Advertisement

The genetic transformation of plastids

  • Hans-Ulrich KoopEmail author
  • Stefan Herz
  • Timothy J. Golds
  • Jörg Nickelsen
Chapter
Part of the Topics in Current Genetics book series (TCG, volume 19)

Abstract

Biolistic delivery of DNA initiated plastid transformation research and still is the most widelyused approach to generate transplastomic lines in both algae and higher plants. The principal designof transformation vectors is similar in both phylogenetic groups. Although important additions tothe list of species transformed in their plastomes have been made in algae and in higher plants, thekey organisms in the area are still the two species, in which stable plastid transformation was initiallysuccessful, i.e., Chlamydomonas reinhardtii and tobacco. Basicresearch into organelle biology has substantially benefited from the homologous recombination-basedcapability to precisely insert at predetermined loci, delete, disrupt, or exchange plastid genomesequences. Successful expression of recombinant proteins, including pharmaceutical proteins, hasbeen demonstrated in Chlamydomonas as well as in higher plants,where some interesting agronomic traits were also engineered through plastid transformation.

Keywords

Plastid Genome Plastid Gene Plastid Transformation Transplastomic Plant Tobacco Chloroplast 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Ahlert D, Ruf S, Bock R (2003) Plastid protein synthesis is required for plant development in tobacco. Proc Natl Acad Sci USA 100:15730–15735 PubMedCrossRefGoogle Scholar
  2. 2.
    Allison LA, Simon LD, Maliga P (1996) Deletion of rpoB reveals a second distinct transcription system in plastids of higher plants. EMBO J 15:2802–2809 PubMedGoogle Scholar
  3. 3.
    Andrews TJ, Whitney SM (2003) Manipulating ribulose bisphosphate carboxylase/oxygenase in the chloroplasts of higher plants. Arch Biochem Biophys 414:159–169 CrossRefGoogle Scholar
  4. 4.
    Arai Y, Shikanai T, Doi Y, Yoshida S, Yamaguchi I, Nakashita H (2004) Production of polyhydroxybutyrate by polycistronic expression of bacterial genes in tobacco plastid. Plant Cell Physiol 45:1176–1184 PubMedCrossRefGoogle Scholar
  5. 5.
    Baena-Gonzalez E, Gray JC, Tyystjarvi E, Aro EM, Maenpaa P (2001) Abnormal regulation of photosynthetic electron transport in a chloroplast ycf9 inactivation mutant. J Biol Chem 276:20795–20802 PubMedCrossRefGoogle Scholar
  6. 6.
    Baena-Gonzalez E, Allahverdiyeva Y, Svab Z, Maliga P, Josse EM, Kuntz M, Maenpaa P, Aro EM (2003) Deletion of the tobacco plastid psbA gene triggers an upregulation of the thylakoid-associated NAD(P)H dehydrogenase complex and the plastid terminal oxidase (PTOX). Plant J 35:704–716 PubMedCrossRefGoogle Scholar
  7. 7.
    Barnes D, Franklin S, Schultz J, Henry R, Brown E, Coragliotti A, Mayfield SP (2005) Contribution of 5′- and 3′-untranslated regions of plastid mRNAs to the expression of Chlamydomonas reinhardtii chloroplast genes. Mol Gen Genomics 274:625–636 CrossRefGoogle Scholar
  8. 8.
    Bateman JM, Purton S (2000) Tools for chloroplast transformation in Chlamydomonas: expression vectors and new dominant selectable marker. Mol Gen Genet 263:404–410 PubMedCrossRefGoogle Scholar
  9. 9.
    Bellucci M, De Marchis F, Mannucci R, Bock R, Arcioni S (2005) Cytoplasm and chloroplasts are not suitable subcellular locations for beta-zein accumulation in transgenic plants. J Exp Bot 56:1205–1212 PubMedCrossRefGoogle Scholar
  10. 10.
    Bennoun P, Spierer-Herz M, Erickson J, Girard-Bascou J, Pierre Y, Delosme M, Rochaix JD (1986) Characterization of photosystem II mutants of Chlamydomonas reinhardtii lacking psbA gene. Plant Mol Biol 6:151–160 CrossRefGoogle Scholar
  11. 11.
    Berthold DA, Schmidt CL, Malkin R (1995) The deletion of petG in Chlamydomonas reinhardtii disrupts the cytochrome b6f complex. J Biol Chem 270:29293–29298 PubMedCrossRefGoogle Scholar
  12. 12.
    Bessette PH, Aslund F, Beckwith J, Georgiou G (1999) Efficient folding of proteins with multiple disulfide bonds in the Escherichia coli cytoplasm. Proc Natl Acad Sci USA 96:13703–13708 PubMedCrossRefGoogle Scholar
  13. 13.
    Birch-Machin I, Newell CA, Hibberd JM, Gray JC (2004) Accumulation of rotavirus VP6 protein in chloroplasts of transplastomic tobacco is limited by protein stability. Plant Biotechnol J 2:261–271 PubMedCrossRefGoogle Scholar
  14. 14.
    Blowers AD, Bogorad L, Shark KB, Sanford JC (1989) Studies on Chlamydomonas chloroplast transformation: foreign DNA can be stably maintained in the chromosome. Plant Cell 1:123–132 PubMedGoogle Scholar
  15. 15.
    Bock R (1998) Analysis of RNA editing in plastids. Methods 15:75–83 PubMedCrossRefGoogle Scholar
  16. 16.
    Bock R (2000) Sense from nonsense: how the genetic information of chloroplasts is altered by RNA editing. Biochimie 82:549–557 PubMedCrossRefGoogle Scholar
  17. 17.
    Bock R (2001) Transgenic plastids in basic research and plant biotechnology. J Mol Biol 312:425–438 PubMedCrossRefGoogle Scholar
  18. 18.
    Bock R (2004) Studying RNA editing in transgenic chloroplasts of higher plants. Methods Mol Biol 265:345–356 PubMedGoogle Scholar
  19. 19.
    Bock R (2006) Plastid biotechnology: prospects for herbicide and insect resistance, metabolic engineering and molecular farming. Curr Opin Biotechnol 17:1–7 CrossRefGoogle Scholar
  20. 20.
    Bock R, Khan MS (2004) Taming plastids for a green future. Trends Biotechnol 22:311–318 PubMedCrossRefGoogle Scholar
  21. 21.
    Bogorad L (2000) Engineering chloroplasts: an alternative site for foreign genes, proteins, reactions and products. Trends Biotechnol 18:257–263 PubMedCrossRefGoogle Scholar
  22. 22.
    Boudreau E, Takahashi Y, Lemieux C, Turmel M, Rochaix JD (1997a) The chloroplast ycf3 and ycf4 open reading frames of Chlamydomonas reinhardtii are required for the accumulation of the photosystem I complex. EMBO J 15:6095–6104 CrossRefGoogle Scholar
  23. 23.
    Boudreau E, Turmel M, Goldschmidt-Clermont M, Rochaix JD, Sivan S, Michaels A, Leu S (1997b) A large open reading frame (ORF1995) in the chloroplast DNA of Chlamydomonas reinhardtii encodes an essential protein. Mol Gen Genet 253:649–653 PubMedCrossRefGoogle Scholar
  24. 24.
    Boynton JE, Gillham NW, Harris EH, Hosler JP, Johnson AM, Jones AR, Randolph-Andersen BL, Robertson D, Klein TM, Shark KB, Sanford JC (1988) Chloroplast transformation in Chlamydomonas with high velocity microprojectiles. Science 240:1534–1538 PubMedCrossRefGoogle Scholar
  25. 25.
    Buhot L, Horvath E, Medgyesy P, Lerbs-Mache S (2006) Hybrid transcription system for controlled plastid transgene expression. Plant J 46:700–707 PubMedCrossRefGoogle Scholar
  26. 26.
    Burrows PA, Sazanov LA, Svab Z, Maliga P, Nixon PJ (1998) Identification of a functional respiratory complex in chloroplasts through analysis of tobacco mutants containing disrupted plastid ndh genes. EMBO J 17:868–876 PubMedCrossRefGoogle Scholar
  27. 27.
    Butow RA, Fox TD (1990) Organelle transformation: shoot first, ask questions later. Trends Biochem Sci 15:465–468 PubMedCrossRefGoogle Scholar
  28. 28.
    Carrer H, Hockenberry TN, Svab Z, Maliga P (1993) Kanamycin resistance as a selectable marker for plastid transformation in tobacco. Mol Gen Genet 241:49–56 PubMedCrossRefGoogle Scholar
  29. 29.
    Carrer H, Maliga P (1995) Targeted insertion of foreign genes into the tobacco plastid genome without physical linkage to the selectable marker gene. Biotechnology 13:791–794 CrossRefGoogle Scholar
  30. 30.
    Cerutti H, Johnson AM, Boynton JE, Gillham NW (1995) Inhibition of chloroplast DNA recombination and repair by dominant negative mutants of Escherichia coli recA. Mol Cell Biol 15:3003–3011 PubMedGoogle Scholar
  31. 31.
    Chakrabarti SK, Lutz KA, Lertwiriyawong B, Svab Z, Maliga P (2006) Expression of the cry9Aa2 B.t. gene in tobacco chloroplasts confers resistance to potato tuber moth. Transgenic Res 15:481–488 PubMedCrossRefGoogle Scholar
  32. 32.
    Chase CD (2006) Genetically engineered cytoplasmic male sterility. Trends Plant Sci 11:7–9 PubMedCrossRefGoogle Scholar
  33. 33.
    Chen X, Kindle KL, Stern DB (1993) Initiation codon mutations in the Chlamydomonas chloroplast petD gene result in temperature-sensitive photosynthetic growth. EMBO J 12:3627–3635 PubMedGoogle Scholar
  34. 34.
    Chiyoda S, Linley PJ, Yamato KT, Fukuzawa H, Yokota A, Kohchi T (2007) Simple and efficient plastid transformation system for the liverwort Marchantia polymorpha L. suspension-culture cells. Transgenic Res 16:41–49 PubMedCrossRefGoogle Scholar
  35. 35.
    Choquet Y, Rahire M, Girard-Bascou J, Erickson J, Rochaix JD (1992) A chloroplast gene is required for the light-independent accumulation of chlorophyll in Chlamydomonas reinhardtii. EMBO J 11:1697–1704 PubMedGoogle Scholar
  36. 36.
    Corneille S, Lutz K, Svab Z, Maliga P (2001) Efficient elimination of selectable marker genes from the plastid genome by the CRE-lox site-specific recombination system. Plant J 27:171–178 PubMedCrossRefGoogle Scholar
  37. 37.
    Corneille S, Lutz KA, Azhagiri AK, Maliga P (2003) Identification of functional lox sites in the plastid genome. Plant J 35:753–762 PubMedCrossRefGoogle Scholar
  38. 38.
    Daniell H (2000) Genetically modified food crops: current concerns and solutions for next generation crops. Biotechnol Genet Eng Rev 17:327–352 PubMedCrossRefGoogle Scholar
  39. 39.
    Daniell H (2002) Molecular strategies for gene containment in transgenic crops. Nat Biotechnol 20:581–586 PubMedCrossRefGoogle Scholar
  40. 40.
    Daniell H (2006) Production of biopharmaceuticals and vaccines in plants via the chloroplast genome. Biotechnol J 1:1071–1079 PubMedCrossRefGoogle Scholar
  41. 41.
    Daniell H, Dhingra A (2002) Multigene engineering: dawn of an exciting new era in biotechnology. Curr Opin Biotechnol 13:136–141 PubMedCrossRefGoogle Scholar
  42. 42.
    Daniell H, Vivekananda J, Nielsen BL, Ye GN, Tewari KK (1990) Transient foreign gene expression in chloroplasts of cultured tobacco cells after biolistic delivery of chloroplast vectors. Proc Natl Acad Sci USA 87:88–92 PubMedCrossRefGoogle Scholar
  43. 43.
    Daniell H, Krishnan M, McFadden BE (1991) Transient expression of ß-glucuronidase in different cellular compartments following biolistic delivery of foreign DNA into wheat leaves and calli. Plant Cell Rep 9:615–619 CrossRefGoogle Scholar
  44. 44.
    Daniell H, Datta R, Varma S, Gray S, Lee SB (1998) Containment of herbicide resistance through genetic engineering of the chloroplast genome. Nat Biotechnol 16:345–348 PubMedCrossRefGoogle Scholar
  45. 45.
    Daniell H, Streatfield SJ, Wycoff K (2001a) Medical molecular farming: production of antibodies, biopharmaceuticals and edible vaccines in plants. Trends Plant Sci 6:219–226 PubMedCrossRefGoogle Scholar
  46. 46.
    Daniell H, Muthukumar B, Lee SB (2001b) Marker free transgenic plants: engineering the chloroplast genome without the use of antibiotic selection. Curr Genet 39:109–116 PubMedCrossRefGoogle Scholar
  47. 47.
    Daniell H, Lee SB, Panchal T, Wiebe PO (2001c) Expression of the native cholera toxin B subunit gene and assembly as functional oligomers in transgenic tobacco chloroplasts. J Mol Biol 311:1001–1009 PubMedCrossRefGoogle Scholar
  48. 48.
    Daniell H, Khan MS, Allison L (2002) Milestones in chloroplast genetic engineering: an environmentally friendly era in biotechnology. Trends Plant Sci 7:84–91 PubMedCrossRefGoogle Scholar
  49. 49.
    Daniell H, Chebolu S, Kumar S, Singleton M, Falconer R (2005a) Chloroplast-derived vaccine antigens and other therapeutic proteins. Vaccine 23:1779–1783 PubMedCrossRefGoogle Scholar
  50. 50.
    Daniell H, Kumar S, Dufourmantel N (2005b) Breakthrough in chloroplast genetic engineering of agronomically important crops. Trends Biotechnol 23:238–245 PubMedCrossRefGoogle Scholar
  51. 51.
    Daniell H, Ruiz ON, Dhingra A (2005c) Chloroplast genetic engineering to improve agronomic traits. Methods Mol Biol 286:111–138 PubMedGoogle Scholar
  52. 52.
    De Block M, Schell J, Van Montagu M (1985) Chloroplast transformation by Agrobacterium tumefaciens. EMBO J 4:1367–13732 PubMedGoogle Scholar
  53. 53.
    De Cosa B, Moar W, Lee SB, Miller M, Daniell H (2001) Overexpression of the Bt cry2Aa2 operon in chloroplasts leads to formation of insecticidal crystals. Nat Biotechnol 19:71–74 PubMedCrossRefGoogle Scholar
  54. 54.
    De Santis-Maciossek G, Kofer W, Bock A, Schoch S, Maier RM, Wanner G, Rudiger W, Koop HU, Herrmann RG (1999) Targeted disruption of the plastid RNA polymerase genes rpoA, B and C1: molecular biology, biochemistry and ultrastructure. Plant J 18:477–489 PubMedCrossRefGoogle Scholar
  55. 55.
    DeGray G, Rajasekaran K, Smith F, Sanford J, Daniell H (2001) Expression of an antimicrobial peptide via the chloroplast genome to control phytopathogenic bacteria and fungi. Plant Physiol 127:852–862 PubMedCrossRefGoogle Scholar
  56. 56.
    Delwiche CF (1999) Tracing the thread of plastid diversity through the tapestry of life. Am Nat 154:164–177 CrossRefGoogle Scholar
  57. 57.
    Dhingra A, Daniell H (2006) Chloroplast genetic engineering via organogenesis or somatic embryogenesis. Methods Mol Biol 323:245–262 PubMedGoogle Scholar
  58. 58.
    Dhingra A, Portis AR Jr, Daniell H (2004) Enhanced translation of a chloroplast-expressed RbcS gene restores small subunit levels and photosynthesis in nuclear RbcS antisense plants. Proc Natl Acad Sci USA 101:6315–6320 PubMedCrossRefGoogle Scholar
  59. 59.
    Dix PJ, Kavanagh TA (1995) Transforming the plastome: genetic markers and DNA delivery systems. Euphytica 85:29–34 CrossRefGoogle Scholar
  60. 60.
    Doetsch N, Favreau M, Kuscuoglu N, Thompson M, Hallick RB (2001) Chloroplast transformation in Euglena gracilis: splicing of a groupIII twintron transcribed from a transgenic psbK operon. Curr Genet 39:49–60 PubMedCrossRefGoogle Scholar
  61. 61.
    Drapier D, Suzuki H, Levy H, Rimbault B, Kindle KL Stern DB, Wollman FA (1998) The chloroplast atpA gene cluster in Chlamydomonas reinhardtii. Functional analysis of a polycistronic transcription unit. Plant Physiol 117:629–641 PubMedCrossRefGoogle Scholar
  62. 62.
    Drescher A, Ruf S, Calsa T Jr, Carrer H, Bock R (2000) The two largest chloroplast genome-encoded open reading frames of higher plants are essential genes. Plant J 22:97–104 PubMedCrossRefGoogle Scholar
  63. 63.
    Dufourmantel N, Pelissier B, Garcon F, Peltier G, Ferullo JM, Tissot G (2004) Generation of fertile transplastomic soybean. Plant Mol Biol 55:479–489 PubMedCrossRefGoogle Scholar
  64. 64.
    Dufourmantel N, Tissot G, Goutorbe F, Garcon F, Muhr C, Jansens S, Pelissier B, Peltier G, Dubald M (2005) Generation and analysis of soybean plastid transformants expressing Bacillus thuringiensis Cry1Ab protoxin. Plant Mol Biol 58:659–668 PubMedCrossRefGoogle Scholar
  65. 65.
    Dufourmantel N, Dubald M, Matringe M, Canard H, Garcon F, Job C, Kay E, Wisniewski JP, Ferullo JM, Pelissier B, Sailland A, Tissot G (2007) Generation and characterization of soybean and marker-free tobacco plastid transformants overexpressing a bacterial 4-hydroxyphenylpyruvate dioxygenase which provides strong herbicide. Plant Biotechnol J 5:118–133 PubMedCrossRefGoogle Scholar
  66. 66.
    Eibl C, Zou Z, Beck A, Kim M, Mullet J, Koop HU (1999) In vivo analysis of plastid psbA, rbcL and rpl32 UTR elements by chloroplast transformation: tobacco plastid gene expression is controlled by modulation of transcript levels and translation efficiency. Plant J 19:333–345 PubMedCrossRefGoogle Scholar
  67. 67.
    Erickson J, Rahire M, Malnoe P, Girard-Bascou J, Pierre Y, Bennoun P, Rochaix JD (1986) Lack of D2 protein in a Chlamydomonas reinhardtii psbD mutant affects photosystem II stability and D1 expression. EMBO J 5:1745–1754 PubMedGoogle Scholar
  68. 68.
    Falk J, Brosch M, Schafer A, Braun S, Krupinska K (2005) Characterization of transplastomic tobacco plants with a plastid localized barley 4-hydroxyphenylpyruvate dioxygenase. J Plant Physiol 162:738–742 PubMedCrossRefGoogle Scholar
  69. 69.
    Fernández-San Millán A, Mingo-Castel A, Miller M, Daniell H (2003) A chloroplast transgenic approach to hyper-express and purify human serum albumin, a protein highly susceptible to proteolytic degradation. Plant Biotechnol J 1:71–79 PubMedCrossRefGoogle Scholar
  70. 70.
    Fernández-San Millán A, Farran I, Molina A, Mingo-Castel AM, Veramendi J (2007) Expression of recombinant proteins lacking methionine as N-terminal amino acid in plastids: Human serum albumin as a case study. J Biotechnol 127:593–604 PubMedCrossRefGoogle Scholar
  71. 71.
    Fiebig A, Stegemann S, Bock R (2004) Rapid evolution of RNA editing sites in a small non-essential plastid gene. Nucleic Acids Res 32:3615–3622 PubMedCrossRefGoogle Scholar
  72. 72.
    Fischer N, Stampacchia O, Redding K, Rochaix JD (1996) Selectable marker recycling in the chloroplast. Mol Gen Genet 251:373–380 PubMedCrossRefGoogle Scholar
  73. 73.
    Fischer N, Boudreau E, Hippler M, Drepper F, Haehnel W, Rochaix JD (1999) A large fraction of PsaF is nonfunctional in photosystem I complexes lacking the PsaJ subunit. Biochemistry 36:93–102 CrossRefGoogle Scholar
  74. 74.
    Fox JL (2006) Turning plants into protein factories. Nat Biotechnol 24:1191–1193 PubMedCrossRefGoogle Scholar
  75. 75.
    Franklin SE, Mayfield SP (2004) Prospects for molecular farming in the green alga Chlamydomonas reinhardtii. Curr Opin Plant Biol 7:159–165 PubMedCrossRefGoogle Scholar
  76. 76.
    Franklin S, Ngo B, Efuet E, Mayfield SP (2002) Development of a GFP reporter gene for Chlamydomonas reinhardtii chloroplast. Plant J 30:733–744 PubMedCrossRefGoogle Scholar
  77. 77.
    Giglione C, Meinnel T (2001) Organellar peptide deformylases: universality of the N-terminal methionine cleavage mechanism. Trends Plant Sci 6:566–572 PubMedCrossRefGoogle Scholar
  78. 78.
    Gleba Y, Klimyuk V, Marillonnet S (2005) Magnifection - a new platform for expressing recombinant vaccines in plants. Vaccine 23:2042–2048 PubMedCrossRefGoogle Scholar
  79. 79.
    Glenz K, Bouchon B, Stehle T, Wallich R, Simon MM, Warzecha H (2006) Production of a recombinant bacterial lipoprotein in higher plant chloroplasts. Nat Biotechnol 24:76–77 PubMedCrossRefGoogle Scholar
  80. 80.
    Golds TJ, Maliga P, Koop HU (1993) Stable plastid transformation in PEG-treated protoplasts of Nicotiana tabacum. Biotechnology 11:95–97 CrossRefGoogle Scholar
  81. 81.
    Goldschmidt-Clermont M (1991) Transgenic expression of aminoglycoside adenine transferase in the chloroplast: a selectable marker for site-directed transformation of Chlamydomonas. Nucleic Acids Res 19:4083–4089 PubMedCrossRefGoogle Scholar
  82. 82.
    Goldschmidt-Clermont M (1998) Chloroplast Transformation. In: Rochaix JD, Goldschmidt-Clermont M, Merchant S (eds) The molecular biology of chloroplasts and mitochondria in Chlamydomonas. Kluwer Acad Pub, Netherlands, pp 139–149 Google Scholar
  83. 83.
    Goldschmidt-Clermont M, Choquet Y, Girard-Bascou J, Michel F, Schirmer-Rahire M, Rochaix JD (1991) A small chloroplast RNA may be required for trans-splicing in Chlamydomonas reinhardtii. Cell 65:135–143 PubMedCrossRefGoogle Scholar
  84. 84.
    Grossman AR, Harris EE, Hauser C, Lefebvre PA, Martinez D, Rokhsar D, Shrager J, Silflow CD, Stern D, Vallon O, Zhang Z (2003) Chlamydomonas reinhardtii at the crossroads of genetics. Eukar Cell 2:1137–1150 CrossRefGoogle Scholar
  85. 85.
    Guda C, Lee SB, Daniell H (2000) Stable expression of a biogradable protein-based polymer in tobacco chloroplasts. Plant Cell Rep 19:257–262 CrossRefGoogle Scholar
  86. 86.
    Hager M, Bock R (2000) Enslaved bacteria as new hope for plant biotechnologists. Appl Microbiol Biotechnol 54:302–310 PubMedCrossRefGoogle Scholar
  87. 87.
    Hager M, Biehler K, Illerhaus J, Ruf S, Bock R (1999) Targeted inactivation of the smallest plastid genome-encoded open reading frame reveals a novel and essential subunit of the cytochrome b(6)f complex. EMBO J 18:5834–5842 PubMedCrossRefGoogle Scholar
  88. 88.
    Hager M, Hermann M, Biehler K, Krieger-Liszkay A, Bock R (2002) Lack of the small plastid-encoded PsbJ polypeptide results in a defective water-splitting apparatus of photosystem II, reduced photosystem I levels, and hypersensitivity to light. J Biol Chem 277:14031–14039 PubMedCrossRefGoogle Scholar
  89. 89.
    Hajdukiewicz PT, Gilbertson L, Staub JM (2001) Multiple pathways for Cre/lox-mediated recombination in plastids. Plant J 27:161–170 PubMedCrossRefGoogle Scholar
  90. 90.
    Heifetz PB (2000) Genetic engineering of the chloroplast. Biochimie 82:655–666 PubMedCrossRefGoogle Scholar
  91. 91.
    Heifetz PB, Tuttle AM (2001) Protein expression in plastids. Curr Opin Plant Biol 4:157–161 PubMedCrossRefGoogle Scholar
  92. 92.
    Herrin D, Nickelsen J (2004) Chloroplast RNA processing and stability. Photosyn Res 82:301–314 PubMedCrossRefGoogle Scholar
  93. 93.
    Herz S, Füssl M, Steiger S, Koop HU (2005) Development of novel types of plastid transformation vectors and evaluation of factors controlling expression. Transgenic Res 14:969–982 PubMedCrossRefGoogle Scholar
  94. 94.
    Hibberd JM, Linley PJ, Khan MS, Gray JC (1998) Transient expression of green fluorescent protein in various plastid types following microprojectile bombardment. Plant J 8:627–632 CrossRefGoogle Scholar
  95. 95.
    Horvath EM, Peter SO, Joet T, Rumeau D, Cournac L, Horvath GV, Kavanagh TA, Schafer C, Peltier G, Medgyesy P (2000) Targeted inactivation of the plastid ndhB gene in tobacco results in an enhanced sensitivity of photosynthesis to moderate stomatal closure. Plant Physiol 123:1337–1350 PubMedCrossRefGoogle Scholar
  96. 96.
    Hou BK, Zhou YH, Wan LH, Zhang ZL, Shen GF, Chen ZH, Hu ZM (2003) Chloroplast transformation in oilseed rape. Transgenic Res 12:111–114 PubMedCrossRefGoogle Scholar
  97. 97.
    Houtz RL, Stults JT, Mulligan RM, Tolbert NE (1989) Post-translational modifications in the large subunit of ribulose bisphosphate carboxylase/oxygenase. Proc Natl Acad Sci USA 86:1855–1859 PubMedCrossRefGoogle Scholar
  98. 98.
    Howe CJ (1988) Organelle transformation. Trends Genet 4:150–152 PubMedCrossRefGoogle Scholar
  99. 99.
    Huang C, Wang S, Chen L, Lemieux C, Otis C, Turmel M, Liu XQ (1994) The Chlamydomonas chloroplast clpP gene contains translated large insertion sequences and is essential for cell growth. Mol Gen Genet 244:151–159 PubMedCrossRefGoogle Scholar
  100. 100.
    Huang FC, Klaus SM, Herz S, Zou Z, Koop HU, Golds TJ (2002) Efficient plastid transformation in tobacco using the aphA-6 gene and kanamycin selection. Mol Genet Genomics 268:19–27 PubMedCrossRefGoogle Scholar
  101. 101.
    Iamtham S, Day A (2000) Removal of antibiotic resistance genes from transgenic tobacco plastids. Nat Biotechnol 18:1172–1176 PubMedCrossRefGoogle Scholar
  102. 102.
    Ishikura K, Takaoka Y, Kato K, Sekine M, Yoshida K, Shinmyo A (1999) Expression of a foreign gene in Chlamydomonas reinhardtii chloroplast. J Biosci Bioengin 87:307–314 CrossRefGoogle Scholar
  103. 103.
    Kanamoto H, Yamashita A, Asao H, Okumura S, Takase H, Hattori M, Yokota A, Tomizawa K (2006) Efficient and stable transformation of Lactuca sativa L. cv. Cisco (lettuce) plastids. Transgenic Res 15:205–217 PubMedCrossRefGoogle Scholar
  104. 104.
    Kanevski I, Maliga P (1994) Relocation of the plastid rbcL gene to the nucleus yields functional ribulose-1,5-bisphosphate carboxylase in tobacco chloroplasts. Proc Natl Acad Sci USA 91:1969–1973 PubMedCrossRefGoogle Scholar
  105. 105.
    Kang TJ, Loc NH, Jang MO, Jang YS, Kim YS, Seo JE, Yang MS (2003a) Expression of the B subunit of E. coli heat-labile enterotoxin in the chloroplasts of plants and its characterization. Transgenic Res 12:683–691 PubMedCrossRefGoogle Scholar
  106. 106.
    Kang TJ, Seo JE, Loc NH, Yang MS (2003b) Herbicide resistance of tobacco chloroplasts expressing the bar gene. Mol Cells 16:60–66 PubMedGoogle Scholar
  107. 107.
    Kang TJ, Han SC, Kim MY, Kim YS, Yang MS (2004) Expression of non-toxic mutant of Escherichia coli heat-labile enterotoxin in tobacco chloroplasts. Protein Expr Purif 38:123–128 PubMedCrossRefGoogle Scholar
  108. 108.
    Kasai S, Yoshimura S, Ishikura K, Takaoka Y, Kobayashi K, Kato K, Shinmyo A (2003) Effect of coding regions on chloroplast gene expression in Chlamydomonas reinhardtii. J Biosci Bioengin 95:276–282 Google Scholar
  109. 109.
    Kato K, Ishikura K, Kasai S, Shinmyo A (2006) Efficient translation destabilizes transcripts in chloroplasts of Chlamydomonas reinhardtii. J Biosci Bioengin 101:471–477 CrossRefGoogle Scholar
  110. 110.
    Kavanagh TA, Thanh ND, Lao NT, McGrath N, Peter SO, Horvath EM, Dix PJ, Medgyesy P (1999) Homeologous plastid DNA transformation in tobacco is mediated by multiple recombination events. Genetics 152:1111–1122 PubMedGoogle Scholar
  111. 111.
    Khan MS, Maliga P (1999) Fluorescent antibiotic resistance marker for tracking plastid transformation in higher plants. Nat Biotechnol 17:910–915 PubMedCrossRefGoogle Scholar
  112. 112.
    Khan MS, Khalid AM, Malik KA (2005) Phage phiC31 integrase: a new tool in plastid genome engineering. Trends Plant Sci 10:1–3 PubMedCrossRefGoogle Scholar
  113. 113.
    Kindle KL, Richards KL, Stern DB (1991) Engineering the chloroplast genome: techniques and capabilities for chloroplast transformation in Chlamydomonas reinhardtii. Proc Natl Acad Sci USA 88:1721–1725 PubMedCrossRefGoogle Scholar
  114. 114.
    Kindle KL, Suzuki H, Stern DB (1994) Gene amplification can correct a photosynthetic growth defect caused by mRNA instability in Chlamydomonas chloroplasts. Plant Cell 6:187–200 PubMedGoogle Scholar
  115. 115.
    Klaus SM, Huang FC, Eibl C, Koop HU, Golds TJ (2003) Rapid and proven production of transplastomic tobacco plants by restoration of pigmentation and photosynthesis. Plant J 35:811–821 PubMedCrossRefGoogle Scholar
  116. 116.
    Klaus SM, Huang FC, Golds TJ, Koop HU (2004) Generation of marker-free plastid transformants using a transiently cointegrated selection gene. Nat Biotechnol 22:225–229 PubMedCrossRefGoogle Scholar
  117. 117.
    Knoblauch M, Hibberd JM, Gray JC, van Bel AJ (1999) A galinstan expansion femtosyringe for microinjection of eukaryotic organelles and prokaryotes. Nat Biotechnol 17:906–909 PubMedCrossRefGoogle Scholar
  118. 118.
    Kode V, Mudd EA, Iamtham S, Day A (2005) The tobacco plastid accD gene is essential and is required for leaf development. Plant J 44:237–244 PubMedCrossRefGoogle Scholar
  119. 119.
    Kode V, Mudd EA, Iamtham S, Day A (2006) Isolation of precise plastid deletion mutants by homology-based excision: a resource for site-directed mutagenesis, multi-gene changes and high-throughput plastid transformation. Plant J 46:901–909 PubMedCrossRefGoogle Scholar
  120. 120.
    Kofer W, Eibl C, Steinmüller K, Koop HU (1998a) PEG-mediated plastid transformation in higher plants. In vitro Cell Dev Biol Plant 34:303–309 CrossRefGoogle Scholar
  121. 121.
    Kofer W, Koop HU, Wanner G, Steinmuller K (1998b) Mutagenesis of the genes encoding subunits A, C, H, I, J and K of the plastid NAD(P)H-plastoquinone-oxidoreductase in tobacco by polyethylene glycol-mediated plastome transformation. Mol Gen Genet 258:166–173 PubMedCrossRefGoogle Scholar
  122. 122.
    Koop HU, Steinmuller K, Wagner H, Rossler C, Eibl C, Sacher L (1996) Integration of foreign sequences into the tobacco plastome via polyethylene glycol-mediated protoplast transformation. Planta 199:193–201 PubMedCrossRefGoogle Scholar
  123. 123.
    Kota M, Daniell H, Varma S, Garczynski SF, Gould F, Moar WJ (1999) Overexpression of the Bacillus thuringiensis (Bt) Cry2Aa2 protein in chloroplasts confers resistance to plants against susceptible and Bt-resistant insects. Proc Natl Acad Sci USA 96:1840–1845 PubMedCrossRefGoogle Scholar
  124. 124.
    Kuchuk N, Sytnyk K, Vasylenko M, Shakhovsky A, Komarnytsky I, Kushnir S, Gleba Y (2006) Genetic transformation of plastids of different Solanaceae species using tobacco cells as organelle hosts. Theor Appl Genet 113:519–527 PubMedCrossRefGoogle Scholar
  125. 125.
    Kumar S, Dhingra A, Daniell H (2004a) Plastid-expressed betaine aldehyde dehydrogenase gene in carrot cultured cells, roots, and leaves confers enhanced salt tolerance. Plant Physiol 136:2843–2854 PubMedCrossRefGoogle Scholar
  126. 126.
    Kumar S, Dhingra A, Daniell H (2004b) Stable transformation of the cotton plastid genome and maternal inheritance of transgenes. Plant Mol Biol 56:203–216 PubMedCrossRefGoogle Scholar
  127. 127.
    Kunstner P, Guardiola A, Takahashi Y, Rochaix JD (1995) A mutant strain of Chlamydomonas reinhardtii lacking the chloroplast photosystem II psbI gene grows photoautotrophically. J Biol Chem 270:9651–9654 PubMedCrossRefGoogle Scholar
  128. 128.
    Kuras R, Wollman FA (1994) The assembly of cytochrome b6f complexes: an approach using genetic transformation of the green alga Chlamydomonas reinhardtii. EMBO J 13:1019–1027 PubMedGoogle Scholar
  129. 129.
    Kuroda H, Maliga P (2001a) Sequences downstream of the translation initiation codon are important determinants of translation efficiency in chloroplasts. Plant Physiol 125:430–436 PubMedCrossRefGoogle Scholar
  130. 130.
    Kuroda H, Maliga P (2001b) Complementarity of the 16S rRNA penultimate stem with sequences downstream of the AUG destabilizes the plastid mRNAs. Nucleic Acids Res 29:970–975 PubMedCrossRefGoogle Scholar
  131. 131.
    Kuroda H, Maliga P (2002) Overexpression of the clpP 5'-untranslated region in a chimeric context causes a mutant phenotype, suggesting competition for a clpP-specific RNA maturation factor in tobacco chloroplasts. Plant Physiol 129:1600–1606 PubMedCrossRefGoogle Scholar
  132. 132.
    Kuroda H, Maliga P (2003) The plastid clpP1 protease gene is essential for plant development. Nature 425:86–89 PubMedCrossRefGoogle Scholar
  133. 133.
    Langbecker CL, Ye G-N, Broyles DL, Duggan LL, Xu CW, Hajdukiewicz PTJ, Armstrong CL, Staub JM (2004) High-frequency transformation of undeveloped plastids in tobacco suspension cells. Plant Physiol 135:39–46 PubMedCrossRefGoogle Scholar
  134. 134.
    Lapidot M, Raveh D, Sivan A, Shoshana A, Shapira M (2002) Stable chloroplast transfromation of the unicellular red alga Porphyridium spec. Plant Physiol 129:7–12 PubMedCrossRefGoogle Scholar
  135. 135.
    Lee SB, Kwon HB, Kwon SJ, Park SC, Jeong MJ, Han SE, Byun MO, Daniell H (2003) Accumulation of trehalose within transgenic chloroplasts confers drought tolerance. Mol Breed 11:1–13 CrossRefGoogle Scholar
  136. 136.
    Lee MY, Zhou Y, Lung RW, Chye ML, Yip WK, Zee SY, Lam E (2006a) Expression of viral capsid protein antigen against Epstein-Barr virus in plastids of Nicotiana tabacum cv. SR1. Biotechnol Bioeng 94:1129–1137 PubMedCrossRefGoogle Scholar
  137. 137.
    Lee SM, Kang KH, Chung H, Yoo SH, Xu XM, Lee SB, Cheong JJ, Daniell H, Kim M (2006b) Plastid transformation in the monocotyledonous cereal crop, rice (Oryza sativa) and transmission of transgenes to their progeny. Mol Cells 21:401–410 PubMedGoogle Scholar
  138. 138.
    Leelavathi S, Reddy VS (2003) Chloroplast expression of His-tagged GUS-fusions: a general strategy to overproduce and purify foreign proteins using transplastomic plants as bioreactors. Mol Breed 11:49–58 CrossRefGoogle Scholar
  139. 139.
    Leelavathi S, Gupta N, Maiti S, Ghosh A, Reddy VS (2003) Overproduction of an alkali- and thermo-stable xylanase in tobacco chloroplasts and efficient recovery of the enzyme. Mol Breed 11:59–67 CrossRefGoogle Scholar
  140. 140.
    Lelivelt CL, McCabe MS, Newell CA, Desnoo CB, van Dun KM, Birch-Machin I, Gray JC, Mills KH, Nugent JM (2005) Stable plastid transformation in lettuce (Lactuca sativa L.). Plant Mol Biol 58:763–774 PubMedCrossRefGoogle Scholar
  141. 141.
    Lerbs-Mache S (1993) The 110-kDa polypeptide of spinach plastid DNA-dependent RNA polymerase: Single-subunit enzyme or catalytic core of multimeric enzyme complexes? Proc Natl Acad Sci USA 90:5509–5513 PubMedCrossRefGoogle Scholar
  142. 142.
    Li J, Goldschmidt-Clermont M, Timko MP (1993) Chloroplast-encoded chlB is required for light-independent protochlorophyllide reductase activity in Chlamydomonas reinhardtii. Plant Cell 5:1817–29 PubMedGoogle Scholar
  143. 143.
    Li Y, Sun M, Liu J, Yang Z, Zhang Z, Shen G (2006a) High expression of foot-and-mouth disease virus structural protein VP1 in tobacco chloroplasts. Plant Cell Rep 25:329–333 PubMedCrossRefGoogle Scholar
  144. 144.
    Li HY, Ramalingam S, Chye ML (2006b) Accumulation of recombinant SARS-CoA spike protein in plant cytosol and chloroplasts indicate potential for development of plant-derived oral vaccines. Exp Biol Med 231:1346–1352 Google Scholar
  145. 145.
    Limaye A, Koya V, Samsam M, Daniell H (2006) Receptor-mediated oral delivery of a bioencapsulated green fluorescent protein expressed in transgenic chloroplasts into the mouse circulatory system. FASEB J 20:959–961 PubMedCrossRefGoogle Scholar
  146. 146.
    Liu XQ, Huang C, Xu H (1993) The unusual rps3-like ORF172 is functionally essential and structurally conserved in Chlamydomonas. FEBS Lett 336:225–230 PubMedCrossRefGoogle Scholar
  147. 147.
    Lorence A, Verpoorte R (2004) Gene transfer and expression in plants. Methods Mol Biol 267:329–350 PubMedGoogle Scholar
  148. 148.
    Lössl A, Eibl C, Harloff HJ, Jung C, Koop HU (2003) Polyester synthesis in transplastomic tobacco (Nicotiana tabacum L.): Significant contents of polyhydroxybutyrate are associated with growth reduction. Plant Cell Rep 21:891–899 PubMedGoogle Scholar
  149. 149.
    Lössl A, Bohmert K, Harloff H, Eibl C, Mühlbauer S, Koop HU (2005) Inducible trans-activation of plastid transgenes: expression of the R. eutropha phb operon in transplastomic tobacco. Plant Cell Physiol 46:1462–1471 PubMedCrossRefGoogle Scholar
  150. 150.
    Lu XM, Yin WB, Hu ZM (2006) Chloroplast transformation. Methods Mol Biol 318:285–303 PubMedGoogle Scholar
  151. 151.
    Lutz KA, Knapp JE, Maliga P (2001) Expression of bar in the plastid genome confers herbicide resistance. Plant Physiol 125:1585–1590 PubMedCrossRefGoogle Scholar
  152. 152.
    Lutz KA, Corneille S, Azhagiri AK, Svab Z, Maliga P (2004) A novel approach to plastid transformation utilizes the phiC31 phage integrase. Plant J 37:906–913 PubMedCrossRefGoogle Scholar
  153. 153.
    Lutz KA, Svab Z, Maliga P (2006a) Construction of marker-free transplastomic tobacco using the Cre-loxP site-specific recombination system. Nature Protoc 1:900–910 CrossRefGoogle Scholar
  154. 154.
    Lutz KA, Bosacchi MH, Maliga P (2006b) Plastid marker-gene excision by transiently expressed CRE recombinase. Plant J 45:447–456 PubMedCrossRefGoogle Scholar
  155. 155.
    Ma JK, Barros E, Bock R, Christou P, Dale PJ, Dix PJ, Fischer R, Irwin J, Mahoney R, Pezzotti M, Schillberg S, Sparrow P, Stoger E, Twyman RM, European Union Framework 6 Pharma-Planta Consortium (2005) Molecular farming for new drugs and vaccines. Current perspectives on the production of pharmaceuticals in transgenic plants. EMBO Rep 6:593–599 PubMedCrossRefGoogle Scholar
  156. 156.
    Madoka Y, Tomizawa KI, Mizoi J, Nishida I, Nagano Y, Sasaki Y (2002) Chloroplast transformation with modified accD operon increases acetyl-CoA carboxylase and causes extension of leaf longevity and increase in seed yield in tobacco. Plant Cell Physiol 43:1518–1525 PubMedCrossRefGoogle Scholar
  157. 157.
    Mänpää P, Gonzalez EB, Chen L, Khan MS, Gray JC, Aro EM (2000) The ycf 9 (orf 62) gene in the plant chloroplast genome encodes a hydrophobic protein of stromal thylakoid membranes. J Exp Bot 51:375–382 CrossRefGoogle Scholar
  158. 158.
    Magee AM, Kavanagh TA (2002) Plastid genes transcribed by the nucleus-encoded plastid RNA polymerase show increased transcript accumulation in transgenic plants expressing a chloroplast-localized phage T7 RNA polymerase. J Exp Bot 53:2341–2349 PubMedCrossRefGoogle Scholar
  159. 159.
    Magee AM, Coyne S, Murphy D, Horvath EM, Medgyesy P, Kavanagh TA (2004a) T7 RNA polymerase-directed expression of an antibody fragment transgene in plastids causes a semi-lethal pale-green seedling phenotype. Transgenic Res 13:325–337 PubMedCrossRefGoogle Scholar
  160. 160.
    Magee AM, Horvath EM, Kavanagh TA (2004b) Pre-screening plastid transgene expression cassettes in Escherichia coli may be unreliable as a predictor of expression levels in chloroplast-transformed plants. Plant Sci 166:1605–1611 CrossRefGoogle Scholar
  161. 161.
    Magee AM, MacLean D, Gray JC, Kavanagh TA (2007) Disruption of essential plastid gene expression caused by T7 RNA polymerase-mediated transcription of plastid transgenes during early seedling development. Transgenic Res: in press (doi 10.1007/s11248–006-9045-z) Google Scholar
  162. 162.
    Majeran W, Wollman F-A, Vallon O (2000) Evidence for a role of ClpP in the degradation of the chloroplast cytochrome b6f complex. Plant Cell 12:137–149 PubMedGoogle Scholar
  163. 163.
    Maliga P (1993) Towards plastid transformation in flowering plants. TIBTECH 11:101–107 CrossRefGoogle Scholar
  164. 164.
    Maliga P (2002) Engineering the plastid genome of higher plants. Curr Opin Plant Biol 5:164–172 PubMedCrossRefGoogle Scholar
  165. 165.
    Maliga P (2003) Progress towards commercialization of plastid transformation technology. Trends Biotechnol 21:20–28 PubMedCrossRefGoogle Scholar
  166. 166.
    Maliga P (2004) Plastid transformation in higher plants. Annu Rev Plant Biol 55:289–313 PubMedCrossRefGoogle Scholar
  167. 167.
    Maliga P (2005) New vectors and marker excision systems mark progress in engineering the plastid genome of higher plants. Photochem Photobiol Sci 4:971–976 PubMedCrossRefGoogle Scholar
  168. 168.
    Maliga P, Carrer H, Kanevski I, Staub J, Svab Z (1993) Plastid engineering in land plants: a conservative genome is open to change. Philos Trans R Soc Lond B Biol Sci 342:203–208 PubMedCrossRefGoogle Scholar
  169. 169.
    Marin-Navarro J, Moreno J (2006) Cysteines 449 and 459 modulate the reduction-oxidation conformational changes of ribulose 1.5-bisphosphate carboxylase/oxygenase and the translocation of the enzyme to membranes during stress. Plant Cell Environ 29:898–908 PubMedCrossRefGoogle Scholar
  170. 170.
    Martin M, Casano LM, Zapata JM, Guera A, del Campo EM, Schmitz-Linneweber C, Maier RM, Sabater B (2004) Role of thylakoid Ndh complex and peroxidase in the protection against photo-oxidative stress: fluorescence and enzyme activities in wild-type and ndhF-deficient tobacco. Physiol Plant 1221:443–452 CrossRefGoogle Scholar
  171. 171.
    Matsuo T, Onai K, Okamoto K, Minagawa J, Ishiura M (2006) Real-time monitoring of chloroplast gene expression by a luciferase reporter: evidence for nuclear regulation of chloroplast circadian period. Molec Cell Biol 26:863–870 PubMedCrossRefGoogle Scholar
  172. 172.
    Matveeva NA, Shakhovskii AM, Kuchuk NV (2005) Stable transformation of Solanum rickii chloroplast DNA. Tsitol Genet 39:3–8 Google Scholar
  173. 173.
    Maul JE, Lilly JW, Cui L, dePamphilis CW, Miller W, Harris EH, Stern DB (2002) The Chlamydomonas reinhardtii plastid chromosome: islands of genes in a sea of repeats. Plant Cell 14:2659–2679 PubMedCrossRefGoogle Scholar
  174. 174.
    Mayfield SP, Schultz J (2004) Development of a luciferase reporter gene, luxCt, for Chlamydomonas reinhardtii chloroplast. Plant J 37:449–458 PubMedCrossRefGoogle Scholar
  175. 175.
    Mayfield SP, Franklin SE (2005) Expression of human antibodies in eukaryotic micro-algae. Vaccine 23:1828–1832 PubMedCrossRefGoogle Scholar
  176. 176.
    Mayfield SP, Franklin SE, Lerner RA (2003) Expression and assembly of a fully active antibody in algae. Proc Natl Acad Sci USA 100:438–442 PubMedCrossRefGoogle Scholar
  177. 177.
    McBride KE, Schaaf DJ, Daley M, Stalker DM (1994) Controlled expression of plastid transgenes in plants based on a nuclear DNA-encoded and plastid-targeted T7 RNA polymerase. Proc Natl Acad Sci USA 91:7301–7305 PubMedCrossRefGoogle Scholar
  178. 178.
    McBride KE, Svab Z, Schaaf DJ, Hogan PS, Stalker DM, Maliga P (1995) Amplification of a chimeric Bacillus gene in chloroplasts leads to an extraordinary level of an insecticidal protein in tobacco. Biotechnology (NY) 13:362–365 CrossRefGoogle Scholar
  179. 179.
    Minko I, Holloway SP, Nikaido S, Carter M, Odom OW, Johnson C, Herrin DL (1999) Renilla luciferase as a vital reporter for chloroplast gene expression in Chlamydomonas. Mol Gen Genet 262:421–425 PubMedCrossRefGoogle Scholar
  180. 180.
    Molina A, Hervás-Stubbs S, Daniell H, Mingo-Castel A, Veramendi J (2004) High-yield expression of a viral peptide animal vaccine in transgenic tobacco chloroplasts. Plant Biotechnol J 2:141–153 PubMedCrossRefGoogle Scholar
  181. 181.
    Monde RA, Zito F, Olive J, Wollman FA, Stern DB (2000) Post-transcriptional defects in tobacco chloroplast mutants lacking the cytochrome b6/f complex. Plant J 21:61–72 PubMedCrossRefGoogle Scholar
  182. 182.
    Morais F, Barber J, Nixon PJ (1998) The chloroplast-encoded alpha subunit of cytochrome b-559 is required for assembly of the photosystem II complex in both the light and the dark in Chlamydomonas reinhardtii. J Biol Chem 273:29315–29320 PubMedCrossRefGoogle Scholar
  183. 183.
    Mühlbauer SK, Koop HU (2005) External control of transgene expression in tobacco plastids using the bacterial lac repressor. Plant J 43:941–946 PubMedCrossRefGoogle Scholar
  184. 184.
    Mühlbauer SK, Lössl A, Tzekova L, Zou Z, Koop HU (2002) Functional analysis of plastid DNA replication origins in tobacco by targeted inactivation. Plant J 32:175–184 PubMedCrossRefGoogle Scholar
  185. 185.
    Nakamura M, Sugiura M (2007) Translation efficiencies of synonymous codons are not always correlated with codon usage in tobacco chloroplasts. Plant J 49:128–134 PubMedCrossRefGoogle Scholar
  186. 186.
    Nakashita H, Arai Y, Shikanai T, Doi Y, Yamaguchi I (2001) Introduction of bacterial metabolism into higher plants by polycistronic transgene expression. Biosci Biotechnol Biochem 65:1688–1691 PubMedCrossRefGoogle Scholar
  187. 187.
    Newell CA, Birch-Machin I, Hibberd JM, Gray JC (2003) Expression of green fluorescent protein from bacterial and plastid promoters in tobacco chloroplasts. Transgenic Res 12:631–634 PubMedCrossRefGoogle Scholar
  188. 188.
    Newman S, Harris EH, Johnson AM, Boynton JE, Gillham NW (1992) Nonrandom distribution of chloroplast recombination events in Chlamydomonas reinhardtii: Evidence for a hotspot and an adjacent cold region. Genetics 132:413–429 PubMedGoogle Scholar
  189. 189.
    Nguyen TT, Nugent G, Cardi T, Dix PJ (2005) Generation of homoplasmic plastid transformants of a commercial cultivar of potato (Solanum tuberosum L.). Plant Sci 168:1495–1500 CrossRefGoogle Scholar
  190. 190.
    Nickelsen J (1999) Transcripts containing the 5' untranslated regions of the plastid genes psbA and psbB from higher plants are unstable in Chlamydomonas reinhardtii chloroplasts. Mol Gen Genet 262:768–771 PubMedCrossRefGoogle Scholar
  191. 191.
    Nickelsen J, Kück U (2000) The unicellular green alga Chlamydomonas reinhardtii as an experimental system to study chloroplast RNA metabolism. Naturwiss 87:97–107 PubMedCrossRefGoogle Scholar
  192. 192.
    Nugent JM, Joyce SM (2005) Producing human therapeutic proteins in plastids. Curr Pharm Des 11:2459–2470 PubMedCrossRefGoogle Scholar
  193. 193.
    Nugent GD, Ten Have M, van der Gulik A, Dix PJ, Uijtewaal BA, Mordhorst AP (2005) Plastid transformants of tomato selected using mutations affecting ribosome structure. Plant Cell Rep 24:341–349 PubMedCrossRefGoogle Scholar
  194. 194.
    Nugent GD, Coyne S, Nguyen TT, Kavanagh T, Dix PJ (2006) Nuclear and plastid transformation of Brassica oleracea var. botrytis (cauliflower) using PEG-mediated uptake of DNA into protoplasts. Plant Sci 170:135–142 CrossRefGoogle Scholar
  195. 195.
    O'Connor HE, Ruffle SV, Cain AJ, Deak Z, Vass I, Nugent JH, Purton S (1998) The 9 kDa phosphoprotein of photosystem II. Generation and characterization of Chlamydomonas mutants lacking PSII-H and a site-directed mutant lacking the phosporylation site. Biochem Biophys Acta 1364:63–72 PubMedCrossRefGoogle Scholar
  196. 196.
    Ohnishi N, Takahashi Y (2001) PsbT polypeptide is required for efficient repair of photodamaged photosystem II reaction center. J Biol Chem 276:33798–33804 PubMedCrossRefGoogle Scholar
  197. 197.
    Okumura S, Sawada M, Park YW, Hayashi T, Shimamura M, Takase H, Tomizawa K (2006) Transformation of poplar (Populus alba) plastids and expression of foreign proteins in tree chloroplasts. Transgenic Res 15:637–646 PubMedCrossRefGoogle Scholar
  198. 198.
    O'Neill C, Horvath GV, Horvath E, Dix PJ, Medgyesy P (1993) Chloroplast transformation in plants: polyethylene glycol (PEG) treatment of protoplasts is an alternative to biolistic delivery systems. Plant J 3:729–738 PubMedCrossRefGoogle Scholar
  199. 199.
    Paszkowski J, Shillito RD, Saul M, Mandak V, Hohn T, Hohn B, Potrykus I (1984) Direct gene transfer to plants. EMBO J 3:2717–2722 PubMedGoogle Scholar
  200. 200.
    Przibilla E, Heiss S, Johanningmeier U, Trebst A (1991) Site-specific mutageneisis of the D1 subunit of photosystem II in wild-type Chlamydomonas. Plant Cell 3:169–174 PubMedGoogle Scholar
  201. 201.
    Qin S, Jiang P, Tseng C (2005) Transforming kelp into a marine bioreactor. Trends Biotech 23:265–268 CrossRefGoogle Scholar
  202. 202.
    Quesada-Vargas T, Ruiz ON, Daniell H (2005) Characterization of heterologous multigene operons in transgenic chloroplasts: transcription, processing, and translation. Plant Physiol 138:1746–1762 PubMedCrossRefGoogle Scholar
  203. 203.
    Ramesh VM, Bingham SE, Webber AN (2004) A simple method for chloroplast transformation in Chlamydomonas reinhardtii. Methods Mol Biol 274:301–307 PubMedGoogle Scholar
  204. 204.
    Redding K, Cournac L, Vassiliev IR, Golbeck JH, Peltier G, Rochaix JD (1999) Photosystem I is indispensable for photoautotrophic growth, CO2 fixation, and H2 photoproduction in Chlamydomonas reinhardtii. J Biol Chem 274:10466–10473 PubMedCrossRefGoogle Scholar
  205. 205.
    Reddy VS, Leelavathi S, Selvapandiyan A, Raman R, Giovanni F, Shukla V, Bhatnagar RK (2002) Analysis of chloroplast transformed tobacco plants with cry1Ia5 under rice psbA transcriptional elements reveal high level expression of Bt toxin without imposing yield penalty and stable inheritance of transplastome. Mol Breed 9:259–269 CrossRefGoogle Scholar
  206. 206.
    Robertson D, Boynton JE, Gillham NW (1990) Cotranscription of the wild-type chloroplast atpE gene encoding the CF1/CF0 epsilon subunit with 3' half of the rps7 gene in Chlamydomonas reinhardtii and characterization of frameshift mutations in atpE. Mol Gen Genet 221:155–163 PubMedCrossRefGoogle Scholar
  207. 207.
    Rochaix JD (1995) Chlamydomonas reinhardtii as the photosynthetic yeast. Ann Rev Genet 29:209–230 PubMedCrossRefGoogle Scholar
  208. 208.
    Rochaix JD (1997) Chloroplast reverse genetics: New insights into the function of plastid genes. Trends Plant Sci 2:419–425 CrossRefGoogle Scholar
  209. 209.
    Rochaix JD, Kuchka M, Mayfield SP, Schirmer-Rahire M, Girard-Bascou J, Bennoun P (1989) Nuclear and chloroplast mutations affect the synthesis or stability of the chloroplast psbC gene product in Chlamydomonas reinhardtii. EMBO J 8:1013–1021 PubMedGoogle Scholar
  210. 210.
    Rogalski M, Ruf S, Bock R (2006) Tobacco plastid ribosomal protein S18 is essential for cell survival. Nucleic Acids Res 34:4537–45645 PubMedCrossRefGoogle Scholar
  211. 211.
    Rolland N, Dome AJ, Amoroso G, Sultemeyer DF, Joyard J, Rochaix JD (1997) Disruption of the plastid ycf10 open reading frame aafects uptake of inorganic carbon in the chloroplast of Chlamydomonas. EMBO J 16:6713–6726 PubMedCrossRefGoogle Scholar
  212. 212.
    Ruf S, Kossel H, Bock R (1997) Targeted inactivation of a tobacco intron-containing open reading frame reveals a novel chloroplast-encoded photosystem I-related gene. J Cell Biol 139:95–102 PubMedCrossRefGoogle Scholar
  213. 213.
    Ruf S, Biehler K, Bock R (2000) A small chloroplast-encoded protein as a novel architectural component of the light-harvesting antenna. J Cell Biol 149:369–378 PubMedCrossRefGoogle Scholar
  214. 214.
    Ruf S, Hermann M, Berger IJ, Carrer H, Bock R (2001) Stable genetic transformation of tomato plastids and expression of a foreign protein in fruit. Nat Biotechnol 19:870–875 PubMedCrossRefGoogle Scholar
  215. 215.
    Ruiz ON, Daniell H (2005) Engineering cytoplasmic male sterility via the chloroplast genome by expression of {beta}-ketothiolase. Plant Physiol 138:1232–1246 PubMedCrossRefGoogle Scholar
  216. 216.
    Ruiz ON, Hussein HS, Terry N, Daniell H (2003) Phytoremediation of organomercurial compounds via chloroplast genetic engineering. Plant Physiol 132:1344–1352 PubMedCrossRefGoogle Scholar
  217. 217.
    Rumeau D, Bécuwe-Linka N, Beyly A, Carrier P, Cuiné S, Genty B, Medgyesy P, Horvath EM, Peltier G (2004) Increased zinc content in transplastomic tobacco plants expressing a polyhistidine-tagged Rubisco large subunit. Plant Biotechnol J 2:389–399 PubMedCrossRefGoogle Scholar
  218. 218.
    Sakamoto W, Kindle K, Stern DB (1993) In vivo analysis of Chlamydomonas chloroplast petD gene expression using stable transformtion of beta-glucuronidase translational fusions. Proc Natl Acad Sci USA 90:497–501 PubMedCrossRefGoogle Scholar
  219. 219.
    Schöttler MA, Flügel C, Thiele W, Stegemann S, Bock R (2007a) The plastome-encoded PsaJ subunit is required for efficient photosystem I excitation, but not for plastocyanin oxidation in tobacco. Biochem J: in press (doi:10.1042/BJ20061573) Google Scholar
  220. 220.
    Schöttler MA, Flügel C, Thiele W, Bock R (2007b) Knock-out of the plastid-encoded PetL subunit results in reduced stability and accelerated leaf age-dependent loss of the cytochrome b6f complex. J Biol Chem 282:976–985 PubMedCrossRefGoogle Scholar
  221. 221.
    Schwenkert S, Umate P, Dal Bosco C, Volz S, Mlcochová L, Zoryan M, Eichacker LA, Ohad I, Herrmann RG, Meurer J (2006) PSBI affects the stability, function, and phosphorylation patterns of photosystem II assemblies in tobacco. J Biol Chem 281:34227–34238 PubMedCrossRefGoogle Scholar
  222. 222.
    Seki M, Shigemoto N, Sugita M, Sugiura M, Koop HU, Irifune K, Morikawa H (1995) Transient expression of ß-glucuronidase in plastids of various plant cells and tissues delivered by a pneumatic particle gun. J Plant Res 108:235–240 CrossRefGoogle Scholar
  223. 223.
    Serino G, Maliga P (1997) A negative selection scheme based on the expression of cytosine deaminase in plastids. Plant J 12:697–701 PubMedCrossRefGoogle Scholar
  224. 224.
    Serino G, Maliga P (1998) RNA polymerase subunits encoded by the plastid rpo genes are not shared with the nucleus-encoded plastid enzyme. Plant Physiol 117:1165–1170 PubMedCrossRefGoogle Scholar
  225. 225.
    Shepherd HS, Boynton JE, Gillham NW (1979) Mutations in nine chloroplast loci of Chlamydomonas affecting different photosynthtic functions. Proc Natl Acad Sci USA 76:1353–1357 PubMedCrossRefGoogle Scholar
  226. 226.
    Shikanai T, Endo T, Hashimoto T, Yamada Y, Asada K, Yokota A (1998) Directed disruption of the tobacco ndhB gene impairs cyclic electron flow around photosystem I. Proc Natl Acad Sci USA 95:9705–9709 PubMedCrossRefGoogle Scholar
  227. 227.
    Shikanai T, Shimizu K, Ueda K, Nishimura Y, Kuroiwa T, Hashimoto T (2001) The chloroplast clpP gene, encoding a proteolytic subunit of ATP-dependent protease, is indispensable for chloroplast development in tobacco. Plant Cell Physiol 42:264–273 PubMedCrossRefGoogle Scholar
  228. 228.
    Sidorov VA, Kasten D, Pang SZ, Hajdukiewicz PT, Staub JM, Nehra NS (1999) Technical advance: Stable chloroplast transformation in potato: use of green fluorescent protein as a plastid marker. Plant J 19:209–216 PubMedCrossRefGoogle Scholar
  229. 229.
    Sikdar SR, Serino G, Chaudhuri S, Maliga P (1998) Plastid transformation in Arabidopsis thaliana. Plant Cell Rep 18:20–24 CrossRefGoogle Scholar
  230. 230.
    Skarjinskaia M, Svab Z, Maliga P (2003) Plastid transformation in Lesquerella fendleri, an oilseed Brassicacea. Transgenic Res 12:115–122 PubMedCrossRefGoogle Scholar
  231. 231.
    Spörlein B, Streubel M, Dahlfeld G, Westhoff P, Koop HU (1991) PEG-mediated plastid transformation: a new system for transient gene expression assays in chloroplasts. Theor Appl Genet 82:717–722 CrossRefGoogle Scholar
  232. 232.
    Spreitzer RJ, Goldschmidt-Clermont M, Rahire M, Rochaix JD (1985) Nonsense mutations in the Chlamydomonas chloroplast gene that codes for the large subunit of ribulose bisphosphate carboxylase/oxygenase. Proc Natl Acad Sci USA 82:5460–5464 PubMedCrossRefGoogle Scholar
  233. 233.
    Sriraman P, Silhavy D, Maliga P (1998) The phage-type PclpP-53 plastid promoter comprises sequences downstream of the transcription initiation site. Nucleic Acids Res 26:4874–4879 PubMedCrossRefGoogle Scholar
  234. 234.
    Staub JM (2002) Expression of Recombinant Proteins via the Plastid Genome. In: Vinci VA, Parekh SR (eds) Handbook of industrial cell culture: Mammalian, microbial and plant cells. Humana Press, Totowa, NJ Google Scholar
  235. 235.
    Staub JM, Maliga P (1992) Long regions of homologous DNA are incorporated into the tobacco plastid genome by transformation. Plant Cell 4:39–45 PubMedGoogle Scholar
  236. 236.
    Staub JM, Maliga P (1993) Accumulation of D1 polypeptide in tobacco plastids is regulated via the untranslated region of the psbA mRNA. EMBO J 12:601–606 PubMedGoogle Scholar
  237. 237.
    Staub JM, Maliga P (1994) Extrachromosomal elements in tobacco plastids. Proc Natl Acad Sci USA 91:7468–7472 PubMedCrossRefGoogle Scholar
  238. 238.
    Staub JM, Maliga P (1995a) Expression of a chimeric uidA gene indicates that polycistronic mRNAs are efficiently translated in tobacco plastids. Plant J 7:845–848 PubMedCrossRefGoogle Scholar
  239. 239.
    Staub JM, Maliga P (1995b) Marker rescue from the Nicotiana tabacum plastid genome using a plastid/Escherichia coli shuttle vector. Mol Gen Genet 249:37–42 PubMedCrossRefGoogle Scholar
  240. 240.
    Staub JM, Garcia B, Graves J, Hajdukiewicz PT, Hunter P, Nehra N, Paradkar V, Schlittler M, Carroll JA, Spatola L, Ward D, Ye G, Russell DA (2000) High-yield production of a human therapeutic protein in tobacco chloroplasts. Nat Biotechnol 18:333–338 PubMedCrossRefGoogle Scholar
  241. 241.
    Stern DB, Gruissem W (1987) Control of plastid gene expression: 3' inverted repeats act as mRNA processing and stabilizing elements, but do not terminate transcription. Cell 24:1145–1157 CrossRefGoogle Scholar
  242. 242.
    Stern DB, Higgs DC, Yang J (1997) Transcription and translation in chloroplasts. Trends Plant Sci 2:308–315 CrossRefGoogle Scholar
  243. 243.
    Stern DB, Bassi R, Herrmann RG, Wollman FA (2001) The chloroplast gene ycf9 encodes a photosystem II (PSII) core subunit, PsbZ, that participates in PSII supramolecular architecture. Plant Cell 13:1347–1367 PubMedGoogle Scholar
  244. 244.
    Su ZL, Qian KX, Tan CP, Meng CX, Qin S (2005) Recombination and heterologous expression of allophycyanin gene in the chloroplast of Chlamydomonas reinhardtii. Acta Biochim Biophys Sinica 37:709–712 CrossRefGoogle Scholar
  245. 245.
    Sugita M, Svab Z, Maliga P, Sugiura M (1997) Targeted deletion of sprA from the tobacco plastid genome indicates that the encoded small RNA is not essential for pre-16S rRNA maturation in plastids. Mol Gen Genet 257:23–27 PubMedCrossRefGoogle Scholar
  246. 246.
    Sugiura C, Sugita M (2004) Plastid transformation reveals that moss tRNA-CCG is not essential for plastid function. Plant J 40:314–321 PubMedCrossRefGoogle Scholar
  247. 247.
    Summer EJ, Schmid VH, Bruns BU, Schmidt GW (1997) Requirement for the H phosphoprotein in photosystem II of Chlamydomonas reinhardtii. Plant Physiol 113:1359–1368 PubMedCrossRefGoogle Scholar
  248. 248.
    Sun M, Qian K, Su N, Chang H, Liu J, Chen G (2003) Foot-and-mouth disease virus VP1 protein fused with cholera toxin B subunit expressed in Chlamydomonas reinhardtii chloroplast. Biotechnol Lett 25:1087–1092 PubMedCrossRefGoogle Scholar
  249. 249.
    Suzuki JY, Bauer CE (1992) Light-independent chlorophyll biosynthesis: involvement of the chloroplast gene chlL (frxC). Plant Cell 4:929–940 PubMedGoogle Scholar
  250. 250.
    Suzuki H, Ingersoll J, Stern DB, Kindle KL (1997) Generation and maintenance of tandemly repeated extrachromosomal plasmid DNA in Chlamydomonas chloroplasts. Plant J 11:635–648 PubMedCrossRefGoogle Scholar
  251. 251.
    Svab Z, Hajdukiewicz P, Maliga P (1990) Stable transformation of plastids in higher plants. Proc Natl Acad Sci USA 87:8526–8530 PubMedCrossRefGoogle Scholar
  252. 252.
    Svab Z, Maliga P (1993) High-frequency plastid transformation in tobacco by selection for a chimeric aadA gene. Proc Natl Acad Sci USA 90:913–917 PubMedCrossRefGoogle Scholar
  253. 253.
    Swiatek M, Kuras R, Sokolenko A, Higgs D, Olive J, Cinque G, Muller B, Eichacker LA, Stern DB, Bassi R, Herrmann RG, Wollman FA (2001) The chloroplast gene ycf9 encodes a photosystem II (PSII) core subunit, PsbZ, that participates in PSII supramolecular architecture. Plant Cell 13:1347–1367 PubMedGoogle Scholar
  254. 254.
    Swiatek M, Regel RE, Meurer J, Wanner G, Pakrasi HB, Ohad I, Herrmann RG (2003a) Effects of selective inactivation of individual genes for low-molecular-mass subunits on the assembly of photosystem II, as revealed by chloroplast transformation: the psbEFLJ operon in Nicotiana tabacum. Mol Genet Genomics 268:699–710 PubMedGoogle Scholar
  255. 255.
    Swiatek M, Greiner S, Kemp S, Drescher A, Koop HU, Herrmann RG, Maier RM (2003b) PCR analysis of pulsed-field gel electrophoresis-purified plastid DNA, a sensitive tool to judge the hetero-/homoplasmic status of plastid transformants. Curr Genet 43:45–53 PubMedGoogle Scholar
  256. 256.
    Takahashi Y, Goldschmidt-Clermont M, Soen S-Y, Franzen LG, Rochaix JD (1991) Directed chloroplast transformation in Chlamydomonas reinhardtii: Insertional inactivation of the psaC gene encoding the iron-sulfur protein destabilizes photosystem I. EMBO J 10:2033–2040 PubMedGoogle Scholar
  257. 257.
    Takahashi Y, Matsumoto H, Goldschmidt-Clermont M, Rochaix JD (1994) Directed disruption of the Chlamydomonas chloroplast psbK gene destabilizes the photosystem II reaction center complex. Plant Mol Biol 24:779–788 PubMedCrossRefGoogle Scholar
  258. 258.
    Takahashi Y, Rahire M, Breyton C, Popot JL, Joliot P, Rochaix JD (1996) The chloroplast ycf7 (petL) open reading frame of Chlamydomonas reinhardtii encodes a small functionally important subunit of the cytochrome b6f complex. EMBO J 15:3498–3506 PubMedGoogle Scholar
  259. 259.
    Tregoning JS, Nixon P, Kuroda H, Svab Z, Clare S, Bowe F, Fairweather N, Ytterberg J, van Wijk KJ, Dougan G, Maliga P (2003) Expression of tetanus toxin Fragment C in tobacco chloroplasts. Nucleic Acids Res 31:1174–1179 PubMedCrossRefGoogle Scholar
  260. 260.
    Tregoning J, Maliga P, Dougan G, Nixon PJ (2004) New advances in the production of edible plant vaccines: chloroplast expression of a tetanus vaccine antigen, TetC. Phytochem 65:989–994 CrossRefGoogle Scholar
  261. 261.
    Tungsuchat T, Kuroda H, Narangajavana J, Maliga P (2006) Gene activation in plastids by the CRE site-specific recombinase. Plant Mol Biol 61:711–718 PubMedCrossRefGoogle Scholar
  262. 262.
    van Bel AJ, Hibberd J, Prufer D, Knoblauch M (2001) Novel approach in plastid transformation. Curr Opin Biotechnol 12:144–149 PubMedCrossRefGoogle Scholar
  263. 263.
    Venkateswarlu K, Nazar RN (1991) Evidence for T-DNA mediated gene targeting to tobacco chloroplasts. Biotechnology 9:1103–1105 PubMedCrossRefGoogle Scholar
  264. 264.
    Viitanen PV, Devine AL, Khan MS, Deuel DL, Van Dyk DE, Daniell H (2004) Metabolic engineering of the chloroplast genome using the Escherichia coli ubiC gene reveals that chorismate is a readily abundant plant precursor for p-hydroxybenzoic acid biosynthesis. Plant Physiol 136:4048–4060 PubMedCrossRefGoogle Scholar
  265. 265.
    Walmsley AM, Arntzen CJ (2003) Plant cell factories and mucosal vaccines. Curr Opin Biotechnol 14:145–150 PubMedCrossRefGoogle Scholar
  266. 266.
    Watson J, Koya V, Leppla SH, Daniell H (2004) Expression of Bacillus anthracis protective antigen in transgenic chloroplasts of tobacco, a non-food/feed crop. Vaccine 22:4374–4384 PubMedCrossRefGoogle Scholar
  267. 267.
    Whitney SM, Andrews TJ (2001) Plastome-encoded bacterial ribulose-1,5-bisphosphate carboxylase/oxygenase (RUBISCO) supports photosynthesis and growth in tobacco. Proc Natl Acad Sci USA 98:14738–14743 PubMedCrossRefGoogle Scholar
  268. 268.
    Wirth S, Segretin ME, Mentaberry A, Bravo-Almonacid F (2006) Accumulation of hEGF and hEGF-fusion proteins in chloroplast-transformed tobacco plants is higher in the dark than in the light. J Biotechnol 125:159–172 PubMedCrossRefGoogle Scholar
  269. 269.
    Wurbs D, Ruf S, Bock R (2007) Contained metabolic engineering in tomatoes by expression of carotenoid biosynthesis genes from the plastid genome. Plant J 49:276–288 PubMedCrossRefGoogle Scholar
  270. 270.
    Xie Z, Merchant S (1996) The plastid-encoded ccsA gene is required for heme attachment to chloroplast c-type cytochromes. J Biol Chem 271:4632–4639 PubMedCrossRefGoogle Scholar
  271. 271.
    Xiong L, Sayre RT (2004) Engineering the chloroplast encoded proteins of Chlamydomonas. Photosynth Res 80:411–419 PubMedCrossRefGoogle Scholar
  272. 272.
    Ye GN, Daniell H, Sanford JC (1990) Optimization of delivery of foreign DNA into higher-plant chloroplasts. Plant Mol Biol 15:809–819 PubMedCrossRefGoogle Scholar
  273. 273.
    Ye GN, Hajdukiewicz PT, Broyles D, Rodriguez D, Xu CW, Nehra N, Staub JM (2001) Plastid-expressed 5-enolpyruvylshikimate-3-phosphate synthase genes provide high level glyphosate tolerance in tobacco. Plant J 25:261–270 PubMedCrossRefGoogle Scholar
  274. 274.
    Ye GN, Colburn SM, Xu CW, Hajdukiewicz PT, Staub JM (2003) Persistence of unselected transgenic DNA during a plastid transformation and segregation approach to herbicide resistance. Plant Physiol 133:402–410 PubMedCrossRefGoogle Scholar
  275. 275.
    Yukawa M, Tsudzuki T, Sugiura M (2005) The 2005 version of the chloroplast DNA sequence from tobacco (Nicotiana tabacum). Plant Mol Bio Rep 23:359–365 CrossRefGoogle Scholar
  276. 276.
    Zhang XH, Brotherton JE, Widholm JM, Portis AR Jr (2001a) Targeting a nuclear anthranilate synthase alpha-subunit gene to the tobacco plastid genome results in enhanced tryptophan biosynthesis. Return of a gene to its pre-endosymbiotic origin. Plant Physiol 127:131–141 PubMedCrossRefGoogle Scholar
  277. 277.
    Zhang XH, Portis AR, Wildholm JM (2001b) Plastid transformation of soybean suspension cultures. J Plant Biotechnol 3:39–44 Google Scholar
  278. 278.
    Zhou YX, Lee MY, Ng JM, Chye ML, Yip WK, Zee SY, Lam E (2006) A truncated hepatitis E virus ORF2 protein expressed in tobacco plastids is immunogenic in mice. World J Gastroenterol 12:306–312 PubMedGoogle Scholar
  279. 279.
    Zou Z, Eibl C, Koop HU (2003) The stem-loop region of the tobacco psbA 5'UTR is an important determinant of mRNA stability and translation efficiency. Mol Genet Genomics 269:340–349 PubMedCrossRefGoogle Scholar
  280. 280.
    Zoubenko OV, Allison LA, Svab Z, Maliga P (1994) Efficient targeting of foreign genes into the tobacco plastid genome. Nucleic Acids Res 25:3819–3824 CrossRefGoogle Scholar
  281. 281.
    Zubko MK, Zubko EI, van Zuilen K, Meyer P, Day A (2004) Stable transformation of petunia plastids. Transgenic Res 13:523–530 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Hans-Ulrich Koop
    • 1
    Email author
  • Stefan Herz
    • 2
  • Timothy J. Golds
    • 2
  • Jörg Nickelsen
    • 1
  1. 1.Faculty of Biology, Department I, BotanyLudwig-Maximilians-Universität MünchenMünchenGermany
  2. 2.Research Centre FreisingIcon Genetics AGFreisingGermany

Personalised recommendations