromatogr B 856:381–385. doi: 10.1016/j.jchromb.2007.06.008CrossRefGoogle Scholar
  64. 64.
    Alnajjar A, AbuSeada HH, Idris AM (2007) Capillary electrophoresis for the determination of norfloxacin and tinidazole in pharmaceuticals with multi-response. Talanta 72:842–846. doi: 10.1016/j.talanta.2006.11.025CrossRefPubMedGoogle Scholar
  65. 65.
    Fierens C, Hillaert S, van den Bossche W (2000) The qualitative and quantitative determination of quinolones of first and second generation by capillary electrophoresis. J Pharm Biomed Anal 22:763–772. doi: 10.1016/S0731-7085(99)00282-4CrossRefPubMedGoogle Scholar
  66. 66.
    Zotou A, Miltiadou N (2002) Sensitive LC determination of ciprofloxacin in pharmaceutical preparations and biological fluids with fluorescence detection. J Pharm Biomed Anal 28:559–568. doi: 10.1016/S0731-7085(01)00689-6CrossRefPubMedGoogle Scholar
  67. 67.
    Suliman FEO, Sultan SM (1996) Sequential injection technique employed for stoichiometric studies, optimization and quantitative determination of some fluoroquinolone antibiotics complexed with iron(III) in sulfuric acid media. Talanta 43:559–568. doi: 10.1016/0039-9140(95)01771-2CrossRefPubMedGoogle Scholar
  68. 68.
    RufinoI JL, Pezza HR, Pezza L, Pinto PCAG, Saraiva MLMFS, Lima JLFC (2011) Sequential injection analysis system with spectrophotometric detection for determination of norfloxacin and ciprofloxacin in pharmaceutical formulations. Quim Nova 34:256–261. doi: 10.1590/S0100-40422011000200016CrossRefGoogle Scholar
  69. 69.
    Sultan SM, Suliman FO (1992) Flow injection spectrophotometric determination of the antibiotic ciprofloxacin in drug formulations. Analyst 117:1523–1526. doi: 10.1039/AN9921701523CrossRefPubMedGoogle Scholar
  70. 70.
    Pascual-Reguera MI, Parras GP, Díaz AM (2004) A single spectroscopic flow-through sensing device for determination of ciprofloxacin. J Pharm Biomed Anal 35:689–695. doi: 10.1016/j.jpba.2004.03.002CrossRefPubMedGoogle Scholar
  71. 71.
    Aly FA, Al-Tamimi SA, Alwarthan AA (2001) Chemiluminescence determination of some fluoroquinolone derivatives in pharmaceutical formulations and biological fluids using [Ru(bipy)32+]–Ce(IV) system. Talanta 53:885–893. doi: 10.1016/S0039-9140(00)00590-7CrossRefPubMedGoogle Scholar
  72. 72.
    Burkhead MS, Wang H, Fallet M, Gross EM (2008) Electrogenerated chemiluminescence: an oxidative-reductive mechanism between quinolone antibiotics and tris(2,2′-bipyridyl)ruthenium(II). Anal Chim Acta 613:152–162. doi: 10.1016/j.aca.2008.02.059CrossRefPubMedGoogle Scholar
  73. 73.
    Snitkoff GG, Grabe DW, Holt R, Bailie GR (1998) Development of an immunoassay for monitoring the levels of ciprofloxacin in patient samples. J Immunoassay 19:227–238. doi: 10.1080/01971529808005483CrossRefPubMedGoogle Scholar
  74. 74.
    Yi YH, Deng JH, Zhang YY, Li HT, Yao SZ (2013) Label-free Si quantum dots as photoluminescence probes for glucose detection. Chem Commun 49:612–614. doi: 10.1039/C2CC36282ACrossRefGoogle Scholar
  75. 75.
    Li L, Cheng Y, Ding YP, Gu SQ, Zhang FF, Yu WJ (2013) Synthesis of functionalized core–shell CdTe/ZnS nanoparticles and their application as a fluorescence probe for norfloxacin determination. Eur J Inorg Chem 2013:2564–2570. doi: 10.1002/ejic.201201372CrossRefGoogle Scholar
  76. 76.
    Yuan JP, Wen D, Gaponik N, Eychmuller A (2013) Enzyme-encapsulating quantum dot hydrogels and xerogels as biosensors: multifunctional platforms for both biocatalysis and fluorescent probing. Angew Chem Int Ed 52:976–979. doi: 10.1002/anie.201205791CrossRefGoogle Scholar
  77. 77.
    Sun HJ, Wu L, Wei WL, Qu XG (2013) Recent advances in graphene quantum dots for sensing. Mater Today 16:433–442. doi: 10.1016/j.mattod.2013.10.020CrossRefGoogle Scholar
  78. 78.
    Wang LJ, Cao G, Tu T, Li HO, Zhou C, Hao XJ, Su Z, Guo GC, Jiang HW, Guo GP (2010) A graphene quantum dot with a single electron transistor as an integrated charge sensor. Appl Phys Lett 97:262113-1–262113-3. doi: 10.1063/1.3533021CrossRefGoogle Scholar
  79. 79.
    Fringes S, Volk C, Norda C, Terrés B, Dauber J, Engels S, Trellenkamp S, Stampfer C (2011) Charge detection in a bilayer graphene quantum dot. Phys Status Solidi B 248:2684–2687. doi: 10.1002/pssb.201100189CrossRefGoogle Scholar
  80. 80.
    Güttinger J, Seif J, Stampfer C, Capelli A, Ensslin K, Ihn T (2011) Time-resolved charge detection in graphene quantum dots. Phys Rev B 83:165445. doi: 10.1103/PhysRevB.83.165445CrossRefGoogle Scholar
  81. 81.
    Mueller T et al. (2012). Appl Phys Lett 101:12104CrossRefGoogle Scholar
  82. 82.
    Sreeprasad TS, Rodriguez AA, Colston J, Graham A, Shishkin E, Pallem V, Berry V (2013) Electron-tunneling modulation in percolating network of graphene quantum dots: fabrication, phenomenological understanding, and humidity/pressure sensing applications. Nano Lett 13:1757–1763. doi: 10.1021/nl4003443CrossRefPubMedGoogle Scholar
  83. 83.
    Wu L, Wang JS, Ren JS, Li W, Qu XG (2013) Highly sensitive electrochemiluminescent cytosensing using carbon nanodot@Ag hybrid material and graphene for dual signal amplification. Chem Commun 49:5675–5677. doi: 10.1039/C3CC42637HCrossRefGoogle Scholar
  84. 84.
    Zhang CY, Wang L, Wang AM, Zhang SY, Mao CJ, Song JM, Niu HL, Jin BK, Tian YP (2014) A novel electrochemiluminescence sensor based on nitrogen-doped graphene/CdTe quantum dots composite. Appl Surf Sci 315:22–27. doi: 10.1016/j.apsuscCrossRefGoogle Scholar
  85. 85.
    Li LL, Ji J, Fei R, Wang CZ, Lu Q, Zhang JR, Jiang LP, Zhu JJ (2012) A facile microwave avenue to electrochemiluminescent two-color graphene quantum dots. Adv Funct Mater 22:2971–2979. doi: 10.1002/adfmCrossRefGoogle Scholar
  86. 86.
    Yang HM, Liu WY, Ma C, Zhang Y, Wang X, Yua JH, Song XR (2014) Gold–silver nanocomposite-functionalized graphene based electrochemiluminescence immunosensor using graphene quantum dots coated porous PtPd nanochains as labels. Electrochim Acta 123:470–476. doi: 10.1016/j.electactaCrossRefGoogle Scholar
  87. 87.
    Lu Q, Wei W, Zhou ZX, Zhou ZX, Zhang YJ, Liu SQ (2014) Electrochemiluminescence resonance energy transfer between graphene quantum dots and gold nanoparticles for DNA damage detection. Analyst 139:2404–2410. doi: 10.1039/C4AN00020JCrossRefPubMedGoogle Scholar
  88. 88.
    Lu JJ, Yan M, Ge L, Ge SG, Wang SW, Yan JX, Yu JH (2013) Electrochemiluminescence of blue-luminescent graphene quantum dots and its application in ultrasensitive aptasensor for adenosine triphosphate detection. Biosens Bioelectron 47:271–277. doi: 10.1016/j.biosCrossRefPubMedGoogle Scholar
  89. 89.
    Dong YQ, Dai RP, Dong TQ, Chi YW, Chen GN (2014) Photoluminescence, chemiluminescence and anodic electrochemiluminescence of hydrazide-modified graphene quantum dots. Nanoscale 6:11240–11245. doi: 10.1039/C4NR02539CCrossRefPubMedGoogle Scholar
  90. 90.
    Wang ZY, Dai ZH (2015) Carbon nanomaterial-based electrochemical biosensors: an overview. Nanoscale 7:6420–6431. doi: 10.1039/C5NR00585JCrossRefPubMedGoogle Scholar
  91. 91.
    Song YJ, Qu KG, Zhao C, Ren JS, Qu XG (2010) Graphene oxide: intrinsic peroxidase catalytic activity and its application to glucose detection. Adv Mater 22:2206–2210. doi: 10.1002/admaCrossRefPubMedGoogle Scholar
  92. 92.
    Zhang Y, Wu CY, Zhou XJ, Wu XC, Yang YQ, Wu HX, Guo SW, Zhang JY (2013) Graphene quantum dots/gold electrode and its application in living cell H2O2 detection. Nanoscale 5:1816–1819. doi: 10.1039/C3NR33954HCrossRefPubMedGoogle Scholar
  93. 93.
    Zhang HQ, Dai PW, Huang LZ, Huang YH, Huang QT, Zhang WX, Wei C, Hu SR (2014) A nitrogen-doped carbon dot/ferrocene@β-cyclodextrin composite as an enhanced material for sensitive and selective determination of uric acid. Anal Methods 6:2687–2691. doi: 10.1039/C4AY00140KCrossRefGoogle Scholar
  94. 94.
    Zhao J, Chen GF, Zhu L, Li GX (2011) Graphene quantum dots-based platform for the fabrication of electrochemical biosensors. Electrochem Commun 13:31–33. doi: 10.1016/j.elecomCrossRefGoogle Scholar
  95. 95.
    Shao XL, Gu H, Wang Z, Chai XL, Tian Y, Shi GY (2013) Highly selective electrochemical strategy for monitoring of cerebral Cu2+ based on a carbon dot-TPEA hybridized surface. Anal Chem 85:418–425. doi: 10.1021/ac303113nCrossRefPubMedGoogle Scholar
  96. 96.
    Razmi H, Mohammad-Rezaei R (2013) Graphene quantum dots as a new substrate for immobilization and direct electrochemistry of glucose oxidase: application to sensitive glucose determination. Biosens Bioelectron 41:498–504. doi: 10.1016/j.biosCrossRefPubMedGoogle Scholar
  97. 97.
    Wang YL, Wang ZC, Rui YP, Li MG (2015) Horseradish peroxidase immobilization on carbon nanodots/CoFe layered double hydroxides: direct electrochemistry and hydrogen peroxide sensing. Biosens Bioelectron 64:57–62. doi: 10.1016/j.biosCrossRefPubMedGoogle Scholar
  98. 98.
    Muthurasu A, Ganesh V (2014) Horseradish peroxidase enzyme immobilized graphene quantum dots as electrochemical biosensors. Appl Biochem Biotechnol 174:945–959. doi: 10.1007/s12010-014-1019-7CrossRefPubMedGoogle Scholar
  99. 99.
    Li YC, Zhong YM, Zhang YY, Weng W, Li SX (2015) Carbon quantum dots/octahedral Cu2O nanocomposites for non-enzymatic glucose and hydrogen peroxide amperometric sensor. Sensors Actuators B Chem 206:735–743. doi: 10.1016/j.snbCrossRefGoogle Scholar
  100. 100.
    Huang QT, Hu SR, Zhang HQ, Chen JH, He YS, Li FM, Weng W, Ni JC, Bao XX, Lin Y (2013) Carbon dots and chitosan composite film based biosensor for the sensitive and selective determination of dopamine. Analyst 138:5417–5423. doi: 10.1039/C3AN00510KCrossRefPubMedGoogle Scholar
  101. 101.
    Huang QT, Zhang HQ, Hu SR, Li FM, Weng W, Chen JH, Wang QX, He YS, Zhang WX, Bao XX (2014) A sensitive and reliable dopamine biosensor was developed based on the Au@carbon dots–chitosan composite film. Biosens Bioelectron 52:277–280. doi: 10.1016/j.biosCrossRefPubMedGoogle Scholar
  102. 102.
    Hu SR, Huang QT, Lin Y, Wei C, Zhang HQ, Zhang WX, Guo ZB, Bao XX, Shi JG, Hao AY (2014) Reduced graphene oxide-carbon dots composite as an enhanced material for electrochemical determination of dopamine. Electrochim Acta 130:805–809. doi: 10.1016/j.electactaCrossRefGoogle Scholar
  103. 103.
    Kong WQ, Liu J, Liu RH, Li H, Liu Y, Huang H, Li KY, Liu J, Lee ST, Kang ZH (2014) Quantitative and real-time effects of carbon quantum dots on single living HeLa cell membrane permeability. Nanoscale 6:5116–5120. doi: 10.1039/C3NR06590ACrossRefPubMedGoogle Scholar
  104. 104.
    Daniel MC, Astruc D (2004) The NiCl2–Li–arene(cat.) combination: a versatile reducing mixture. Chem Soc Rev 33:284–293. doi: 10.1039/B315131JCrossRefGoogle Scholar
  105. 105.
    Jiang W, Kim BYS, Rutka JT, Chan WCW (2008) Nanoparticle-mediated cellular response is size-dependent. Nat Nanotechnol 3:145–150. doi: 10.1038/nnanoCrossRefPubMedGoogle Scholar
  106. 106.
    Zanchet D, Micheel CM, Parak WJ, Gerion D, William SD, Alivisatos AP (2002) Electrophoretic and structural studies of DNA-directed Au nanoparticle groupings. J Phys Chem B 106:11758–11763. doi: 10.1021/jp026144cCrossRefGoogle Scholar
  107. 107.
    Liu XH, Ramsey MM, Chen XL, Koley D, Whiteley M, Bard AJ (2011) Real-time mapping of a hydrogen peroxide concentration profile across a polymicrobial bacterial biofilm using scanning electrochemical microscopy. Proc Natl Acad Sci U S A 108:2668–2673. doi: 10.1073/pnas.1018391108CrossRefPubMedPubMedCentralGoogle Scholar
  108. 108.
    Chang JS, Chang KLB, Hwang DF, Kong ZL (2007) In vitro cytotoxicitiy of silica nanoparticles at high concentrations strongly depends on the metabolic activity type of the cell line. Environ Sci Technol 41:2064–2068. doi: 10.1021/es062347tCrossRefPubMedGoogle Scholar
  109. 109.
    Kim S, Oh WK, Jeong YS, Hong JY, Cho BR, Hahn JS, Jang J (2011) Cytotoxicity of, and innate immune response to, size-controlled polypyrrole nanoparticles in mammalian cells. Biomaterials 32:2342–2350. doi: 10.1016/j.biomaterialsCrossRefPubMedGoogle Scholar
  110. 110.
    Carlson C, Hussain SM, Schrand AM, BraydichStolle LK, Hess KL, Jones RL, Schlager JJ (2008) Unique cellular interaction of silver nanoparticles: size-dependent generation of reactive oxygen species. J Phys Chem B 112:13608–13619. doi: 10.1021/jp712087mCrossRefPubMedGoogle Scholar
  111. 111.
    Ray SC, Saha A, Jana NR, Sarkar R (2009) Fluorescent carbon nanoparticles: synthesis, characterization, and bioimaging application. J Phys Chem C 113:18546–18551. doi: 10.1021/jp905912nCrossRefGoogle Scholar
  112. 112.
    Kang ZH, Tsang CHA, Wong NB, Zhang ZD, Lee ST (2007) Silicon quantum dots: a general photocatalyst for reduction, decomposition, and selective oxidation reactions. J Am Chem Soc 129:12090–12091. doi: 10.1021/ja075184xCrossRefPubMedGoogle Scholar
  113. 113.
    Kang ZH, Tsang CHA, Zhang ZD, Zhang ML, Wong NB, Zapien JA, Shan YY, Lee ST (2007) A Polyoxometalate-assisted electrochemical method for silicon nanostructures preparation: from quantum dots to nanowires. J Am Chem Soc 129:5326–5327. doi: 10.1021/ja068894wCrossRefPubMedGoogle Scholar
  114. 114.
    Kang ZH, Liu Y, Tsang CHA, Ma DDD, Fan X, Wong NB, Lee ST (2009) Water-soluble silicon quantum dots with wavelength-tunable photoluminescence. Adv Mater 21:661–664. doi: 10.1002/admaCrossRefGoogle Scholar
  115. 115.
    Li HT, He XD, Liu Y, Huang H, Lian SY, Lee ST, Kang ZH (2011) One-step ultrasonic synthesis of water-soluble carbon nanoparticles with excellent photoluminescent properties. Carbon 49:605–609. doi: 10.1016/j.carbonCrossRefGoogle Scholar
  116. 116.
    Dong YQ, Zhou NN, Lin XM, Lin JP, Chi YW, Chen GN (2010) Extraction of electrochemiluminescent oxidized carbon quantum dots from activated carbon. Chem Mater 22:5895–5899. doi: 10.1021/cm1018844CrossRefGoogle Scholar
  117. 117.
    Bourlinos AB, Stassinopoulos A, Anglos D, Zboril R, Karakassides M, Giannelis EP (2008) Surface functionalized carbogenic quantum dots. Small 4:455–458. doi: 10.1002/smll.200700578CrossRefPubMedGoogle Scholar
  118. 118.
    Amemiya S, Guo JD, Xiong H, Gross DA (2006) Biological applications of scanning electrochemical microscopy: chemical imaging of single living cells and beyond. Anal Bioanal Chem 386:458–471. doi: 10.1007/s00216-006-0510-6CrossRefPubMedGoogle Scholar
  119. 119.
    Chen Z, Xie SB, Shen L, Du Y, He SL, Li Q, Liang ZW, Meng X, Li B, Xu XD, Ma HW, Huang YY, Shao YS (2008) Investigation of the interactions between silver nanoparticles and Hela cells by scanning electrochemical microscopy. Analyst 133:1221–1228. doi: 10.1039/B807057ACrossRefPubMedGoogle Scholar
  120. 120.
    Roberts WS, Lonsdale DJ, Griffiths J, Higson SPJ (2007) Advances in the application of scanning electrochemical microscopy to bioanalytical systems. Biosens Bioelectron 23:301–318. doi: 10.1016/j.biosCrossRefPubMedGoogle Scholar
  121. 121.
    Guo JD, Amemiya S (2005) Permeability of the nuclear envelope at isolated xenopus oocyte nuclei studied by scanning electrochemical microscopy. Anal Chem 77:2147–2156. doi: 10.1021/ac048370jCrossRefPubMedGoogle Scholar
  122. 122.
    Kim J, Izadyar A, Nioradze N, Amemiya S (2013) Nanoscale mechanism of molecular transport through the nuclear pore complex as studied by scanning electrochemical microscopy. J Am Chem Soc 135:2321–2329. doi: 10.1021/ja311080jCrossRefPubMedPubMedCentralGoogle Scholar
  123. 123.
    Cannes C, Kanoufi F, Bard AJ (2003) Cyclic voltammetry and scanning electrochemical microscopy of ferrocenemethanol at monolayer and bilayer-modified gold electrodes. J Electroanal Chem 547:83–91. doi: 10.1016/S0022-0728(03)00192-XCrossRefGoogle Scholar
  124. 124.
    Eckhard K, Chen XX, Turcu F, Schuhmann W (2006) Redox competition mode of scanning electrochemical microscopy (RC-SECM) for visualisation of local catalytic activity. Phys Chem Chem Phys 8:5359–5365. doi: 10.1039/B609511ACrossRefPubMedGoogle Scholar
  125. 125.
    Lis LJ, Mcalister M, Fuller N, Rand RP, Parsegian VA (1982) Interaction between neutral phospholipid bilayer membranes. Biophys J 37:657–665PubMedPubMedCentralGoogle Scholar
  126. 126.
    Susumu K, Mei BC, Mattoussi H (2009) Multifunctional ligands based on dihydrolipoic acid and polyethylene glycol to promote biocompatibility of quantum dots. Nat Protoc 4:424–436. doi: 10.1038/nprotCrossRefPubMedGoogle Scholar
  127. 127.
    Zanta MA, Boussif O, Adib A, Behr JP (1997) In vitro gene delivery to hepatocytes with galactosylated polyethylenimine. Bioconjug Chem 8:839–844. doi: 10.1021/bc970098fCrossRefPubMedGoogle Scholar
  128. 128.
    Boussif O, Lezoualch F, Zanta MA, Mergny MD, Scherman D, Demeneix B, Betr JP (1995) A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc Natl Acad Sci U S A 92:7297–7301CrossRefGoogle Scholar
  129. 129.
    Le Maire M, Champeil P, Moller JV (2000) Interaction of membrane proteins and lipids with solubilizing detergents. Biochim Biophys Acta 1508:86–111. doi: 10.1016/S0304-4157(00)00010-1CrossRefPubMedGoogle Scholar
  130. 130.
    Kong WQ, Liu RH, Li H, Liu J, Huang H, Liu Y, Kang ZH (2014) High-bright fluorescent carbon dots and their application in selective nucleoli staining. J Mater Chem B 2:5077–5082. doi: 10.1039/C4TB00579ACrossRefGoogle Scholar
  131. 131.
    Jaiswal A, Ghosh SS, Chattopadhyay A (2012) One step synthesis of C-dots by microwave mediated caramelization of poly(ethylene glycol). Chem Commun 48:407–409. doi: 10.1039/C1CC15988GCrossRefGoogle Scholar
  132. 132.
    Alivisatos AP (1996) Semiconductor clusters, nanocrystals, and quantum dots. Science 271:933–937. doi: 10.1126/science.271.5251.933CrossRefGoogle Scholar
  133. 133.
    Piatkevich KD, Hulit J, Subach OM, Wu B, Abdulla A, Segall JE, Verkhusha VV (2010) Monomeric red fluorescent proteins with a large stokes shift. Proc Natl Acad Sci U S A 107:5369–5374. doi: 10.1073/pnas.0914365107CrossRefPubMedPubMedCentralGoogle Scholar
  134. 134.
    Li H, Kong WQ, Liu J, Yang MM, Huang H, Liu Y, Kang ZH (2014) Carbon dots for photoswitching enzyme catalytic activity. J Mater Chem B 2:5652–5658. doi: 10.1039/C4TB00705KCrossRefGoogle Scholar
  135. 135.
    Li H, Guo SJ, Li CX, Huang H, Liu Y, Kang ZH (2015) Tuning laccase catalytic activity with phosphate functionalized carbon dots by visible light. ACS Appl Mater Interfaces 7:10004–10012. doi: 10.1021/acsami.5b02386CrossRefPubMedGoogle Scholar
  136. 136.
    Stayton PS, Shimoboji T, Long C, Chilkoti A, Chen G, Harris JM, Hoffman AS (1995) Control of protein–ligand recognition using a stimuli-responsive polymer. Nature 378:472–474. doi: 10.1038/378472a0CrossRefPubMedGoogle Scholar
  137. 137.
    Bulmus EV, Ding Z, Long CJ, Stayton PS, Hoffman AS (2000) Site-specific polymer−streptavidin bioconjugate for pH-controlled binding and triggered release of biotin. Bioconjug Chem 11:78–83. doi: 10.1021/bc9901043CrossRefPubMedGoogle Scholar
  138. 138.
    Ding ZL, Long C, Hayashi Y, Bulmus EV, Hoffman AS, Stayton PS (1999) Temperature control of biotin binding and release with a streptavidin-poly(N-isopropylacrylamide) site-specific conjugate. Bioconjug Chem 10:395–400. doi: 10.1021/bc980108sCrossRefPubMedGoogle Scholar
  139. 139.
    Ding Z, Fong RB, Long CJ, Hoffman AS, Stayton PS (2001) Size-dependent control of the binding of biotinylated proteins to streptavidin using a polymer shield. Nature 411:59–62. doi: 10.1038/35075028CrossRefPubMedGoogle Scholar
  140. 140.
    Shimoboji T, Ding ZL, Stayton PS, Hoffman AS (2002) Photoswitching of ligand association with a photoresponsive polymer−protein conjugate. Bioconjug Chem 13:915–919. doi: 10.1021/bc010057qCrossRefPubMedGoogle Scholar
  141. 141.
    Kamada K, Tsukahara S, Soh N (2010) Magnetically applicable layered iron-titanate intercalated with biomolecules. J Mater Chem 20:5646–5650. doi: 10.1039/C0JM00173BCrossRefGoogle Scholar
  142. 142.
    Kumar CV, Chaudhari A (2002) High temperature peroxidase activities of HRP and hemoglobin in the galleries of layered Zr(IV)phosphate. Chem Commun 20:2382–2383. doi: 10.1039/B206988ACrossRefGoogle Scholar
  143. 143.
    Wang CF, Zhou GW, Xu YQ, Chen J (2011) Porcine pancreatic lipase immobilized in amino-functionalized short rod-shaped mesoporous silica prepared using poly(ethylene glycol) and triblock copolymer as templates. J Phys Chem C 115:22191–22199. doi: 10.1021/jp206836vCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Jiangsu Key Laboratory for Carbon-Based Functional Materials and DevicesInstitute of Functional Nano & Soft Materials (FUNSOM), Soochow UniversitySuzhouChina

Personalised recommendations