Advertisement

pp 1-38 | Cite as

The Catalytic Mechanisms of the Molybdenum and Tungsten Enzymes

  • Andrew M. Crawford
  • Julien J. H. Cotelesage
  • Roger C. Prince
  • Graham N. GeorgeEmail author
Chapter
Part of the Structure and Bonding book series

Abstract

Molybdenum and tungsten are, respectively, the only second and third transition metal ions with well-defined functions in living organisms and with a single exception are found in association with a novel pyranopterin dithiolene cofactor called molybdopterin. This review focusses on the catalytic mechanisms of the molybdenum and tungsten enzymes, with an emphasis on the molybdenum and tungsten sites. Most, but not all, of the enzymes catalyze oxygen atom transferase redox chemistry, with the metal cycling between M(VI) and M(IV) formal oxidation states during the catalytic cycle. We discuss the range of reactions and what is known of mechanism for both oxo-transferase and non-oxo-transferase molybdenum and tungsten enzymes.

Keywords

Molybdenum enzyme Oxygen atom transferase Tungsten enzyme 

Notes

Acknowledgments

Research in the authors’ laboratory is funded by the Natural Sciences and Engineering Research Council of Canada, the Saskatchewan Health Research Foundation (SHRF), the University of Saskatchewan, the Canada Foundation for Innovation, Chevron Energy Research Co., and a Canada Research Chair award (to G.N.G). R.C.P. acknowledges support from the Diane Gunson benevolence fund.

References

  1. 1.
    Pushie MJ, Cotelesage JJH, George GN (2014) Metallomics 6:15–24Google Scholar
  2. 2.
    Lane T, Saito MA, George GN, Pickering IJ, Prince RC, Morel FFM (2005) Nature 435:42Google Scholar
  3. 3.
    Hiller CJ, Rettberg LA, Lee CC, Stiebritz MT, Hu Y (2019) Current understanding of the biosynthesis of the unique nitrogenase cofactor core. Struct Bond. https://link.springer.com/chapter/10.1007/430_2018_29
  4. 4.
    Wenke BB, Spatzal T (2019) Looking at nitrogenase: insights from modern structural approaches. Struct Bond. https://link.springer.com/chapter/10.1007/430_2018_28
  5. 5.
    Hille R, Halt J, Basu P (2014) Chem Rev 114:3963–4038Google Scholar
  6. 6.
    Jormakka M, Richardson D, Byrne B, Iwata S (2004) Structure 12:95–104Google Scholar
  7. 7.
    Bertero MG, Rothery RA, Palak M, Hou C, Lim D, Blasco F, Weiner JH, Strynadka NCJ (2003) Nat Struct Biol 10:681–687Google Scholar
  8. 8.
    Kloer DP, Hagel C, Heider J, Schulz GE (2006) Structure 14:1377–1388Google Scholar
  9. 9.
    Gisewhite DR, Yang J, Williams BR, Esmail A, Stein BW, Kirk ML, Burgmayer SJN (2018) J Am Chem Soc 140:12808–12818Google Scholar
  10. 10.
    Cotelesage JJH, Crawford AM, Prince RC, George GN (unpublished)Google Scholar
  11. 11.
    Bray RC, Swann JC (1972) Struct Bond 11:107–144Google Scholar
  12. 12.
    Ljundahl LG, Andreesen JR (1975) FEBS Lett 54:279–282Google Scholar
  13. 13.
    George GN, Prince RC, Mukund S, Adams MWW (1992) J Am Chem Soc 114:3521–3523Google Scholar
  14. 14.
    Olson JS, Ballou DP, Palmer G, Massey V (1974) J Biol Chem 249:4363–4382Google Scholar
  15. 15.
    Rothery RA, Stein B, Solomonson M, Kirk ML, Weiner JH (2012) Proc Natl Acad Sci U S A 109:14773–14778Google Scholar
  16. 16.
    Stetter KO (2006) Philos Trans R Soc B 361:1837–1843Google Scholar
  17. 17.
    Pushie MJ, George GN (2011) Coord Chem Rev 255(9–10):1055–1084Google Scholar
  18. 18.
    Kisker C, Schindelin H, Pacheco A, Wehbi WA, Garrett RM, Rajagopalan KV, Enemark JH, Rees DC (1997) Cell 91:973–983Google Scholar
  19. 19.
    Schrader N, Fischer K, Theis K, Mendel RR, Schwarz G, Kisker C (2003) Structure 11:1251–1263Google Scholar
  20. 20.
    Fischer K, Barbier G, Hecht H-J, Mendel RR, Campbell WH, Schwarz G (2005) Plant Cell 17:1167–1179Google Scholar
  21. 21.
    Kappler U, Bailey S (2005) J Biol Chem 280:24999–25007Google Scholar
  22. 22.
    McGrath AP, Laming EL, Casas Garcia GP, Kvansakul M, Guss JM, Trewhella J, Calmes B, Bernhardt PV, Hanson GR, Kappler U, Maher MJ (2015) Elife 4:e09066–e09066Google Scholar
  23. 23.
    Plitzko B, Havemeyer A, Kunze T, Clement B (2015) J Biol Chem 290:10126–10135Google Scholar
  24. 24.
    Enroth C, Eger BT, Okamoto K, Nishino T, Nishino T, Pai EF (2000) Proc Natl Acad Sci U S A 97:10723–10728Google Scholar
  25. 25.
    Doonan CJ, Stockert A, Hille R, George GN (2005) J Am Chem Soc 127:4518–4522Google Scholar
  26. 26.
    Coelho C, Foti A, Hartmann T, Santos-Silva T, Leimkuhler S, Romao MJ (2015) Nat Chem Biol 11:779–783Google Scholar
  27. 27.
    Dobbek H, Gremer L, Kiefersauer R, Huber R, Meyer O (2002) Proc Natl Acad Sci U S A 99:15971–15976Google Scholar
  28. 28.
    Gnida M, Ferner R, Gremer L, Meyer O, Meyer-Klaucke W (2003) Biochemistry 42:222–230Google Scholar
  29. 29.
    Gladyshev VN, Khangulov SV, Stadtman TC (1994) Proc Natl Acad Sci U S A 91:232–236Google Scholar
  30. 30.
    Wagener N, Pierik AJ, Ibdah A, Hille R, Dobbek H (2009) Proc Natl Acad Sci U S A 106:1055–11060Google Scholar
  31. 31.
    George GN, Hilton J, Temple C, Prince RC, Rajagopalan RC (1999) J Am Chem Soc 121:1256–1266Google Scholar
  32. 32.
    Li HK, Temple C, Rajagopalan KV, Schindelin H (2000) J Am Chem Soc 122:7673–7680Google Scholar
  33. 33.
    Chan MK, Mukund S, Kletzin A, Adams MWW, Rees DC (1995) Science 267:1463–1469Google Scholar
  34. 34.
    Rappé AK, Goddard WA (1982) J Am Chem Soc 104:448–456Google Scholar
  35. 35.
    Groom CR, Bruno IJ, Lightfoot MP, Ward SC (2016) Acta Cryst B72:171–179Google Scholar
  36. 36.
    Qiu JA, Wilson HL, Pushie MJ, Kisker C, George GN, Rajagopalan KV (2010) Biochemistry 49:3989–4000Google Scholar
  37. 37.
    George GN, Garrett RM, Prince RC, Rajagopalan KV (1996) J Am Chem Soc 118:8588–8592Google Scholar
  38. 38.
    George GN, Garrett RM, Prince RC, Rajagopalan KV (2004) Inorg Chem 43:8456–8460Google Scholar
  39. 39.
    Johnson JL, Rajagopalan KV (1982) Proc Natl Acad Sci U S A 79:6856–6860Google Scholar
  40. 40.
    Rajagopalan KV (1991) In: Meister A (ed) Advances in enzymology and related areas of molecular biology. Wiley, New York, pp 215–290Google Scholar
  41. 41.
    Romão MJ, Archer M, Moura I, Moura JJG, LeGall J, Engh R, Schneider M, Hof P, Huber R (1995) Science 270:1170–1176Google Scholar
  42. 42.
    Garton SD, Hilton J, Hiroyuki O, Crouse BR, Rajagopalan KV, Johnson MK (1997) J Am Chem Soc 119:12906–12916Google Scholar
  43. 43.
    McNaughton RL, Helton ME, Rubie ND, Kirk ML (2000) Inorg Chem 39:4386–4387Google Scholar
  44. 44.
    Cotelesage JJH, Pushie MJ, Grochulski P, Pickering IJ, George GN (2012) J Inorg Biochem 115:127–137Google Scholar
  45. 45.
    Pushie MJ, Cotelesage JJH, Lyashenko G, Hille R, George GN (2013) Inorg Chem 52:2830–2837Google Scholar
  46. 46.
    Warelow TP, Pushie MJ, Cotelesage JJH, Santini JM, George GN (2017) Sci Rep 7:1757/1–1757/7Google Scholar
  47. 47.
    Rây P, Dutt NK (1943) J Indian Chem Soc 20:81–92Google Scholar
  48. 48.
    Rzepa HS, Cass ME (2007) Inorg Chem 46:8024–8031Google Scholar
  49. 49.
    Dobbek H, Gremer L, Meyer O, Huber R (1999) Proc Natl Acad Sci U S A 96:8884–8889Google Scholar
  50. 50.
    George GN, Pickering IJ, Kisker C (1999) Inorg Chem 38:2539–2540Google Scholar
  51. 51.
    George GN, Pickering IJ, Pushie MJ, Nienaber K, Hackett MJ, Ascone I, Hedman B, Hodgson KO, Aitken JB, Levina A, Glover C, Lay PA (2012) J Synchrotron Radiat 19:875–886Google Scholar
  52. 52.
    Nienaber KH, Pushie MJ, Cotelesage JJH, Pickering IJ, George GN (2018) J Phys Chem Lett 9:540–544Google Scholar
  53. 53.
    George GN (2016) X-ray absorption spectroscopy of molybdenum and tungsten enzymes. In: Kirk ML, Hille R, Schulzke C (eds) Molybdenum and tungsten enzymes: spectroscopic and theoretical investigations. Royal Society of Chemistry, Series on Meta, pp 121–167, ISBN 978-1-78262-878-1Google Scholar
  54. 54.
    Harris HH, George GN, Rajagopalan KV (2006) Inorg Chem 45:493–495Google Scholar
  55. 55.
    Shih VE, Abroms IF, Johnson JL, Carney M, Mandell R, Robb RM, Cloherty JP, Rajagopalan KV (1977) N Engl J Med 297:1022–1028Google Scholar
  56. 56.
    Johnson JL, Coyne KE, Garrett RM, Zabot M-T, Dorche C, Kisker C, Rajagopalan KV (2002) Hum Mutat 20:74Google Scholar
  57. 57.
    Karakas E, Wilson HL, Graf TN, Xiang S, Jaramillo-Busquets S, Rajagopalan KV, Kisker C (2005) J Biol Chem 280:33506–33515Google Scholar
  58. 58.
    Peariso K, McNaughton RL, Kirk ML (2002) J Am Chem Soc 124:9006–9007Google Scholar
  59. 59.
    Izumi Y, Glaser T, Rose K, McMaster J, Basu P, Enemark JH, Hedman B, Hodgson KO, Solomon EI (1999) J Am Chem Soc 121:10035–10046Google Scholar
  60. 60.
    Fischer K, Barbier G, Hecht H-J, Mendel RR, Campbell WH, Schwarz G (2005) Plant Cell 17:1167–1179Google Scholar
  61. 61.
    George GN, Mertens JA, Campbell WA (1999) J Am Chem Soc 121:9730–9731Google Scholar
  62. 62.
    Cambell WH, Kinghorn KR (1990) Trends Biochem Sci 15:315–319Google Scholar
  63. 63.
    Qiu JA, Wilson HL, Rajagopalan KV (2012) Biochemistry 51:1134–1147Google Scholar
  64. 64.
    Havemeyer A, Bittner F, Wollers S, Mendel R, Kunze T, Clement B (2006) J Biol Chem 281:34796–34802Google Scholar
  65. 65.
    Schneider J, Girreser U, Havemeyer A, Bittner F, Clement B (2018) Chem Res Toxicol 31:447–453Google Scholar
  66. 66.
    Llamas A, Chamizo-Ampudia A, Tejada-Jimenez M, Galvan A, Fernandez E (2017) Biofactors 43:486–494Google Scholar
  67. 67.
    Rajapakshe A, Astashkin AV, Klein EL, Reichmann D, Mendel RR, Bittner F, Enemark JH (2011) Biochemistry 50:8813–8822Google Scholar
  68. 68.
    Giles LJ, Ruppelt C, Yang J, Mendel RR, Bittner F, Kirk ML (2014) Inorg Chem 53:9460–9462Google Scholar
  69. 69.
    Yang J, Giles LJ, Ruppelt C, Mendel RR, Bittner F, Kirk ML (2015) J Am Chem Soc 137:5276–5279Google Scholar
  70. 70.
    Kubitza C, Ginsel C, Bittner F, Havemeyer A, Clement B, Scheidiga AJ (2018) Acta Cryst F74:337–344Google Scholar
  71. 71.
    Pacheco A, Hazzard JT, Tollin G, Enemark JH (1999) J Biol Inorg Chem 4:390–401Google Scholar
  72. 72.
    Pushie MJ, George GN (2010) J Phys Chem B 114:3266–3275Google Scholar
  73. 73.
    Utesch T, Mroginski MA (2010) J Phys Chem Lett 1:2159–2164Google Scholar
  74. 74.
    Atashkin AV, Rajapakshe A, Cornelison MJ, Johnson-Winters K, Enemark JH (2012) J Phys Chem B 116:1942–1950Google Scholar
  75. 75.
    Feng C, Wilson HL, Hurley JK, Hazzard JT, Tollin G, Rajagopalan KV, Enemark JH (2003) Biochemistry 42:12235–12242Google Scholar
  76. 76.
    Emesh S, Rapson TD, Rajapakshe SA, Kappler U, Bernhardt PV, Tollin G, Enemark JH (2009) Biochemistry 48:2156–2163Google Scholar
  77. 77.
    McGrath AP, Laming EL, Casus Garcia GPM, Guss JM, Trewella J, Calmes B, Bernhardt PV, Hanson GR, Kappler U, Maher MJ (2015) eLife 4:e09066/1–26Google Scholar
  78. 78.
    Hsiao J-C, McGrath AP, Kielmann L, Kalimuthu P, Darain F, Bernhardt PV, Harmer J, Lee M, Meyers K, Maher MJ, Kappler U (2018) BBA-Bioenergetics 1859:19–27Google Scholar
  79. 79.
    Enroth C, Eger BT, Okamoto K, Nishino T, Nishino T, Pai EF (2000) Proc Natl Acad Sci U S A 97:10723–10728Google Scholar
  80. 80.
    Burt HM, Dutt YC (1989) J Cryst Growth 94:15–22Google Scholar
  81. 81.
    Pascual E, Addadi L, Andrés M, Sivera F (2015) Nat Rev Rheumatol 11:725–730Google Scholar
  82. 82.
    Williams JW, Bray RC (1981) Biochem J 195:753–760Google Scholar
  83. 83.
    Hawkes TR, George GN, Bray RC (1984) Biochem J 218:961–968Google Scholar
  84. 84.
    Dent CE, Philpot GR (1954) Lancet 266:182–185Google Scholar
  85. 85.
    Ichida K, Amaya Y, Nishino T, Hosoya T, Sakai O (1997) J Clin Invest 99:2391–2397Google Scholar
  86. 86.
    Bray RC (1975) In: Boyer PD (ed) The enzymes. Academic Press, New York, pp 299–419Google Scholar
  87. 87.
    Enroth C, Eger BT, Okamoto K, Nishino T, Nishino T, Pai EF (2000) Proc Natl Acad Sci U S A 97:10723–10728Google Scholar
  88. 88.
    Hille R (1996) Chem Rev 96:2757–2816Google Scholar
  89. 89.
    Kitamura S, Sugihara K, Ohta S (2006) Drug Metab Pharmacokinet 21:83–98Google Scholar
  90. 90.
    Self WT, Stadtman TC (2000) Proc Natl Acad Sci U S A 97:7208–7213Google Scholar
  91. 91.
    Wagener N, Pierik AJ, Ibdah A, Hille R, Dobbek H (2009) Proc Natl Acad Sci U S A 106:1055–11060Google Scholar
  92. 92.
    Cleere WF, Coughlan MP (1974) Biochem J 143:331–340Google Scholar
  93. 93.
    Kim JH, Ryan MG, Knaut H, Hille R (1996) J Biol Chem 271:6771–6780Google Scholar
  94. 94.
    Dobbek H, Gremer L, Kiefersauer R, Huber R, Meyer O (2002) Proc Natl Acad Sci U S A 99:15971–15976Google Scholar
  95. 95.
    Gnida M, Ferner R, Gremer L, Meyer O, Meyer-Klaucke W (2003) Biochemistry 42:222–230Google Scholar
  96. 96.
    Zhang B, Hemann CF, Hille R (2010) J Biol Chem 285:12571–12578Google Scholar
  97. 97.
    Gourlay C, Nielsen DJ, White JM, Knottenbelt SZ, Kirk ML, Young CG (2006) J Am Chem Soc 128:2164–2165Google Scholar
  98. 98.
    Zhang L, Johnson Nelson K, Rajagopalan KV, George GN (2008) Inorg Chem 47:1074–1078Google Scholar
  99. 99.
    Creevey NL, McEwan AG, Hanson GR, Bernhardt PV (2008) Biochemistry 47:3770–3776Google Scholar
  100. 100.
    Temple CA, George GN, Hilton J, George MJ, Prince RC, Barber MJ, Rajagopalan KV (2000) Biochemistry 39:4046–4052Google Scholar
  101. 101.
    George GN, Hilton J, Rajagopalan KV (1996) J Am Chem Soc 118:1113–1117Google Scholar
  102. 102.
    Schindelin H, Kisker C, Hilton J, Rajagppalan KV, Rees DC (1996) Science 272:1615–1621Google Scholar
  103. 103.
    Schneider F, Löwe J, Huber R, Schindelin H, Kisker C, Knäblein J (1996) J Mol Biol 263:53–69Google Scholar
  104. 104.
    McAlpine AS, McEwan AG, Shaw AL, Bailey S (1997) J Biol Inorg Chem 2:690–701Google Scholar
  105. 105.
    McAlpine AS, McEwan AG, Bailey SJ (1998) J Mol Biol 275:613–623Google Scholar
  106. 106.
    Baugh PE, Garner CD, Charnock JM, Collison D, Davies ES, McAlpine AS, Bailey S, Lane I, Hanson GR, McEwan AG (1997) J Biol Inorg Chem 2:634–643Google Scholar
  107. 107.
    George GN, Hilton J, Temple C, Prince RC, Rajagopalan KV (1999) J Am Chem Soc 121:1256–1266Google Scholar
  108. 108.
    Li HK, Temple C, Rajagopalan KV, Schindelin H (2000) J Am Chem Soc 122:7673–7680Google Scholar
  109. 109.
    Bray RC, Adams B, Smith AT, Bennett B, Bailey S (2000) Biochemistry 39:11258–11269Google Scholar
  110. 110.
    George GN, Nelson KJ, Harris HH, Doonan CJ, Rajagopalan KV (2007) Inorg Chem 46:3097–3104Google Scholar
  111. 111.
    Sparacino-Watkinsa C, Stolz JF, Basua P (2014) Chem Soc Rev 43:676–706Google Scholar
  112. 112.
    Coelho C, Romão MJ (2015) Protein Sci 24:1901–1911Google Scholar
  113. 113.
    Dias JM, Than ME, Humm A, Huber R, Bourenkov GP, Bartunik HD, Bursakov S, Calvete J, Calderia J, Carneiro C, Moura JJG, Moura I, Romão MJ (1999) Structure 7:65–79Google Scholar
  114. 114.
    Cerqueira NM, Pakhira B, Sarkar S (2015) J Biol Inorg Chem 30:323–335Google Scholar
  115. 115.
    Rendon J, Biaso F, Ceccaldi P, Toci R, Seduk F, Magalon A, Guigliarelli B, Grimaldi S (2017) Inorg Chem 56:4422–4434Google Scholar
  116. 116.
    Ceccaldi P, Rendon J, Léger C, Toci R, Guigliarelli B, Magalon A, Grimaldi S, Fourmond V (2015) Biochim Biophys Acta 1847:1055–1063Google Scholar
  117. 117.
    George GN, Bray RC, Morpeth FF, Boxer DH (1985) Biochem J 227:925–931Google Scholar
  118. 118.
    Maher MJ, Santini J, Pickering IJ, Prince RC, Macy JM, George GN (2004) Inorg Chem 43:402–404Google Scholar
  119. 119.
    Kloer DP, Hagel C, Heider J, Schulz GE (2006) Structure 14:1377–1388Google Scholar
  120. 120.
    Heider J, Szaleniec M, Sünwoldt K, Boll M (2016) J Mol Microbiol Biotechnol 26:45–62Google Scholar
  121. 121.
    Szaleniec M, Hagel C, Menke M, Nowak P, Witko M, Heider J (2007) Biochemistry 46:7637–7646Google Scholar
  122. 122.
    Szaleniec M, Borowski T, Schühle K, Nowak P, Witko M, Heider J (2010) J Am Chem Soc 132:6014–6024Google Scholar
  123. 123.
    Szaleniec M, Dudzik A, Kozik B, Borowski T, Heider J, Witko M (2014) J Inorg Biochem 139:9–20Google Scholar
  124. 124.
    Ellis PJ, Conrads T, Hille R, Kuhn P (2001) Structure 9:125–132Google Scholar
  125. 125.
    Warelow TP, Oke M, Schoepp-Cothenet B, Dahl JU, Bruselat N, Sivalingam GN, Leimkühler S, Thalassinos K, Kappler U, Naismith JH, Santini JM (2013) PLoS One 8:e72535Google Scholar
  126. 126.
    Conrads T, Hemann C, George GN, Pickering IJ, Prince RC, Hille R (2002) J Am Chem Soc 124:11276–11277Google Scholar
  127. 127.
    Hoke KR, Cobb N, Armstrong FA, Hille R (2004) Biochemistry 43:1667–1674Google Scholar
  128. 128.
    Mukhopadhyay R, Rosen BP (2002) Environ Health Perspect 110:745–748Google Scholar
  129. 129.
    Radabaugh TR, Aposhian HV (2000) Chem Res Toxicol 13:26–30Google Scholar
  130. 130.
    Glasser NR, Oyala PH, Osborne TH, Santini JM, Newman DK (2018) Proc Natl Acad Sci U S A 115:E8614–E8623Google Scholar
  131. 131.
    Grimaldi S, Schoepp-Cothenet B, Ceccaldi P, Guigliarelli B, Magalon A (2013) Biochim Biophys Acta Bioenerg 1827:1048–1085Google Scholar
  132. 132.
    Boyington JC, Gladyshev VN, Khangulov SV, Stadtman TC, Sun PD (1997) Science 275:1305–1308Google Scholar
  133. 133.
    Raaijmakers H, Macieira S, Dias JM, Teixeira S, Bursakov S, Huber R, Moura JJ, Moura I, Romão MJ (2002) Structure 10:1261–1273Google Scholar
  134. 134.
    Raaijmakers H, Romão MJ (2006) J Biol Inorg Chem 11:849–854Google Scholar
  135. 135.
    Mota CS, Rivas MG, Brondino CD, Moura I, Moura JJ, Gonzalez PJ, Cerqueira NM (2011) J Biol Inorg Chem 16:1255–1268Google Scholar
  136. 136.
    Robinson WE, Bassegoda A, Reisner E, Hirst J (2017) J Am Chem Soc 139:9927–9936Google Scholar
  137. 137.
    George GN, Colangelo CM, Dong J, Scott RA, Khangulov SV, Gladyshev VN, Stadtman TC (1998) J Am Chem Soc 120:1267–1273Google Scholar
  138. 138.
    George GN, Costa C, Moura JJG, Moura I (1999) J Am Chem Soc 121:2625–2626Google Scholar
  139. 139.
    Khangulov SV, Gladyshev VN, Dismukes CG, Stadtman TC (1998) Biochemistry 37:3518–3528Google Scholar
  140. 140.
    Berg IA, Kockelkorn D, Ramos-Vera WH, Say RF, Zarzycki J, Hügler M, Alber BE, Fuchs G (2010) Nat Rev Microbiol 8:447–459Google Scholar
  141. 141.
    Pancost RD, Sinninghe Damsté JS, de Lint S, van der Maarel MJEC, Gottschal JC (2000) Appl Environ Microbiol 66:1126–1132Google Scholar
  142. 142.
    Schwörer B, Thauer RK (1991) Arch Microbiol 155:459–465Google Scholar
  143. 143.
    Ponomarev DA, Shevchenko SM (2007) J Chem Educ 84:1725–1726Google Scholar
  144. 144.
    Seiffert GB, Ullmann GM, Messerschmidt A, Schink B, Kroneck PMH, Einsle O (2007) Proc Natl Acad Sci U S A 104:3073–3077Google Scholar
  145. 145.
    Liao R-Z, Yu J-G, Himo F (2010) Proc Natl Acad Sci U S A 107:22523–22527Google Scholar
  146. 146.
    Messerschmidt A, Niessen H, Abt D, Einsle O, Schink B, Kroneck PMH (2004) Proc Natl Acad Sci U S A 101:11571–11576Google Scholar
  147. 147.
    Weinert T, Huwiler SG, Kung JW, Weidenweber S, Hellwig P, Stärk HJ, Biskup T, Weber S, Cotelesage JJ, George GN, Ermler U, Boll M (2015) Nat Chem Biol:586–591Google Scholar
  148. 148.
    Boll M, Fuchs G (1995) Eur J Biochem:921–933Google Scholar
  149. 149.
    Culka M, Huwiler SG, Boll M, Ullmann GM (2017) J Am Chem Soc 139:14488–14500Google Scholar
  150. 150.
    Holm RH, Solomon EI, Majumdar A, Tenderholt A (2011) Coord Chem Rev 255:993–1015Google Scholar
  151. 151.
    Wagner T, Ermler U, Shima S (2016) Science 354:114–117Google Scholar
  152. 152.
    Niks D, Hille R (2018) Protein Sci.  https://doi.org/10.1002/pro.3498Google Scholar
  153. 153.
    Johnson JL, Rajagopalan KV (1976) J Biol Chem 251:5505–5511Google Scholar
  154. 154.
    Stewart LJ, Bailey S, Bennett B, Charnock JM, Garner CD, McAlpine AS (2000) J Mol Biol 299:593–600Google Scholar
  155. 155.
    Garner CD, Stewart LJ (2002) Met Ions Biol Syst 39:699–726Google Scholar
  156. 156.
    Schoepp-Cothenet B, van Lis R, Philippot P, Magalon A, Russell MJ, Nitschke W (2012) Sci Rep 2:263/1–263/5Google Scholar
  157. 157.
    Williams RJP, Fraústo da Silva JJR (2002) Biochem Biophys Res Commun 292:293–299Google Scholar
  158. 158.
    Stetter KO (2006) Philos Trans R Soc B 361:1837–1843Google Scholar
  159. 159.
    Kletzin A, Adams MWW (1996) FEMS Microbiol Rev 18:5–63Google Scholar
  160. 160.
    Bruland KW, Lohan MC (2006) In: Elderfield H (ed) The oceans and marine geochemistry. Elsevier, North Holland, pp 23–47Google Scholar
  161. 161.
    Licht S (1988) J Electrochem Soc 135:2971–2975Google Scholar
  162. 162.
    Romão MJ, Coelho C, Santos-Silva T, Foti A, Terao M, Garattini E, Leimkühler S (2017) Curr Opin Chem Biol 37:39–47Google Scholar
  163. 163.
    Bassegoda A, Madden C, Wakerley DW, Reisner E, Hirst J (2014) J Am Chem Soc 136:15473–15476Google Scholar
  164. 164.
    Wedepohl KH (1995) Geochim Cosmochim Acta 59:1217–1232Google Scholar
  165. 165.
    Reich HJ, Hondal RJ (2016) ACS Chem Biol 11:821–841Google Scholar
  166. 166.
    Dolgova NV, Nehzati S, Choudhury S, Regnier N, Crawford AM, Ponomarenko O, George GN, Pickering IJ (2018) Biochim Biophys Acta 1862:2383–2392Google Scholar
  167. 167.
    Zhang L, Johnson Nelson K, Rajagopalan KV, George GN (2008) Inorg Chem 47:1074–1078Google Scholar
  168. 168.
    Nitschke W, Russell MJ (2009) J Mol Evol 69:484–496Google Scholar
  169. 169.
    Nitschke W, Russell MJ (2011) Bioessays 34:106–109Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Andrew M. Crawford
    • 1
  • Julien J. H. Cotelesage
    • 1
  • Roger C. Prince
    • 2
  • Graham N. George
    • 1
    Email author
  1. 1.Molecular and Environmental Sciences Group, Department of Geological SciencesUniversity of SaskatchewanSaskatoonCanada
  2. 2.Stonybrook ApiaryPittstownUSA

Personalised recommendations