Advertisement

Sulfur Ylides in Organic Synthesis and Transition Metal Catalysis

  • Rik Oost
  • James D. Neuhaus
  • Jérémy Merad
  • Nuno Maulide
Chapter
Part of the Structure and Bonding book series (STRUCTURE, volume 177)

Abstract

Sulfur-based ylides have long been used for a number of classical transformations, in particular for the synthesis of small ring systems and various rearrangement reactions. By combining the unorthodox reactivity of such ylides with the strength and flexibility of transition-metal catalysis, a growing number of groups have in recent years looked to expand their application in organic synthesis. This chapter aims to summarise recent developments in transition-metal-catalysed sulfonium/sulfoxonium ylide reactions as well as to offer historical perspective. In overviewing the successes in this area, the authors hope to encourage others into this growing field.

Keywords

Asymmetric catalysis One-carbon synthon Sulfonium ylides Sulfoxonium ylides Transition-metal catalysis 

References

  1. 1.
    Bravo P, Fronza G, Ticozzi C, Gaudiano G (1974) J Organomet Chem 74:143–154CrossRefGoogle Scholar
  2. 2.
    Weber L (1983) Angew Chem Int Ed 22:516–528CrossRefGoogle Scholar
  3. 3.
    Koezuka H, Matsubayashi G, Tanaka T (1974) Inorg Chem 13:443–446Google Scholar
  4. 4.
    Sabounchei SJ, Akhlaghi Bagherjeri F, Hosseinzadeh M, Boskovic C, Gable RW (2014) C R Chim 17:1257–1263CrossRefGoogle Scholar
  5. 5.
    Sabounchei SJ, Akhlaghi Bagherjeri F, Boskovic C, Gable RW (2013) J Mol Struct 1046:39–43CrossRefGoogle Scholar
  6. 6.
    Sabounchei SJ, Akhlaghi Bagherjeri F, Mozafari Z, Boskovic C, Gable RW, Karamian R, Asadbegy M (2013) Dalton Trans 42:2520–2529PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Kawafune I, Matsubayashi G-E (1983) Inorg Chim Acta 70:1–5CrossRefGoogle Scholar
  8. 8.
    Sabounchei SJ, Hashemi A (2014) Inorg Chem Commun 47:123–127CrossRefGoogle Scholar
  9. 9.
    Sabounchei SJ, Yousefi A, Ahmadianpoor M, Hashemi A, Bayat M, Sedghi A, Akhlaghi Bagherjeri F, Gable RW (2016) Polyhedron 117:273–282CrossRefGoogle Scholar
  10. 10.
    Sabounchei SJ, Hashemi A, Sedghi A, Bayat M, Akhlaghi Bagherjeri F, Gable RW (2017) J Mol Struct 1135:174–185CrossRefGoogle Scholar
  11. 11.
    Sabounchei SJ, Ahmadianpoor M, Yousefi A, Hashemi A, Bayat M, Sedghi A, Akhlaghi Bagherjeri F, Gable RW (2016) RSC Adv 6:28308–28315CrossRefGoogle Scholar
  12. 12.
    Clagett M, Gooch A, Graham P, Holy N, Mains B, Strunk J (1976) J Org Chem 41:4033–4035CrossRefGoogle Scholar
  13. 13.
    Lu L-Q, Chen J-R, Xiao W-J (2012) Acc Chem Res 45:1278–1293PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Chen J-R, Dong W-R, Candy M, Pan F-F, Jörres M, Bolm C (2012) J Am Chem Soc 134:6924–6927PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Hatcher JM, Coltart DM (2010) J Am Chem Soc 132:4546–4547PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Li T-R, Tan F, Lu L-Q, Wei Y, Wang Y-N, Liu Y-Y, Yang Q-Q, Chen J-R, Shi D-Q, Xiao W-J (2014) Nat Commun 5:5500PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Wang Q, Qi X, Lu L-Q, Li T-R, Yuan Z-G, Zhang K, Li B-J, Lan Y, Xiao W-J (2016) Angew Chem Int Ed 55:2840–2844CrossRefGoogle Scholar
  18. 18.
    Plietker B (2008) Iron catalysis in organic chemistry: reactions and applications. Wiley-VCH, WeinheimGoogle Scholar
  19. 19.
    Wang Q, Li T-R, Lu L-Q, Li M-M, Zheng K, Xiao W-J (2016) J Am Chem Soc 138:8360–8363PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Detz RJ (2009) Triazole-based P,N ligands: discovery of an enantioselective copper catalysed propargylic amination reaction. PhD thesisGoogle Scholar
  21. 21.
    Nishibayashi Y, Uemura S (2008) Metal vinylidenes and allenylidenes in catalysis. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 217–250CrossRefGoogle Scholar
  22. 22.
    Xu X, Doyle MP (2014) Acc Chem Res 47:1396–1405PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Deng Y, Massey LA, Zavalij PY, Doyle MP (2017) Angew Chem Int Ed 56:7479–7483Google Scholar
  24. 24.
    Kramer S, Skrydstrup T (2012) Angew Chem Int Ed 51:4681–4684CrossRefGoogle Scholar
  25. 25.
    Huang X, Goddard R, Maulide N (2010) Angew Chem Int Ed 49:8979–8983CrossRefGoogle Scholar
  26. 26.
    Huang X, Peng B, Luparia M, Gomes LFR, Veiros LF, Maulide N (2012) Angew Chem Int Ed 51:8886–8890CrossRefGoogle Scholar
  27. 27.
    Klimczyk S, Huang X, Kählig H, Veiros LF, Maulide N (2015) J Org Chem 80:5719–5729PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Klimczyk S, Misale A, Huang X, Maulide N (2015) Angew Chem Int Ed 54:10365–10369CrossRefGoogle Scholar
  29. 29.
    Sabbatani J, Huang X, Veiros LF, Maulide N (2014) Chem Eur J 20:10636–10639PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Unthank MG, Hussain N, Aggarwal VK (2006) Angew Chem Int Ed 45:7066–7069CrossRefGoogle Scholar
  31. 31.
    Yar M, McGarrigle EM, Aggarwal VK (2008) Angew Chem Int Ed 47:3784–3786CrossRefGoogle Scholar
  32. 32.
    Unthank MG, Tavassoli B, Aggarwal VK (2008) Org Lett 10:1501–1504PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Matlock JV, Svejstrup TD, Songara P, Overington S, McGarrigle EM, Aggarwal VK (2015) Org Lett 17:5044–5047PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Klose I, Misale A, Maulide N (2016) J Org Chem 81:7201–7210PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Huang X, Goddard R, Maulide N (2013) Chem Commun 49:4292–4294CrossRefGoogle Scholar
  36. 36.
    Liu Y-Y, Yang X-H, Huang X-C, Wei W-T, Song R-J, Li J-H (2013) J Org Chem 78:10421–10426PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Wang L, He W, Yu Z (2013) Chem Soc Rev 42:599–621PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Srogl J, Allred GD, Liebeskind LS (1997) J Am Chem Soc 119:12376–12377CrossRefGoogle Scholar
  39. 39.
    Hooper JF, Chaplin AB, González-Rodríguez C, Thompson AL, Weller AS, Willis MC (2012) J Am Chem Soc 134:2906–2909PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Prier CK, Rankic DA, MacMillan DWC (2013) Chem Rev 113:5322–5363PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Shaw MH, Twilton J, MacMillan DWC (2016) J Org Chem 81:6898–6926PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Xia X-D, Lu L-Q, Liu W-Q, Chen D-Z, Zheng Y-H, Wu L-Z, Xiao W-J (2016) Chem Eur J 22:8432–8437PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Trost BM (1966) J Am Chem Soc 88:1587–1588CrossRefGoogle Scholar
  44. 44.
    Burtoloso ACB, Dias RMP, Leonarczyk IA (2013) Eur J Org Chem 2013:5005–5016Google Scholar
  45. 45.
    Zhang Z, Wang J (2008) Tetrahedron 64:6577–6605CrossRefGoogle Scholar
  46. 46.
    Deng Y, Qiu H, Srinivas HD, Doyle MP (2016) Curr Org Chem 20:61–81CrossRefGoogle Scholar
  47. 47.
    Doyle MP, Duffy R, Ratnikov M, Zhou L (2010) Chem Rev 110:704–724PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Peña-López M, Beller M (2017) Angew Chem Int Ed 56:46–48CrossRefGoogle Scholar
  49. 49.
    Moody CJ (2007) Angew Chem Int Ed 46:9148–9150CrossRefGoogle Scholar
  50. 50.
    Cohen T, Herman G, Chapman TM, Kuhn D (1974) J Am Chem Soc 96:5627–5628CrossRefGoogle Scholar
  51. 51.
    Cimetière B, Julia M (1991) Synlett 1991:271–272CrossRefGoogle Scholar
  52. 52.
    Müller P, Fernandez D, Nury P, Rossier J-C (1999) Helv Chim Acta 82:935–945CrossRefGoogle Scholar
  53. 53.
    Duan Y, Lin J-H, Xiao J-C, Gu Y-C (2016) Org Lett 18:2471–2474PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Duan Y, Lin J-H, Xiao J-C, Gu Y-C (2017) Chem Commun 53:3870–3873CrossRefGoogle Scholar
  55. 55.
    Baldwin JE, Adlington RM, Godfrey CRA, Gollins DW, Vaughan JG (1993) J Chem Soc Chem Commun:1434–1435Google Scholar
  56. 56.
    Mangion IK, Nwamba IK, Shevlin M, Huffman MA (2009) Org Lett 11:3566–3569PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Mangion IK, Weisel M (2010) Tetrahedron Lett 51:5490–5492CrossRefGoogle Scholar
  58. 58.
    Molinaro C, Bulger PG, Lee EE, Kosjek B, Lau S, Gauvreau D, Howard ME, Wallace DJ, O’Shea PD (2012) J Org Chem 77:2299–2309PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Mangion IK, Ruck RT, Rivera N, Huffman MA, Shevlin M (2011) Org Lett 13:5480–5483PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Phelps AM, Chan VS, Napolitano JG, Krabbe SW, Schomaker JM, Shekhar S (2016) J Org Chem 81:4158–4169PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Vaitla J, Bayer A, Hopmann KH (2017) Angew Chem Int Ed 56:4277–4281CrossRefGoogle Scholar
  62. 62.
    Gandelman M, Rybtchinski B, Ashkenazi N, Gauvin RM, Milstein D (2001) J Am Chem Soc 123:5372–5373PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Gandelman M, Naing KM, Rybtchinski B, Poverenov E, Ben-David Y, Ashkenazi N, Gauvin RM, Milstein D (2005) J Am Chem Soc 127:15265–15272PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Suarez AIO, del Río MP, Remerie K, Reek JNH, de Bruin B (2012) ACS Catal 2:2046–2059CrossRefGoogle Scholar
  65. 65.
    Padwa A, Hornbuckle SF (1991) Chem Rev 91:263–309CrossRefGoogle Scholar
  66. 66.
    Diekmann J (1965) J Org Chem 30:2272–2275CrossRefGoogle Scholar
  67. 67.
    Ando W, Yagihara T, Tozune S, Nakaido S, Migita T (1969) Tetrahedron Lett 10:1979–1982CrossRefGoogle Scholar
  68. 68.
    Ando W, Yagihara T, Tozune S, Imai I, Suzuki J, Toyama T, Nakaido S, Migita T (1972) J Org Chem 37:1721–1727CrossRefGoogle Scholar
  69. 69.
    Gillespie RJ, Porter AEA, Willmott WE (1978) J Chem Soc Chem Commun:83–84Google Scholar
  70. 70.
    Zhang Y, Wang J (2010) Coord Chem Rev 254:941–953CrossRefGoogle Scholar
  71. 71.
    Jones AC, May JA, Sarpong R, Stoltz BM (2014) Angew Chem Int Ed 53:2556–2591CrossRefGoogle Scholar
  72. 72.
    Sheng Z, Zhang Z, Chu C, Zhang Y, Wang J (2016) Tetrahedron 73:4011–4022CrossRefGoogle Scholar
  73. 73.
    Kirmse W, Kapps M (1968) Chem Ber 101:994–1003CrossRefGoogle Scholar
  74. 74.
    Doyle MP, Griffin JH, Chinn MS, Van Leusen D (1984) J Org Chem 49:1917–1925CrossRefGoogle Scholar
  75. 75.
    Fukuda T, Katsuki T (1997) Tetrahedron Lett 38:3435–3438CrossRefGoogle Scholar
  76. 76.
    Davies PW, Albrecht SJC, Assanelli G (2009) Org Biomol Chem 7:1276–1279PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Greenman KL, Carter DS, Van Vranken DL (2001) Tetrahedron 57:5219–5225CrossRefGoogle Scholar
  78. 78.
    Zhou C-Y, Yu W-Y, Chan PWH, Che C-M (2004) J Org Chem 69:7072–7082PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Peng L, Zhang X, Ma M, Wang J (2007) Angew Chem Int Ed 46:1905–1908CrossRefGoogle Scholar
  80. 80.
    Xiao Q, Wang J-B (2007) Acta Chim Sin 65:1733–1735Google Scholar
  81. 81.
    Zhu S-F, Zhou Q-L (2014) Nat Sci Rev 1:580–603CrossRefGoogle Scholar
  82. 82.
    Carter DS, Van Vranken DL (2000) Org Lett 2:1303–1305PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Prabharasuth R, Van Vranken DL (2001) J Org Chem 66:5256–5258PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Xu X, Li C, Tao Z, Pan Y (2017) Green Chem 19:1245–1249CrossRefGoogle Scholar
  85. 85.
    Aviv I, Gross Z (2008) Chem Eur J 14:3995–4005PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Holzwarth MS, Alt I, Plietker B (2012) Angew Chem Int Ed 51:5351–5354CrossRefGoogle Scholar
  87. 87.
    Liao M, Peng L, Wang J (2008) Org Lett 10:693–696PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Li Y, Shi Y, Huang Z, Wu X, Xu P, Wang J, Zhang Y (2011) Org Lett 13:1210–1213PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Nishibayashi Y, Ohe K, Uemura S (1995) J Chem Soc Chem Commun:1245–1246Google Scholar
  90. 90.
    Kitagaki S, Yanamoto Y, Okubo H, Nakajima M, Hashimoto S (2001) Heterocycles 54:623–628CrossRefGoogle Scholar
  91. 91.
    Aggarwal VK, Ferrara M, Hainz R, Spey SE (1999) Tetrahedron Lett 40:8923–8927CrossRefGoogle Scholar
  92. 92.
    Zhang X, Qu Z, Ma Z, Shi W, Jin X, Wang J (2002) J Org Chem 67:5621–5625PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Ma M, Peng L, Li C, Zhang X, Wang J (2005) J Am Chem Soc 127:15016–15017PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Trost BM, Hammen RF (1973) J Am Chem Soc 95:962–964CrossRefGoogle Scholar
  95. 95.
    Zhang Z, Sheng Z, Yu W, Wu G, Zhang R, Chu W-D, Zhang Y, Wang J (2017) Nat Chem 9:970–976PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    Li Y, Huang Z, Wu X, Xu P-F, Jin J, Zhang Y, Wang J (2012) Tetrahedron 68:5234–5240CrossRefGoogle Scholar
  97. 97.
    Miura T, Tanaka T, Yada A, Murakami M (2013) Chem Lett 42:1308–1310CrossRefGoogle Scholar
  98. 98.
    Yadagiri D, Anbarasan P (2013) Chem Eur J 19:15115–15119PubMedCrossRefGoogle Scholar
  99. 99.
    Miki K, Nishino F, Ohe K, Uemura S (2002) J Am Chem Soc 124:5260–5261PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Kato Y, Miki K, Nishino F, Ohe K, Uemura S (2003) Org Lett 5:2619–2621PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Davies PW, Albrecht SJC (2008) Chem Commun:238–240Google Scholar
  102. 102.
    Davies PW, Albrecht SJC (2009) Angew Chem Int Ed 48:8372–8375CrossRefGoogle Scholar
  103. 103.
    Shapiro ND, Toste FD (2007) J Am Chem Soc 129:4160–4161PubMedCrossRefPubMedCentralGoogle Scholar
  104. 104.
    Li G, Zhang L (2007) Angew Chem Int Ed 46:5156–5159CrossRefGoogle Scholar
  105. 105.
    Santos MD, Davies PW (2014) Chem Commun 50:6001–6004CrossRefGoogle Scholar
  106. 106.
    Li J, Ji K, Zheng R, Nelson J, Zhang L (2014) Chem Commun 50:4130–4133CrossRefGoogle Scholar
  107. 107.
    Zhang H, Wang B, Yi H, Zhang Y, Wang J (2015) Org Lett 17:3322–3325PubMedCrossRefPubMedCentralGoogle Scholar
  108. 108.
    Song Z, Wu Y, Xin T, Jin C, Wen X, Sun H, Xu Q-L (2016) Chem Commun 52:6079–6082CrossRefGoogle Scholar
  109. 109.
    Ellis-Holder KK, Peppers BP, Kovalevsky AY, Diver ST (2006) Org Lett 8:2511–2514PubMedCrossRefPubMedCentralGoogle Scholar
  110. 110.
    Nair V, Nair SM, Mathai S, Liebscher J, Ziemer B, Narsimulu K (2004) Tetrahedron Lett 45:5759–5762CrossRefGoogle Scholar
  111. 111.
    Lu P, Herrmann AT, Zakarian A (2015) J Org Chem 80:7581–7589PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Lin R, Cao L, West FG (2017) Org Lett 19:552–555PubMedCrossRefPubMedCentralGoogle Scholar
  113. 113.
    Qu J-P, Xu Z-H, Zhou J, Cao C-L, Sun X-L, Dai L-X, Tang Y (2009) Adv Synth Catal 351:308–312CrossRefGoogle Scholar
  114. 114.
    Xu X, Li C, Xiong M, Tao Z, Pan Y (2017) Chem Commun 53:6219–6222CrossRefGoogle Scholar
  115. 115.
    Aggarwal VK, Winn CL (2004) Acc Chem Res 37:611–620PubMedCrossRefPubMedCentralGoogle Scholar
  116. 116.
    McGarrigle EM, Aggarwal VK (2007) Enantioselective organocatalysis: reactions and experimental procedures. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 357–389CrossRefGoogle Scholar
  117. 117.
    Aggarwal VK, Abdel-Rahman H, Jones RVH, Lee HY, Reid BD (1994) J Am Chem Soc 116:5973–5974CrossRefGoogle Scholar
  118. 118.
    Aggarwal VK, Abdel-Rahman H, Jones RVH, Standen MCH (1995) Tetrahedron Lett 36:1731–1732CrossRefGoogle Scholar
  119. 119.
    Aggarwal VK, Thompson A, Jones RVH, Standen M (1995) Tetrahedron Asymmetry 6:2557–2564CrossRefGoogle Scholar
  120. 120.
    Aggarwal VK, Abdel-Rahman H, Fan L, Jones RVH, Standen MCH (1996) Chem Eur J 2:1024–1030CrossRefGoogle Scholar
  121. 121.
    Aggarwal VK, Alonso E, Hynd G, Lydon KM, Palmer MJ, Porcelloni M, Studley JR (2001) Angew Chem Int Ed 40:1430–1433CrossRefGoogle Scholar
  122. 122.
    Aggarwal VK, Alonso E, Bae I, Hynd G, Lydon KM, Palmer MJ, Patel M, Porcelloni M, Richardson J, Stenson RA, Studley JR, Vasse J-L, Winn CL (2003) J Am Chem Soc 125:10926–10940PubMedCrossRefPubMedCentralGoogle Scholar
  123. 123.
    Aggarwal VK, Thompson A, Jones RVH, Standen MCH (1996) J Org Chem 61:8368–8369CrossRefGoogle Scholar
  124. 124.
    Aggarwal VK, Alonso E, Fang G, Ferrara M, Hynd G, Porcelloni M (2001) Angew Chem Int Ed 40:1433–1436CrossRefGoogle Scholar
  125. 125.
    Fulton JR, Aggarwal VK, de Vicente J (2005) Eur J Org Chem 2005:1479–1492CrossRefGoogle Scholar
  126. 126.
    Aggarwal VK, Smith HW, Hynd G, Jones RVH, Fieldhouse R, Spey SE (2000) J Chem Soc Perkin Trans 1:3267–3276CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  • Rik Oost
    • 1
  • James D. Neuhaus
    • 1
  • Jérémy Merad
    • 1
  • Nuno Maulide
    • 1
  1. 1.Institute of Organic Chemistry of the University of ViennaViennaAustria

Personalised recommendations