Advertisement

Recent Advances in the Chemical Synthesis of Nitrogenase Model Clusters

  • Kazuki TanifujiEmail author
  • Yasuhiro OhkiEmail author
Chapter
Part of the Structure and Bonding book series (STRUCTURE, volume 179)

Abstract

The only enzyme that is able to fix nitrogen, nitrogenase, reduces inert and abundant dinitrogen (N2) into bioavailable ammonia (NH3) under ambient conditions. The most investigated variant, the MoFe nitrogenase, uses three metallo-cofactors: the [Fe4S4] cluster in the electron-carrier component (Fe protein), as well as the [Fe8S7] (P-cluster) and [MoFe7S9C] (M-cluster) clusters in the catalytic component (MoFe protein). To better understand the physical properties of these cofactors, various methods have been developed for the chemical synthesis of model metal-sulfur clusters. In this review, we address the following topics with emphasis on recent developments: (a) the synthesis of all-ferrous [Fe4S4]0 clusters, which are isoelectronic to the super-reduced state of the cluster in the Fe protein, (b) the reproduction of the unique [Fe8S7] inorganic core of the P-cluster, and (c) the synthesis of metal-sulfur clusters relevant to the M-cluster and their variants that incorporate a light atom. Even though reproduction of the M-cluster remains elusive, some recent advances seem promising toward new classes of metal-sulfur clusters that satisfy the key structural features of the M-cluster.

Keywords

[Fe4S4] cluster M-cluster (FeMo cofactor) Nitrogenase P-cluster Synthetic models 

Notes

Acknowledgment

Y. O. thanks the Japanese Ministry of Education, Culture, Sports, Science and Technology (16H04116 and 18H04246) and the Takeda Science Foundation for funding.

References

  1. 1.
    Eady RR (1996) Structure−function relationships of alternative nitrogenases. Chem Rev 96:3013–3030.  https://doi.org/10.1021/cr950057h CrossRefPubMedGoogle Scholar
  2. 2.
    Danyal K, Dean DR, Hoffman BM, Seefeldt LC (2011) Electron transfer within nitrogenase: evidence for a deficit-spending mechanism. Biochemistry 50:9255–9263.  https://doi.org/10.1021/bi201003a CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Burgess BK, Lowe DJ (1996) Mechanism of molybdenum nitrogenase. Chem Rev 96:2983–3012.  https://doi.org/10.1021/cr950055x CrossRefGoogle Scholar
  4. 4.
    Hoffman BM, Lukoyanov D, Yang Z et al (2014) Mechanism of nitrogen fixation by nitrogenase: the next stage. Chem Rev 114:4041–4062.  https://doi.org/10.1021/cr400641x CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Peters JW, Stowell MHB, Soltis SM, Finnegan MG, Johnson MK, Rees DC (1997) Redox-dependent structural changes in the nitrogenase P-cluster. Biochemistry 36:1181–1187.  https://doi.org/10.1021/bi9626665 CrossRefPubMedGoogle Scholar
  6. 6.
    Spatzal T, Aksoyoglu M, Zhang L et al (2011) Evidence for interstitial carbon in nitrogenase FeMo cofactor. Science 334:940–940.  https://doi.org/10.1126/science.1214025 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Lancaster KM, Roemelt M, Ettenhuber P, Hu Y, Ribbe MW, Neese F, Bergmann U, DeBeer S (2011) X-ray emission spectroscopy evidences a central carbon in the nitrogenase iron-molybdenum cofactor. Science 334:974–977.  https://doi.org/10.5061/dryad.6m0f6870 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Seefeldt LC, Hoffman BM, Dean DR (2009) Mechanism of Mo-dependent nitrogenase. Annu Rev Biochem 78:701–722.  https://doi.org/10.1007/978-1-61779-194-9_2 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Spatzal T, Perez KA, Einsle O, Howard JB, Rees DC (2014) Ligand binding to the FeMo-cofactor: structures of CO-bound and reactivated nitrogenase. Science 345:1620–1623.  https://doi.org/10.1126/science.1256679 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Spatzal T, Perez KA, Howard JB, Rees DC (2015) Catalysis-dependent selenium incorporation and migration in the nitrogenase active site iron-molybdenum cofactor. elife 4:e11620.  https://doi.org/10.7554/eLife.11620 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Sippel D, Einsle O (2017) The structure of vanadium nitrogenase reveals an unusual bridging ligand. Nat Chem Biol 13:956–960.  https://doi.org/10.1038/nchembio.2428 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Sippel D, Rohde M, Netzer J, Trncik C, Gies J, Grunau K, Djurdjevic I, Decamps L, Andrade SLA, Einsle O (2018) A bound reaction intermediate sheds light on the mechanism of nitrogenase. Science 359:1484–1489.  https://doi.org/10.1126/science.aar2765 CrossRefPubMedGoogle Scholar
  13. 13.
    Benediktsson B, Thorhallsson AT, Bjornsson R (2018) QM/MM calculations reveal a bridging hydroxo group in a vanadium nitrogenase crystal structure. Chem Commun 54:7310–7313.  https://doi.org/10.1039/C8CC03793K CrossRefGoogle Scholar
  14. 14.
    Lee SC, Holm RH (2004) The clusters of nitrogenase: synthetic methodology in the construction of weak-field clusters. Chem Rev 104:1135–1157.  https://doi.org/10.1021/cr0206216 CrossRefPubMedGoogle Scholar
  15. 15.
    Ohki Y, Tatsumi K (2013) New synthetic routes to metal-sulfur clusters relevant to the nitrogenase metallo-clusters. Z Anorg Allg Chem 639:1340–1349.  https://doi.org/10.1002/zaac.201300081 CrossRefGoogle Scholar
  16. 16.
    Holm RH, Kennepohl P, Solomon EI (1996) Structural and functional aspects of metal sites in biology. Chem Rev 96:2239–2314.  https://doi.org/10.1021/cr9500390 CrossRefPubMedGoogle Scholar
  17. 17.
    Beinert H, Holm RH, Münck E (1997) Iron-sulfur clusters: nature’s modular, multipurpose structures. Science 277:653–659.  https://doi.org/10.1126/science.277.5326.653 CrossRefPubMedGoogle Scholar
  18. 18.
    Beinert H (2000) Iron-sulfur proteins: ancient structures, still full of surprises. J Biol Inorg Chem 5:2–15.  https://doi.org/10.1007/s007750050002 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Johnson DC, Dean DR, Smith AD, Johnson MK (2005) Structure, function, and formation of biological iron-sulfur clusters. Annu Rev Biochem 74:247–281.  https://doi.org/10.1146/annurev.biochem.74.082803.133518 CrossRefPubMedGoogle Scholar
  20. 20.
    Jasniewski AJ, Sickerman NS, Hu Y, Ribbe MW (2018) The Fe protein: an unsung hero of nitrogenase. Inorganics 6:25.  https://doi.org/10.3390/inorganics6010025 CrossRefGoogle Scholar
  21. 21.
    Watt GD, Reddy KRN (1994) Formation of an all ferrous Fe4S4 cluster in the iron protein component of Azotobacter vinelandii nitrogenase. J Inorg Biochem 53:281–294.  https://doi.org/10.1016/0162-0134(94)85115-8 CrossRefGoogle Scholar
  22. 22.
    Angove HC, Yoo SJ, Burgess BK, Münck E (1997) Mössbauer and EPR evidence for an all-ferrous Fe4S4 cluster with S = 4 in the Fe protein of nitrogenase. J Am Chem Soc 119:8730–8731.  https://doi.org/10.1021/ja9712837 CrossRefGoogle Scholar
  23. 23.
    Rebelein JG, Stiebritz MT, Lee CC, Hu Y (2016) Activation and reduction of carbon dioxide by nitrogenase iron proteins. Nat Chem Biol 13:147–149.  https://doi.org/10.1038/nchembio.2245 CrossRefPubMedGoogle Scholar
  24. 24.
    Stiebritz MT, Hiller CJ, Sickerman NS, Lee CC, Tanifuji K, Ohki Y, Hu Y (2018) Ambient conversion of CO2 to hydrocarbons by biogenic and synthetic [Fe4S4] clusters. Nat Catal 1:444–451.  https://doi.org/10.1038/s41929-018-0079-4 CrossRefGoogle Scholar
  25. 25.
    Herskovitz T, Averill BA, Holm RH, Ibers JA, Phillips WD, Weiher JF (1972) Structure and properties of a synthetic analogue of bacterial iron-sulfur proteins. Proc Natl Acad Sci U S A 69:2437–2441.  https://doi.org/10.1073/pnas.69.9.2437 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Rao PV, Holm RH (2004) Synthetic analogues of the active sites of iron − sulfur proteins. Chem Rev 104:527–560.  https://doi.org/10.1021/cr020615 CrossRefGoogle Scholar
  27. 27.
    Tan LL, Holm RH, Lee SC (2013) Structural analysis of cubane-type iron clusters. Polyhedron 58:206–217.  https://doi.org/10.1016/j.poly.2013.02.031 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Holm RH, Lo W (2016) Structural conversions of synthetic and protein-bound iron − sulfur clusters. Chem Rev 116:13685–13713.  https://doi.org/10.1021/acs.chemrev.6b00276 CrossRefPubMedGoogle Scholar
  29. 29.
    Ohta S, Ohki Y (2017) Impact of ligands and media on the structure and properties of biological and biomimetic iron-sulfur clusters. Coord Chem Rev 338:207–225.  https://doi.org/10.1016/j.ccr.2017.02.018 CrossRefGoogle Scholar
  30. 30.
    Georgiadis MM, Komiya H, Chakrabarti P et al (1992) Crystallographic structure of the nitrogenase iron protein from Azotobacter vinelandii. Science 257:1653–1659.  https://doi.org/10.1126/science.1529353 CrossRefPubMedGoogle Scholar
  31. 31.
    DePamphilis BV, Averill BA, Herskovitz T, Que L Jr, Holm RH (1974) Synthetic analogs of the active sites of iron-sulfur proteins. VI. Spectral and redox characteristics of the tetranuclear clusters [Fe4S4(SR)4]2−. J Am Chem Soc 96:4159–4167.  https://doi.org/10.1021/ja00820a018 CrossRefPubMedGoogle Scholar
  32. 32.
    Cambray J, Lane RW, Wedd AG, Johnson RW, Holm RH (1977) Chemical and electrochemical interrelationships of the 1-Fe, 2-Fe, and 4-Fe analogues of the active sites of iron-sulfur proteins. Inorg Chem 16:2565–2571.  https://doi.org/10.1021/ic50176a030 CrossRefGoogle Scholar
  33. 33.
    Zhou C, Raebiger JW, Segal BM, Holm RH (2000) The influence of net charge on the redox potentials of Fe4S4 cubane-type clusters in aprotic solvents. Inorg Chim Acta 300–302:892–902.  https://doi.org/10.1016/S0020-1693(99)00593-9 CrossRefGoogle Scholar
  34. 34.
    Crabtree RH (2014) The organometallic chemistry of the transition metals, 6th edn. Wiley, HobokenGoogle Scholar
  35. 35.
    Goh C, Segal BM, Huang J et al (1996) Polycubane clusters: synthesis of [Fe4S4(PR3)4]1+,0 (R = But, Cy, Pri) and [Fe4S4]0 core aggregation upon loss of phosphine. J Am Chem Soc 118:11844–11853.  https://doi.org/10.1021/ja9620200 CrossRefGoogle Scholar
  36. 36.
    Zhou H-C, Holm RH (2003) Synthesis and reactions of cubane-type iron-sulfur-phosphine clusters, including soluble clusters of nuclearities 8 and 16. Inorg Chem 42:11–21.  https://doi.org/10.1021/ic020464t CrossRefPubMedGoogle Scholar
  37. 37.
    Deng L, Majumdar A, Lo W, Holm RH (2010) Stabilization of 3:1 site-differentiated cubane-type clusters in the [Fe4S4]1+ core oxidation state by tertiary phosphine ligation: synthesis, core structural diversity, and S = 1/2 ground states. Inorg Chem 49:11118–11126.  https://doi.org/10.1021/ic101702b CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Scott TA, Berlinguette CP, Holm RH, Zhou H-C (2005) Initial synthesis and structure of an all-ferrous analogue of the fully reduced [Fe4S4]0 cluster of the nitrogenase iron protein. Proc Natl Acad Sci U S A 102:9741–9744.  https://doi.org/10.1073/pnas.0504258102 CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Ingleson MJ, Layfield RA (2012) N-heterocyclic carbene chemistry of iron: fundamentals and applications. Chem Commun 48:3579–3589.  https://doi.org/10.1039/c2cc18021a CrossRefGoogle Scholar
  40. 40.
    Deng L, Holm RH (2008) Stabilization of fully reduced iron-sulfur clusters by carbene ligation: the [FenSn]0 oxidation levels (n = 4, 8). J Am Chem Soc 130:9878–9886.  https://doi.org/10.1021/ja802111w CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Scott TA, Zhou H-C (2004) The first all-cyanide Fe4S4 cluster: [Fe4S4(CN)4]3−. Angew Chem Int Ed 43:5628–5631.  https://doi.org/10.1002/anie.200460879 CrossRefGoogle Scholar
  42. 42.
    Strop P, Takahara PM, Chiu HJ, Angove HC, Burgess BK, Rees DC (2001) Crystal structure of the all-ferrous [4Fe-4S]0 form of the nitrogenase iron protein from Azotobacter vinelandii. Biochemistry 40:651–656.  https://doi.org/10.1021/bi0016467 CrossRefPubMedGoogle Scholar
  43. 43.
    Musgrave KB, Angove HC, Burgess BK, Hedman B, Hodgson KO (1998) All-ferrous titanium (III) citrate reduced Fe protein of nitrogenase: an XAS study of electronic and metrical structure. J Am Chem Soc 120:5325–5326CrossRefGoogle Scholar
  44. 44.
    Torres RA, Lovell T, Noodleman L, Case DA (2003) Density functional and reduction potential calculations of Fe4S4 clusters. J Am Chem Soc 125:1923–1936.  https://doi.org/10.1021/ja0211104 CrossRefPubMedGoogle Scholar
  45. 45.
    Chakrabarti M, Deng L, Holm RH, Münck E, Bominaar EL (2009) Mössbauer, Electron paramagnetic resonance, and theoretical study of a carbene-based all-ferrous Fe4S4 cluster: electronic origin and structural identification of the unique spectroscopic site. Inorg Chem 48:2735–2747CrossRefGoogle Scholar
  46. 46.
    Tittsworth RC, Hales BJ (1993) Detection of EPR signals assigned to the 1-equiv-oxidized P-clusters of the nitrogenase MoFe-protein from Azotobacter vinelandii. J Am Chem Soc 115:9763–9767.  https://doi.org/10.1021/ja00074a050 CrossRefGoogle Scholar
  47. 47.
    Chan JM, Christiansen J, Dean DR, Seefeldt LC (1999) Spectroscopic evidence for changes in the redox state of the nitrogenase P-cluster during turnover. Biochemistry 38:5779–5785.  https://doi.org/10.1021/bi982866b CrossRefPubMedGoogle Scholar
  48. 48.
    Keable SM, Zadvornyy OA, Johnson LE, Ginovska B, Rasmussen AJ, Danyal K, Eilers BJ, Prussia GA, LeVan AX, Raugei S, Seefeldt LC, Peters JW (2018) Structural characterization of the P1+ intermediate state of the P-cluster of nitrogenase. J Biol Chem 293:9629–96354.  https://doi.org/10.1074/jbc.RA118.002435 CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Kim J, Rees DC (1992) Structural models for the metal centers in the nitrogenase molybdenum-iron protein. Science 257:1677–1682CrossRefGoogle Scholar
  50. 50.
    Jeoung J-H, Dobbek H (2018) ATP-dependent substrate reduction at an [Fe8S9] double-cubane cluster. Proc Natl Acad Sci U S A 115:2994–2999.  https://doi.org/10.1073/pnas.1720489115 CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Kurtz DM Jr, McMillan RS, Burgess BK, Mortenson LE, Holm RH (1979) Identification of iron-sulfur centers in the iron-molybdenum proteins of nitrogenase. Proc Natl Acad Sci U S A 76:4986–4989.  https://doi.org/10.1073/pnas.76.10.4986 CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Demadis KD, Campana CF, Coucouvanis D (1995) Synthesis and structural characterization of the new Mo2Fe6S8(PR3)6(Cl4-cat)2 clusters. Double cubanes containing two edge-linked [MoFe3S4]2+ reduced cores. J Am Chem Soc 117:7832–7833CrossRefGoogle Scholar
  53. 53.
    Osterloh F, Sanakis Y, Staples RJ, Münck E, Holm RH (1999) A molybdenum–iron–sulfur cluster containing structural elements relevant to the P-cluster of nitrogenase. Angew Chem Int Ed 38:2066–2070CrossRefGoogle Scholar
  54. 54.
    Zhang Y, Zuo JL, Zhou H-C, Holm RH (2002) Rearrangement of symmetrical dicubane clusters into topological analogues of the P-cluster of nitrogenase: nature’s choice? J Am Chem Soc 124:14292–14293.  https://doi.org/10.1021/ja0279702 CrossRefPubMedGoogle Scholar
  55. 55.
    Zhang Y, Holm RH (2003) Synthesis of a molecular Mo2Fe6S9 cluster with the topology of the P N cluster of nitrogenase by rearrangement of an edge-bridged Mo 2 Fe6S8 double cubane. J Am Chem Soc 125:3910–3920.  https://doi.org/10.1021/ja0214633 CrossRefPubMedGoogle Scholar
  56. 56.
    Pesavento RP, Berlinguette CP, Holm RH (2007) Stabilization of reduced molybdenum-iron-sulfur single- and double-cubane clusters by cyanide ligation. Inorg Chem 46:510–516.  https://doi.org/10.1021/ic061704y CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Zhang Y, Holm RH (2004) Structural conversions of molybdenum-iron-sulfur edge-bridged double cubanes and PN-type clusters topologically related to the nitrogenase P-cluster. Inorg Chem 43:674–682.  https://doi.org/10.1021/ic030259t CrossRefPubMedGoogle Scholar
  58. 58.
    McLean PA, Papaefthymiouv V, Orme-Johnson WH, Münck E (1987) Isotopic hybrids of nitrogenase. J Biol Chem 262:12900–12903PubMedGoogle Scholar
  59. 59.
    Ohki Y, Sunada Y, Honda M, Katada M (2003) Synthesis of the P-cluster core of nitrogenases. J Am Chem Soc 125:4052–4053CrossRefGoogle Scholar
  60. 60.
    Ohki Y, Imada M, Murata A et al (2009) Synthesis, structures, and electronic properties of [8Fe-7S] cluster complexes modeling the nitrogenase P-cluster. J Am Chem Soc 131:13168–13178CrossRefGoogle Scholar
  61. 61.
    The RMSD value was calculated using the PyMOL software package (ver. 2.0.6). PyMol is an open-source software, released under https://pymol.org/2/
  62. 62.
    Pierik AJ, Wassink H, Haaker H, Hagen WR (1993) Redox properties and EPR spectroscopy of the P-clusters of Azotobacter vinelandii molybdenum-iron protein. Eur J Biochem 212:51–61.  https://doi.org/10.1111/j.1432-1033.1993.tb17632.x CrossRefPubMedGoogle Scholar
  63. 63.
    Dey A, Jenney FE, Adams MWW et al (2007) Solvent tuning of electrochemical potentials in the active sites of HiPIP versus ferredoxin. Science 318:1464–1468.  https://doi.org/10.1126/science.1147753 CrossRefPubMedGoogle Scholar
  64. 64.
    Cowan JA, Lui SM (1998) Structure-function correlations in high-potential IRON proteins. Adv Inorg Chem 45:313–350.  https://doi.org/10.1016/S0898-8838(08)60028-8 CrossRefGoogle Scholar
  65. 65.
    Helling JF, Hendrickson WA (1979) Synthesis and deprotonation of η 6-Arene-η 5-cyclopentadienyliron(II) compexes bearing NH2, OH or SH substituents. J Organomet Chem 168:87–95.  https://doi.org/10.1016/S0022-328X(00)91996-X CrossRefGoogle Scholar
  66. 66.
    Ohki Y, Tanifuji K, Yamada N, Cramer RE, Tatsumi K (2012) Formation of a nitrogenase P-cluster [Fe8S7] core via reductive fusion of two all-ferric [Fe4S4] clusters. Chem Asian J 7:2222–2224.  https://doi.org/10.1002/asia.201200568 CrossRefPubMedGoogle Scholar
  67. 67.
    Ohki Y, Sunada Y, Tatsumi K (2005) Synthesis of [2Fe–2S] and [4Fe–4S] clusters having terminal amide ligands from an iron(II) amide complex. Chem Lett 34:172–173.  https://doi.org/10.1246/cl.2005.172 CrossRefGoogle Scholar
  68. 68.
    Hu Y, Ribbe MW (2013) Nitrogenase assembly. Biochim Biophys Acta Bioenerg 1827:1112–1122.  https://doi.org/10.1016/j.bbabio.2012.12.001 CrossRefGoogle Scholar
  69. 69.
    Ribbe MW, Hu Y, Hodgson KO, Hedman B (2014) Biosynthesis of nitrogenase metalloclusters. Chem Rev 114:4063–4080.  https://doi.org/10.1021/cr400463x CrossRefGoogle Scholar
  70. 70.
    Ribbe MW, Hu Y, Guo M et al (2002) The Femoco-deficient MoFe protein produced by a nifH deletion strain of Azotobacter vinelandii shows unusual P-cluster features. J Biol Chem 277:23469–23476.  https://doi.org/10.1074/jbc.M202061200 CrossRefPubMedGoogle Scholar
  71. 71.
    Lee CC, Blank MA, Fay AW et al (2009) Stepwise formation of P-cluster in nitrogenase MoFe protein. Proc Natl Acad Sci U S A 106:18474–18478.  https://doi.org/10.1073/pnas.0909149106 CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Hu Y, Fay AW, Lee CC, Ribbe MW (2007) P-cluster maturation on nitrogenase MoFe protein. Proc Natl Acad Sci U S A 104:10424–10429.  https://doi.org/10.1073/pnas.0704297104 CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Rupnik K, Lee CC, Hu Y et al (2018) A VTVH MCD and EPR spectroscopic study of the maturation of the “second” nitrogenase P-cluster. Inorg Chem 57:4719–4725.  https://doi.org/10.1021/acs.inorgchem.8b00428 CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Wiig JA, Hu Y, Lee CC, Ribbe MW (2012) Radical SAM-dependent carbon insertion into the nitrogenase M-cluster. Science 337:1672–1675.  https://doi.org/10.1126/science.1224603 CrossRefGoogle Scholar
  75. 75.
    Hu Y, Ribbe MW (2016) Biosynthesis of the metalloclusters of nitrogenases. Annu Rev Biochem 85:455–483.  https://doi.org/10.1146/annurev-biochem-060614-034108 CrossRefGoogle Scholar
  76. 76.
    Sickerman NS, Ribbe MW, Hu Y (2017) Nitrogenase cofactor assembly: an elemental inventory. Acc Chem Res 50:2834–2841.  https://doi.org/10.1021/acs.accounts.7b00417 CrossRefPubMedGoogle Scholar
  77. 77.
    Shah VK, Brill WJ (1977) Isolation of an iron-molybdenum cofactor from nitrogenase. Proc Natl Acad Sci U S A 74:3249–3253.  https://doi.org/10.1073/pnas.74.8.3249 CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Burgess BK (1990) The iron-molybdenum cofactor of nitrogenase. Chem Rev 90:1377–1406.  https://doi.org/10.1021/cr00106a002 CrossRefGoogle Scholar
  79. 79.
    McWilliams SF, Holland PL (2015) Dinitrogen binding and cleavage by multinuclear iron complexes. Acc Chem Res 48:2059–2065.  https://doi.org/10.1021/acs.accounts.5b00213 CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Nishibayashi Y (2015) Recent progress in transition-metal-catalyzed reduction of molecular dinitrogen under ambient reaction conditions. Inorg Chem 54:9234–9247.  https://doi.org/10.1021/acs.inorgchem.5b00881 CrossRefPubMedGoogle Scholar
  81. 81.
    Burford RJ, Fryzuk MD (2017) Examining the relationship between coordination mode and reactivity of dinitrogen. Nat Rev Chem 1:0026.  https://doi.org/10.1038/s41570-017-0026 CrossRefGoogle Scholar
  82. 82.
    Wolff TE, Berg JM, Warrick C, Hodgson KO, Holm RH, Frankel RB (1978) The molybdenum-iron-sulfur complex [Mo2Fe6S9(SC2H5)8]3−. A synthetic approach to the molybdenum site in nitrogenase. J Am Chem Soc 100:4630–4632.  https://doi.org/10.1021/ja00482a070 CrossRefGoogle Scholar
  83. 83.
    Kawaguchi H, Yamada K, Lang J, Tatsumi K (1997) A new entry into molybdenum/tungsten sulfur chemistry: synthesis and reactions of mononuclear sulfido complexes of pentamethylcyclopentadienyl–molybdenum(VI) and -tungsten(VI). J Am Chem Soc 119:10346–10358.  https://doi.org/10.1021/ja971725e CrossRefGoogle Scholar
  84. 84.
    Lang J, Ji S, Xu Q et al (2003) Structural aspects of copper(I) and silver(I) sulfide clusters of pentamethylcyclopentadienyl trisulfido tungsten(VI) and molybdenum(VI). Coord Chem Rev 241:47–60.  https://doi.org/10.1016/S0010-8545(02)00309-0 CrossRefGoogle Scholar
  85. 85.
    Seino H, Arai Y, Iwata N et al (2001) Preparation of mononuclear tungsten Tris(sulfido) and molybdenum sulfido-tetrasulfido complexes with hydridotris(pyrazolyl)borate coligand and conversion of the former into sulfido-bridged bimetallic complex having Pt(μ-S)2WS core. Inorg Chem 40:1677–1682.  https://doi.org/10.1021/ic0008823 CrossRefPubMedGoogle Scholar
  86. 86.
    Hong D, Zhang Y, Holm RH (2005) Heterometal cubane-type WFe3S4 and related clusters trigonally symmetrized with hydrotris(3,5-dimethylpyrazolyl)borate. Inorg Chim Acta 358:2303–2311.  https://doi.org/10.1016/j.ica.2004.11.051 CrossRefGoogle Scholar
  87. 87.
    Fomitchev DV, McLauchlan CC, Holm RH (2002) Heterometal cubane-type MFe3S4 clusters (M = Mo, V) trigonally symmetrized with hydrotris(pyrazolyl)borate(1–) and Tris(pyrazolyl)methanesulfonate(1–) capping ligands. Inorg Chem 41:958–966.  https://doi.org/10.1021/ic011106d CrossRefPubMedGoogle Scholar
  88. 88.
    Zheng B, Chen XD, Zheng SL, Holm RH (2012) Selenium as a structural surrogate of sulfur: template-assisted assembly of five types of tungsten-iron-sulfur/selenium clusters and the structural fate of chalcogenide reactants. J Am Chem Soc 134:6479–6490.  https://doi.org/10.1021/ja3010539 CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Majumdar A, Holm RH (2011) Specific incorporation of chalcogenide bridge atoms in molybdenum/tungsten-iron-sulfur single cubane clusters. Inorg Chem 50:11242–11251.  https://doi.org/10.1021/ic2018117 CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Christou G, Holm RH, Sabat M, Ibers JA (1981) A hexanuclear iron-sulfide-thiolate cluster: assembly and properties of [Fe6S9(S-t-C4H9)2]4− containing three types of bridging sulfur atoms. J Am Chem Soc 103:6269–6271.  https://doi.org/10.1021/ja00410a071 CrossRefGoogle Scholar
  91. 91.
    Christou G, Sabat M, Ibers JA, Holm RH (1982) A new structural type in iron-sulfide-thiolate chemistry: preparation, properties, and structure of the hexanuclear cluster [Fe6S9(S-t-C4H9)2]4−. Inorg Chem 21:3518–3526.  https://doi.org/10.1021/ic00139a048 CrossRefGoogle Scholar
  92. 92.
    Henkel G, Strasdeit H, Krebs B (1982) [Fe6S9(SCH2C6H5)2]4−: a hexanuclear iron–sulfur cluster anion containing the square–pyramidal [(μ 4–S)Fe4] unit. Angew Chem Int Ed 21:201–202.  https://doi.org/10.1002/anie.198202011 CrossRefGoogle Scholar
  93. 93.
    Strasdeit H, Krebs B, Henkel G (1984) Synthetic route to [Fe6S9(SR)2]4− clusters (R = alkyl). Their spectroscopic and magnetic properties and the solid-state structures of [Fe6S9(SCH2Ph)2]4− and [(Fe6S9(SMe)2)2Na2]6−. Inorg Chem 9:1816–1825.  https://doi.org/10.1021/ic00181a008 CrossRefGoogle Scholar
  94. 94.
    Strasdeit H, Krebs B, Henkel G (1987) Synthesis and characterization, and the X-ray structure of (PhCH2NEt3)4[Fe6S9(SMe)2]. Z Naturforsch 42b:565–572CrossRefGoogle Scholar
  95. 95.
    Zhou H, Su W, Achim C, Rao PV, Holm RH (2002) High-nuclearity sulfide-rich molybdenum-iron-sulfur clusters: reevaluation and extension. Inorg Chem 41:3191–3201.  https://doi.org/10.1021/ic0201250 CrossRefPubMedGoogle Scholar
  96. 96.
    Tanifuji K, Sickerman N, Lee CC, Nagasawa T, Miyazaki K, Ohki Y, Tatsumi K, Hu Y, Ribbe MW (2016) Structure and reactivity of an asymmetric synthetic mimic of nitrogenase cofactor. Angew Chem Int Ed 55:15633–15636.  https://doi.org/10.1002/anie.201608806 CrossRefGoogle Scholar
  97. 97.
    Sickerman NS, Tanifuji K, Lee CC, Ohki Y, Tatsumi K, Ribbe MW, Hu Y (2017) Reduction of C1 substrates to hydrocarbons by the homometallic precursor and synthetic mimic of the nitrogenase cofactor. J Am Chem Soc 139:603–606.  https://doi.org/10.1021/jacs.6b11633 CrossRefPubMedGoogle Scholar
  98. 98.
    Xu G, Wang Z, Ling R, Zhou J, Chen X-S, Holm RH (2018) Ligand metathesis as rational strategy for the synthesis of cubane-type heteroleptic iron-sulfur clusters relevant to the FeMo cofactor. Proc Natl Acad Sci U S A 115:5089–5092.  https://doi.org/10.1073/pnas.1801025115 CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    Verma AK, Nazif TN, Achim C, Lee SC (2000) A stable terminal imide on iron. J Am Chem Soc 122:11013–11014.  https://doi.org/10.1021/ja001147t CrossRefGoogle Scholar
  100. 100.
    Chen X-D, Duncan JS, Verma AK, Lee SC (2010) Selective syntheses of iron-imide-sulfide cubanes, including a partial representation of the Fe-S-X environment in the FeMo cofactor. J Am Chem Soc 132:15884–15886.  https://doi.org/10.1021/ja106478k CrossRefPubMedGoogle Scholar
  101. 101.
    Chen XD, Zhang W, Duncan JS, Lee SC (2012) Iron–amide–sulfide and iron–imide–sulfide clusters: heteroligated core environments relevant to the nitrogenase FeMo cofactor. Inorg Chem 51:12891–12904.  https://doi.org/10.1021/ic301868m CrossRefPubMedGoogle Scholar
  102. 102.
    Ohki Y, Ikagawa Y, Tatsumi K (2007) Synthesis of new [8Fe-7S] clusters: a topological link between the core structures of P-cluster, FeMo-co, and FeFe-co of nitrogenases. J Am Chem Soc 129:10457–10465.  https://doi.org/10.1021/ja072256b CrossRefPubMedGoogle Scholar
  103. 103.
    Hashimoto T, Ohki Y, Tatsumi K (2010) Synthesis of coordinatively unsaturated mesityliron thiolate complexes and their reactions with elemental sulfur. Inorg Chem 49:6102–6109.  https://doi.org/10.1021/ic100692v CrossRefPubMedGoogle Scholar
  104. 104.
    Kaiser JT, Hu Y, Wiig JA et al (2011) Structure of precursor-bound NifEN: a nitrogenase FeMo cofactor maturase/insertase. Science 331:91–94.  https://doi.org/10.1126/science.1196954 CrossRefPubMedPubMedCentralGoogle Scholar
  105. 105.
    Fay AW, Blank MA, Lee CC et al (2011) Spectroscopic characterization of the isolated iron-molybdenum cofactor (FeMoco) precursor from the protein NifEN. Angew Chem Int Ed 50:7787–7790.  https://doi.org/10.1002/anie.201102724 CrossRefGoogle Scholar
  106. 106.
    Hu Y, Fay AW, Ribbe MW (2005) Identification of a nitrogenase FeMo cofactor precursor on NifEN complex. Proc Natl Acad Sci U S A 102:3236–3241.  https://doi.org/10.1073/pnas.0409201102 CrossRefPubMedPubMedCentralGoogle Scholar
  107. 107.
    Ohta S, Ohki Y, Hashimoto T et al (2012) A nitrogenase cluster model [Fe8S6O] with an oxygen unsymmetrically bridging two proto-Fe4S3 cubes: relevancy to the substrate binding mode of the FeMo cofactor. Inorg Chem 51:11217–11219.  https://doi.org/10.1021/ic301348f CrossRefPubMedGoogle Scholar
  108. 108.
    Rittle J, Peters JC (2013) Fe-N2/CO complexes that model a possible role for the interstitial C atom of FeMo-cofactor (FeMoco). Proc Natl Acad Sci U S A 110:15898–15903.  https://doi.org/10.1073/pnas.1310153110 CrossRefPubMedPubMedCentralGoogle Scholar
  109. 109.
    Creutz SE, Peters JC (2014) Catalytic reduction of N2 to NH3 by an Fe–N2 complex featuring a C-atom anchor. J Am Chem Soc 136:1105–1115.  https://doi.org/10.1021/ja4114962 CrossRefPubMedPubMedCentralGoogle Scholar
  110. 110.
    Ohki Y, Uchida K, Tada M, Cramer RE, Ogura T, Ohta T (2018) N2 activation on a molybdenum-titanium-sulfur cluster. Nat Commun 9:3200.  https://doi.org/10.1038/s41467-018-05630-6 CrossRefPubMedPubMedCentralGoogle Scholar
  111. 111.
    Tanifuji K, Lee CC, Ohki Y, Tatsumi K, Hu Y, Ribbe MW (2015) Combining a nitrogenase scaffold and a synthetic compound into an artificial enzyme. Angew Chem Int Ed 54:14022–14025.  https://doi.org/10.1002/anie.201507646 CrossRefGoogle Scholar
  112. 112.
    Tanifuji K, Lee CC, Sickerman NS, Tatsumi K, Ohki Y, Hu Y, Ribbe MW (2018) Tracing the ‘ninth sulfur’ of the nitrogenase cofactor via a semi-synthetic approach. Nat Chem 10:568–572.  https://doi.org/10.1038/s41557-018-0029-4 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of Molecular Biology and BiochemistryUniversity of California, IrvineIrvineUSA
  2. 2.Department of Chemistry, Graduate School of ScienceNagoya UniversityNagoyaJapan

Personalised recommendations