Advertisement

Mechanism of Ni,Fe-Containing Carbon Monoxide Dehydrogenases

  • Holger DobbekEmail author
Chapter
Part of the Structure and Bonding book series (STRUCTURE, volume 179)

Abstract

Carbon monoxide dehydrogenases catalyze the reversible oxidation of CO with water to CO2, two protons and two electrons. Phylogenetically diverse bacteria and archaea living under anaerobic conditions employ different classes of Ni,Fe-containing carbon monoxide dehydrogenases to use CO as an energy source or to contribute in converting CO2 to acetyl-CoA.

The active site of carbon monoxide dehydrogenases contains a unique [NiFe4S4]-cluster, the only known example in nature where Ni is integrated into a heterocubane structure. The Ni ion serves as the catalytic nucleophilic center for activating CO and CO2, in which it is supported by an electrophilic Fe ion placed in exo to the heterocubane cluster.

This review gives an overview on current ideas how Ni,Fe-containing carbon monoxide dehydrogenases reversibly oxidize CO to CO2, with a focus on recent structural studies of the enzymes.

Keywords

Carbon dioxide Carbon monoxide Iron-sulfur cluster Nickel Small molecule activation 

Notes

Acknowledgments

I would like to acknowledge all past and present co-workers and collaborators working on CODHs. Research has been funded by the DFG through DO 785/6 and the excellence initiative through the cluster “Unifying Concepts in Catalysis – UniCat” (EXC 314).

References

  1. 1.
    Appel AM, Bercaw JE, Bocarsly AB, Dobbek H, DuBois DL, Dupuis M, Ferry JG, Fujita E, Hille R, Kenis PJA, Kerfeld CA, Morris RH, Peden CHF, Portis AR, Ragsdale SW, Rauchfuss TB, Reek JNH, Seefeldt LC, Thauer RK, Waldrop GL (2013) Frontiers, opportunities, and challenges in biochemical and chemical catalysis of CO2 fixation. Chem Rev 113(8):6621–6658.  https://doi.org/10.1021/Cr300463y CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Jeoung JH, Fesseler J, Goetzl S, Dobbek H (2014) Carbon monoxide. Toxic gas and fuel for anaerobes and aerobes: carbon monoxide dehydrogenases. Met Ions Life Sci 14:37–69.  https://doi.org/10.1007/978-94-017-9269-1_3 CrossRefPubMedGoogle Scholar
  3. 3.
    Hille R, Dingwall S, Wilcoxen J (2015) The aerobic CO dehydrogenase from Oligotropha carboxidovorans. J Biol Inorg Chem 20(2):243–251.  https://doi.org/10.1007/s00775-014-1188-4 CrossRefPubMedGoogle Scholar
  4. 4.
    Ragsdale SW (2008) Enzymology of the Wood-Ljungdahl pathway of acetogenesis. Ann N Y Acad Sci 1125:129–136.  https://doi.org/10.1196/Annals.1419.015 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Ragsdale SW, Pierce E (2008) Acetogenesis and the Wood-Ljungdahl pathway of CO(2) fixation. Biochim Biophys Acta 1784(12):1873–1898.  https://doi.org/10.1016/j.bbapap.2008.08.012 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Ragsdale SW (2004) Life with carbon monoxide. Crit Rev Biochem Mol Biol 39(3):165–195CrossRefGoogle Scholar
  7. 7.
    Ensign SA (1995) Reactivity of carbon-monoxide dehydrogenase from Rhodospirillum rubrum with carbon-dioxide, carbonyl sulfide, and carbon-disulfide. Biochemistry 34(16):5372–5381CrossRefGoogle Scholar
  8. 8.
    Wang VC, Ragsdale SW, Armstrong FA (2014) Investigations of the efficient electrocatalytic interconversions of carbon dioxide and carbon monoxide by nickel-containing carbon monoxide dehydrogenases. Met Ions Life Sci 14:71–97.  https://doi.org/10.1007/978-94-017-9269-1_4 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Dobbek H (2017) CO dehydrogenase and acetyl-CoA synthase assembly. Encyclopedia of inorganic and bioinorganic chemistry. Wiley, Hoboken.  https://doi.org/10.1002/9781119951438.eibc2473 CrossRefGoogle Scholar
  10. 10.
    Merrouch M, Benvenuti M, Lorenzi M, Leger C, Fourmond V, Dementin S (2018) Maturation of the [Ni-4Fe-4S] active site of carbon monoxide dehydrogenases. J Biol Inorg Chem 23(4):613–620.  https://doi.org/10.1007/s00775-018-1541-0 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Khalil MAK, Rasmussen RA (1990) The global cycle of carbon-monoxide – trends and mass balance. Chemosphere 20(1–2):227–242.  https://doi.org/10.1016/0045-6535(90)90098-E CrossRefGoogle Scholar
  12. 12.
    Khalil MAK, Pinto JP, Shearer MJ (1999) Atmospheric carbon monoxide. Chemosphere Global Change Sci 1:xi–xiiiGoogle Scholar
  13. 13.
    Crabtree RH (2009) The organometallic chemistry of the transition metals5th edn. Wiley, HobokenGoogle Scholar
  14. 14.
    Newsome DS (1980) The water-gas shift reaction. Catal Rev Sci Eng 21(2):275–318.  https://doi.org/10.1080/03602458008067535 CrossRefGoogle Scholar
  15. 15.
    Song J, Klein EL, Neese F, Ye S (2014) The mechanism of homogeneous CO2 reduction by Ni(cyclam): product selectivity, concerted proton-electron transfer and C-O bond cleavage. Inorg Chem 53(14):7500–7507.  https://doi.org/10.1021/ic500829p CrossRefPubMedGoogle Scholar
  16. 16.
    Lindahl PA, Chang B (2001) The evolution of acetyl-CoA synthase. Orig Life Evol Biosph 31(4–5):403–434CrossRefGoogle Scholar
  17. 17.
    Adam PS, Borrel G, Gribaldo S (2018) Evolutionary history of carbon monoxide dehydrogenase/acetyl-CoA synthase, one of the oldest enzymatic complexes. Proc Natl Acad Sci U S A 115(6):E1166–E1173.  https://doi.org/10.1073/pnas.1716667115 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Fox JD, He YP, Shelver D, Roberts GP, Ludden PW (1996) Characterization of the region encoding the CO-induced hydrogenase of Rhodospirillum rubrum. J Bacteriol 178(21):6200–6208CrossRefGoogle Scholar
  19. 19.
    Soboh B, Linder D, Hedderich R (2002) Purification and catalytic properties of a CO-oxidizing: H2-evolving enzyme complex from Carboxydothermus hydrogenoformans. Eur J Biochem 269(22):5712–5721CrossRefGoogle Scholar
  20. 20.
    Wu M, Ren Q, Durkin AS, Daugherty SC, Brinkac LM, Dodson RJ, Madupu R, Sullivan SA, Kolonay JF, Haft DH, Nelson WC, Tallon LJ, Jones KM, Ulrich LE, Gonzalez JM, Zhulin IB, Robb FT, Eisen JA (2005) Life in hot carbon monoxide: the complete genome sequence of Carboxydothermus hydrogenoformans Z-2901. PLoS Genet 1(5):e65.  https://doi.org/10.1371/journal.pgen.0010065 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Svetlitchnyi V, Peschel C, Acker G, Meyer O (2001) Two membrane-associated NiFeS-carbon monoxide dehydrogenases from the anaerobic carbon-monoxide-utilizing eubacterium Carboxydothermus hydrogenoformans. J Bacteriol 183(17):5134–5144CrossRefGoogle Scholar
  22. 22.
    Svetlichny VA, Sokolova TG, Gerhardt M, Ringpfeil M, Kostrikina NA, Zavarzin GA (1991) Carboxydothermus hydrogenoformans gen-nov, sp-nov, a CO-utilizing thermophilic anaerobic bacterium from hydrothermal environments of Kunashir-Island. Syst Appl Microbiol 14(3):254–260CrossRefGoogle Scholar
  23. 23.
    Henstra AM, Stams AJ (2011) Deep conversion of carbon monoxide to hydrogen and formation of acetate by the anaerobic thermophile Carboxydothermus hydrogenoformans. Int J Microbiol 2011:641582.  https://doi.org/10.1155/2011/641582 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Maynard EL, Lindahl PA (1999) Evidence of a molecular tunnel connecting the active sites for CO2 reduction and acetyl-CoA synthesis in acetyl-CoA synthase from Clostridium thermoaceticum. J Am Chem Soc 121(39):9221–9222.  https://doi.org/10.1021/Ja992120g CrossRefGoogle Scholar
  25. 25.
    Seravalli J, Ragsdale SW (2000) Channeling of carbon monoxide during anaerobic carbon dioxide fixation. Biochemistry 39(6):1274–1277.  https://doi.org/10.1021/Bi991812e CrossRefPubMedGoogle Scholar
  26. 26.
    Grahame DA, DeMoll E (1996) Partial reactions catalyzed by protein components of the acetyl-CoA decarbonylase synthase enzyme complex from Methanosarcina barkeri. J Biol Chem 271(14):8352–8358CrossRefGoogle Scholar
  27. 27.
    Dobbek H, Svetlitchnyi V, Gremer L, Huber R, Meyer O (2001) Crystal structure of a carbon monoxide dehydrogenase reveals a [Ni-4Fe-5S] cluster. Science 293(5533):1281–1285.  https://doi.org/10.1126/science.1061500 CrossRefPubMedGoogle Scholar
  28. 28.
    Drennan CL, Heo J, Sintchak MD, Schreiter E, Ludden PW (2001) Life on carbon monoxide: X-ray structure of Rhodospirillum rubrum Ni-Fe-S carbon monoxide dehydrogenase. Proc Natl Acad Sci U S A 98(21):11973–11978.  https://doi.org/10.1073/pnas.211429998 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Domnik L, Merrouch M, Goetzl S, Jeoung JH, Leger C, Dementin S, Fourmond V, Dobbek H (2017) CODH-IV: a high-efficiency CO-scavenging CO dehydrogenase with resistance to O2. Angew Chem Int Ed Engl 56(48):15466–15469.  https://doi.org/10.1002/anie.201709261 CrossRefPubMedGoogle Scholar
  30. 30.
    Doukov TI, Iverson TM, Seravalli J, Ragsdale SW, Drennan CL (2002) A Ni-Fe-Cu center in a bifunctional carbon monoxide dehydrogenase/acetyl-CoA synthase. Science 298(5593):567–572.  https://doi.org/10.1126/Science.1075843 CrossRefPubMedGoogle Scholar
  31. 31.
    Darnault C, Volbeda A, Kim EJ, Legrand P, Vernede X, Lindahl PA, Fontecilla-Camps JC (2003) Ni-Zn-[Fe-4-S-4] and Ni-Ni-[Fe-4-S-4] clusters in closed and open subunits of acetyl-CoA synthase/carbon monoxide dehydrogenase. Nat Struct Biol 10(4):271–279.  https://doi.org/10.1038/Nsb912 CrossRefPubMedGoogle Scholar
  32. 32.
    Gong W, Hao B, Wei Z, Ferguson DJ Jr, Tallant T, Krzycki JA, Chan MK (2008) Structure of the alpha2epsilon2 Ni-dependent CO dehydrogenase component of the Methanosarcina barkeri acetyl-CoA decarbonylase/synthase complex. Proc Natl Acad Sci U S A 105(28):9558–9563.  https://doi.org/10.1073/pnas.0800415105 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Doukov TI, Blasiak LC, Seravalli J, Ragsdale SW, Drennan CL (2008) Xenon in and at the end of the tunnel of bifunctional carbon monoxide dehydrogenase/acetyl-CoA synthase. Biochemistry 47(11):3474–3483.  https://doi.org/10.1021/Bi702386t CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Jeoung JH, Dobbek H (2012) n-Butyl isocyanide oxidation at the [NiFe4S4OH(x)] cluster of CO dehydrogenase. J Biol Inorg Chem 17(2):167–173.  https://doi.org/10.1007/s00775-011-0839-y CrossRefPubMedGoogle Scholar
  35. 35.
    Wang PH, Bruschi M, De Gioia L, Blumberger J (2013) Uncovering a dynamically formed substrate access tunnel in carbon monoxide dehydrogenase/acetyl-CoA synthase. J Am Chem Soc 135(25):9493–9502.  https://doi.org/10.1021/ja403110s CrossRefPubMedGoogle Scholar
  36. 36.
    Lindahl PA, Ragsdale SW, Munck E (1990) Mossbauer study of CO dehydrogenase from Clostridium thermoaceticum. J Biol Chem 265(7):3880–3888PubMedGoogle Scholar
  37. 37.
    DeRose VJ, Telser J, Anderson ME, Lindahl PA, Hoffman BM (1998) A multinuclear ENDOR study of the C-cluster in CO dehydrogenase from Clostridium thermoaceticum: evidence for HxO and histidine coordination to the [Fe4S4] center. J Am Chem Soc 120(34):8767–8776CrossRefGoogle Scholar
  38. 38.
    Jeoung JH, Dobbek H (2007) Carbon dioxide activation at the Ni,Fe-cluster of anaerobic carbon monoxide dehydrogenase. Science 318(5855):1461–1464.  https://doi.org/10.1126/science.1148481 CrossRefGoogle Scholar
  39. 39.
    Lindahl PA (2002) The Ni-containing carbon monoxide dehydrogenase family: light at the end of the tunnel? Biochemistry 41(7):2097–2105CrossRefGoogle Scholar
  40. 40.
    Lindahl PA, Munck E, Ragsdale SW (1990) CO dehydrogenase from Clostridium thermoaceticum – EPR and electrochemical studies in CO2 and argon atmospheres. J Biol Chem 265(7):3873–3879PubMedGoogle Scholar
  41. 41.
    Kumar M, Lu WP, Liu L, Ragsdale SW (1993) Kinetic evidence that carbon monoxide dehydrogenase catalyzes the oxidation of carbon monoxide and the synthesis of acetyl-CoA at separate metal centers. J Am Chem Soc 115(24):11646–11647.  https://doi.org/10.1021/ja00077a093 CrossRefGoogle Scholar
  42. 42.
    Hu ZG, Spangler NJ, Anderson ME, Xia JQ, Ludden PW, Lindahl PA, Munch E (1996) Nature of the C-cluster in Ni-containing carbon monoxide dehydrogenases. J Am Chem Soc 118(4):830–845.  https://doi.org/10.1021/Ja9528386 CrossRefGoogle Scholar
  43. 43.
    Anderson ME, Lindahl PA (1996) Spectroscopic states of the CO oxidation/CO2 reduction active site of carbon monoxide dehydrogenase and mechanistic implications. Biochemistry 35(25):8371–8380.  https://doi.org/10.1021/bi952902w CrossRefPubMedGoogle Scholar
  44. 44.
    Amara P, Mouesca JM, Volbeda A, Fontecilla-Camps JC (2011) Carbon monoxide dehydrogenase reaction mechanism: a likely case of abnormal CO2 insertion to a Ni-H(−) bond. Inorg Chem 50(5):1868–1878.  https://doi.org/10.1021/ic102304m CrossRefPubMedGoogle Scholar
  45. 45.
    Lindahl PA (2012) Metal-metal bonds in biology. J Inorg Biochem 106(1):172–178.  https://doi.org/10.1016/j.jinorgbio.2011.08.012 CrossRefPubMedGoogle Scholar
  46. 46.
    Seravalli J, Kumar M, Lu WP, Ragsdale SW (1995) Mechanism of CO oxidation by carbon monoxide dehydrogenase from Clostridium thermoaceticum and its inhibition by anions. Biochemistry 34(24):7879–7888CrossRefGoogle Scholar
  47. 47.
    Möller-Zinkhan D, Thauer RK (1990) Anaerobic lactate oxidation to 3 CO2 by Archaeoglobus fulgidus via the carbon monoxide dehydrogenase pathway: demonstration of the acetyl-CoA carbon-carbon cleavage reaction in cell extracts. Arch Microbiol 153(3):215–218.  https://doi.org/10.1007/BF00249070 CrossRefGoogle Scholar
  48. 48.
    Seravalli J, Ragsdale SW (2008) 13C NMR characterization of an exchange reaction between CO and CO2 catalyzed by carbon monoxide dehydrogenase. Biochemistry 47(26):6770–6781CrossRefGoogle Scholar
  49. 49.
    Sahoo D, Yoo C, Lee Y (2018) Direct CO2 addition to a Ni(0)-CO species allows the selective generation of a nickel(II) carboxylate with expulsion of CO. J Am Chem Soc.  https://doi.org/10.1021/jacs.7b11074 CrossRefGoogle Scholar
  50. 50.
    Heo J, Staples CR, Halbleib CM, Ludden PW (2000) Evidence for a ligand CO that is required for catalytic activity of CO dehydrogenase from Rhodospirillum rubrum. Biochemistry 39(27):7956–7963CrossRefGoogle Scholar
  51. 51.
    Fesseler J, Jeoung JH, Dobbek H (2015) How the [NiFe4S4] cluster of CO dehydrogenase activates CO2 and NCO(−). Angew Chem Int Ed Engl 54(29):8560–8564.  https://doi.org/10.1002/anie.201501778 CrossRefPubMedGoogle Scholar
  52. 52.
    Daniels L, Fuchs G, Thauer RK, Zeikus JG (1977) Carbon monoxide oxidation by methanogenic bacteria. J Bacteriol 132(1):118–126PubMedPubMedCentralGoogle Scholar
  53. 53.
    Ensign SA, Hyman MR, Ludden PW (1989) Nickel-specific, slow-binding inhibition of carbon monoxide dehydrogenase from Rhodospirillum rubrum by cyanide. Biochemistry 28(12):4973–4979.  https://doi.org/10.1021/bi00438a011 CrossRefPubMedGoogle Scholar
  54. 54.
    Ha SW, Korbas M, Klepsch M, Meyer-Klaucke W, Meyer O, Svetlitchnyi V (2007) Interaction of potassium cyanide with the [Ni-4Fe-5S] active site cluster of CO dehydrogenase from Carboxydothermus hydrogenoformans. J Biol Chem 282(14):10639–10646.  https://doi.org/10.1074/jbc.M610641200 CrossRefPubMedGoogle Scholar
  55. 55.
    Ciaccafava A, Tombolelli D, Domnik L, Fesseler J, Jeoung JH, Dobbek H, Mroginski MA, Zebger I, Hildebrandt P (2016) When the inhibitor tells more than the substrate: the cyanide-bound state of a carbon monoxide dehydrogenase. Chem Sci 7(5):3162–3171.  https://doi.org/10.1039/c5sc04554a CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Kung Y, Doukov TI, Seravalli J, Ragsdale SW, Drennan CL (2009) Crystallographic snapshots of cyanide- and water-bound C-clusters from bifunctional carbon monoxide dehydrogenase/acetyl-CoA synthase. Biochemistry 48(31):7432–7440.  https://doi.org/10.1021/bi900574h CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Jeoung JH, Dobbek H (2009) Structural basis of cyanide inhibition of Ni, Fe-containing carbon monoxide dehydrogenase. J Am Chem Soc 131(29):9922–9923.  https://doi.org/10.1021/ja9046476 CrossRefPubMedGoogle Scholar
  58. 58.
    Wang VC, Can M, Pierce E, Ragsdale SW, Armstrong FA (2013) A unified electrocatalytic description of the action of inhibitors of nickel carbon monoxide dehydrogenase. J Am Chem Soc 135(6):2198–2206.  https://doi.org/10.1021/ja308493k CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Wang VC, Islam ST, Can M, Ragsdale SW, Armstrong FA (2015) Investigations by protein film electrochemistry of alternative reactions of nickel-containing carbon monoxide dehydrogenase. J Phys Chem B 119(43):13690–13697.  https://doi.org/10.1021/acs.jpcb.5b03098 CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Ciaccafava A, Tombolelli D, Domnik L, Jeoung JH, Dobbek H, Mroginski MA, Zebger I, Hildebrandt P (2017) Carbon monoxide dehydrogenase reduces cyanate to cyanide. Angew Chem Int Ed Engl 56(26):7398–7401.  https://doi.org/10.1002/anie.201703225 CrossRefPubMedGoogle Scholar
  61. 61.
    Kumar M, Ragsdale SW (1995) N-butyl isocyanide – a structural and functional analog of carbon-monoxide for carbon-monoxide dehydrogenase from Clostridium-thermoaceticum. J Am Chem Soc 117(46):11604–11605.  https://doi.org/10.1021/Ja00151a036 CrossRefGoogle Scholar
  62. 62.
    Schrodinger LLC (2015) The PyMOL molecular graphics system, version 1.8Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of Life Sciences, Institute of Biology, Structural Biology/BiochemistryHumboldt-Universität zu BerlinBerlinGermany

Personalised recommendations