Advertisement

Catalytic Sigma-Bond Metathesis and the Polymerization of 1,3-Dienes by Rare-Earth Metal Complexes

  • Rory P. Kelly
  • Peter W. RoeskyEmail author
Chapter
Part of the Structure and Bonding book series (STRUCTURE, volume 172)

Abstract

This review is a selection of research highlights since 2010 in two main areas of rare-earth catalysis, but it is not meant to be an exhaustive treatment. Part 1 (Sect. 2) deals with advances in intra- and intermolecular hydroamination, hydrophosphination, and hydrosilylation. Part 2 (Sect. 3) covers progress in the polymerization of 1,3-dienes, and it is split into three main subsections: cis-1,4-selective and trans-1,4-selective polymerization, the 3,4-selective polymerization of isoprene, and copolymerization reactions of 1,3-dienes with alkenes.

Keywords

Catalysis Hydroamination Hydrophosphination Hydrosilylation Lanthanides Polymerization (polymerisation) of 1,3-dienes Rare earths 

Abbreviations

Ad

Adamantyl

Bn

Benzyl

BOPA

Bis(oxazolinylphenyl)amide

BTSA

Bis(trimethylsilyl)amide

cat.

Catalyst

Cp

Cyclopentadienyl

Cp*

Pentamethylcyclopentadienyl

Cy

Cyclohexyl

dipp

2,6-Diisopropylphenyl

dmba

α-Deprotonated dimethylaminobenzyl

dme

1,2-Dimethoxyethane

dp

Pore diameter

DRIFT

Diffuse reflectance infrared Fourier transform

ee

Enantiomeric excess

Et

Ethyl

iBu

Isobutyl

iPr

Isopropyl

Ln

Rare-earth metal

Me

Methyl

Me3TACD

1,4,7-Trimethyl-1,4,7,10-tetraazacyclododecane(1−)

nBu

n-Butyl

Ph

Phenyl

PhMe

Toluene

PMS

Periodic mesoporous silica

r.t.

Room temperature

tBu

t-Butyl

Tg

Glass transition temperature

thf

Tetrahydrofuran

Tm

Melting point (polymer)

TOF

Turnover frequency

σ-BM

Sigma-bond metathesis

Notes

Acknowledgment

This work was supported by the DFG-funded transregional collaborative research center SFB/TRR 88 “3MET”.

References

  1. 1.
    Watson PL (1983) Methane exchange reactions of lanthanide and early-transition-metal methyl complexes. J Am Chem Soc 105(21):6491–6493CrossRefGoogle Scholar
  2. 2.
    Labinger JA, Bercaw JE (2002) Understanding and exploiting C-H bond activation. Nature 417(6888):507–514CrossRefGoogle Scholar
  3. 3.
    Barros N, Eisenstein O, Maron L (2006) DFT studies of the methyl exchange reaction between Cp2M-CH3 or Cp*2M-CH3 (Cp = C5H5, Cp* = C5Me5, M = Y, Sc, Ln) and CH4. Does M ionic radius control the reaction? Dalton Trans 25:3052–3057CrossRefGoogle Scholar
  4. 4.
    Sadow AD, Tilley TD (2005) Synthesis and characterization of scandium silyl complexes of the type Cp*2ScSiHRR′. σ-Bond metathesis reactions and catalytic dehydrogenative silation of hydrocarbons. J Am Chem Soc 127(2):643–656CrossRefGoogle Scholar
  5. 5.
    Ziegler T, Folga E, Berces A (1993) A density functional study on the activation of hydrogen-hydrogen and hydrogen-carbon bonds by Cp2Sc-H and Cp2Sc-CH3. J Am Chem Soc 115(2):636–646CrossRefGoogle Scholar
  6. 6.
    Evans WJ, Grate JW, Doedens RJ (1985) Organolanthanide and organoyttrium hydride chemistry. 7. Reaction of the samarium-hydrogen bond in the organosamarium hydride [(C5Me5)2SmH]2 with carbon monoxide: formation, isomerization, and x-ray crystallographic characterization of the samarium complexes cis- and trans-{(C5Me5)2[(C6H5)3PO]Sm}2(μ-OCH:CHO). J Am Chem Soc 107(6):1671–1679CrossRefGoogle Scholar
  7. 7.
    Evans WJ, Miller KA, Ziller JW (2006) Synthesis of (O2CEPh)1- ligands (E = S, Se) by CO2 insertion into lanthanide chalcogen bonds and their utility in forming crystallographically characterizable organoaluminum complexes [Me2Al(μ-O2CEPh)]2. Inorg Chem 45(1):424–429CrossRefGoogle Scholar
  8. 8.
    Klementyeva SV, Gamer MT, Schmidt A-C, Meyer K, Konchenko SN, Roesky PW (2014) Activation of SO2 with [(η5-C5Me5)2Ln(THF)2] (Ln=Eu, Yb) leading to dithionite and sulfinate complexes. Chem Eur J 20(42):13497–13500CrossRefGoogle Scholar
  9. 9.
    Klementyeva SV, Arleth N, Meyer K, Konchenko SN, Roesky PW (2015) Dithionite and sulfinate complexes from the reaction of SO2 with decamethylsamarocene. New J Chem 39:7589–7594Google Scholar
  10. 10.
    Evans WJ, Ulibarri TA, Ziller JW (1990) Reactivity of (C5Me5)2Sm and related species with alkenes: synthesis and structural characterization of a series of organosamarium allyl complexes. J Am Chem Soc 112(6):2314–2324CrossRefGoogle Scholar
  11. 11.
    Kaita S, Koga N, Hou Z, Doi Y, Wakatsuki Y (2003) Theoretical study of coordination and insertion of butadiene to bis(pentamethylcyclopentadienyl)samarium hydride. Organometallics 22(15):3077–3082CrossRefGoogle Scholar
  12. 12.
    Roesky PW (ed) (2010) Molecular catalysis of rare-earth elements, vol 137, Structure and bonding. Springer, Berlin/HeidelbergGoogle Scholar
  13. 13.
    Hong S, Marks TJ (2004) Organolanthanide-catalyzed hydroamination. Acc Chem Res 37(9):673–686CrossRefGoogle Scholar
  14. 14.
    Müller TE, Hultzsch KC, Yus M, Foubelo F, Tada M (2008) Hydroamination: direct addition of amines to alkenes and alkynes. Chem Rev 108(9):3795–3892CrossRefGoogle Scholar
  15. 15.
    Reznichenko A, Hultzsch K (2013) Early transition metal (group 3–5, lanthanides and actinides) and main group metal (group 1, 2, and 13) catalyzed hydroamination. In: Ananikov VP, Tanaka M (eds) Hydrofunctionalization, vol 43, Topics in organometallic chemistry. Springer, Berlin/Heidelberg, pp 51–114CrossRefGoogle Scholar
  16. 16.
    Koshti V, Gaikwad S, Chikkali SH (2014) Contemporary avenues in catalytic PH bond addition reaction: a case study of hydrophosphination. Coord Chem Rev 265:52–73CrossRefGoogle Scholar
  17. 17.
    Trifonov AA (2007) Non-metallocene rare-earth organometallic derivatives: synthesis, structure and application in the catalysis of transformations of unsaturated substrates. Russ Chem Rev 76(11):1122CrossRefGoogle Scholar
  18. 18.
    Rodriguez-Ruiz V, Carlino R, Bezzenine-Lafollee S, Gil R, Prim D, Schulz E, Hannedouche J (2015) Recent developments in alkene hydro-functionalisation promoted by homogeneous catalysts based on earth abundant elements: formation of C-N, C-O and C-P bond. Dalton Trans 44(27):12029–12059CrossRefGoogle Scholar
  19. 19.
    Reznichenko AL, Nguyen HN, Hultzsch KC (2010) Asymmetric intermolecular hydroamination of unactivated alkenes with simple amines. Angew Chem Int Ed 49(47):8984–8987CrossRefGoogle Scholar
  20. 20.
    Reznichenko AL, Hultzsch KC (2013) C1-symmetric rare-earth-metal aminodiolate complexes for intra- and intermolecular asymmetric hydroamination of alkenes. Organometallics 32(5):1394–1408CrossRefGoogle Scholar
  21. 21.
    Basalov IV, Roşca SC, Lyubov DM, Selikhov AN, Fukin GK, Sarazin Y, Carpentier J-F, Trifonov AA (2014) Divalent heteroleptic ytterbium complexes – effective catalysts for intermolecular styrene hydrophosphination and hydroamination. Inorg Chem 53(3):1654–1661CrossRefGoogle Scholar
  22. 22.
    Hannedouche J, Collin J, Trifonov A, Schulz E (2011) Intramolecular enantioselective hydroamination catalyzed by rare earth binaphthylamides. J Organomet Chem 696(1):255–262CrossRefGoogle Scholar
  23. 23.
    Lovick HM, An DK, Livinghouse TS (2011) Structure-activity relationships in group 3 metal catalysts for asymmetric intramolecular alkene hydroamination. An investigation of ligands based on the axially chiral 1,1′-binaphthyl-2,2′-diamine motif. Dalton Trans 40(30):7697–7700CrossRefGoogle Scholar
  24. 24.
    Queffelec C, Boeda F, Pouilhès A, Meddour A, Kouklovsky C, Hannedouche J, Collin J, Schulz E (2011) Enantioselective intramolecular hydroamination of secondary amines catalyzed by easily accessible ate and neutral rare-earth complexes. ChemCatChem 3(1):122–126CrossRefGoogle Scholar
  25. 25.
    Aillaud I, Olier C, Chapurina Y, Collin J, Schulz E, Guillot R, Hannedouche J, Trifonov A (2011) Alkyl complexes of lanthanum and samarium supported by a chiral binaphthylamido ligand. Syntheses, structures, and catalytic activity in hydroamination of amino-1,3-dienes. Organometallics 30(12):3378–3385CrossRefGoogle Scholar
  26. 26.
    Chapurina Y, Guillot R, Lyubov D, Trifonov A, Hannedouche J, Schulz E (2013) LiCl-effect on asymmetric intramolecular hydroamination catalyzed by binaphthylamido yttrium complexes. Dalton Trans 42(2):507–520CrossRefGoogle Scholar
  27. 27.
    Benndorf P, Jenter J, Zielke L, Roesky PW (2011) Chiral lutetium benzamidinate complexes. Chem Commun 47(9):2574–2576CrossRefGoogle Scholar
  28. 28.
    Benndorf P, Kratsch J, Hartenstein L, Preuss CM, Roesky PW (2012) Chiral benzamidinate ligands in rare-earth-metal coordination chemistry. Chem Eur J 18(45):14454–14463CrossRefGoogle Scholar
  29. 29.
    Zhang Y, Yao W, Li H, Mu Y (2012) Rare-earth-metal complexes supported by new chiral tetra-azane chelating ligands: synthesis, characterization, and catalytic properties for intramolecular asymmetric hydroamination. Organometallics 31(13):4670–4679CrossRefGoogle Scholar
  30. 30.
    Bennett SD, Core BA, Blake MP, Pope SJA, Mountford P, Ward BD (2014) Chiral lanthanide complexes: coordination chemistry, spectroscopy, and catalysis. Dalton Trans 43(15):5871–5885CrossRefGoogle Scholar
  31. 31.
    Liu H, He J, Liu Z, Lin Z, Du G, Zhang S, Li X (2013) Quasi-living trans-1,4-polymerization of isoprene by cationic rare earth metal alkyl species bearing a chiral (S, S)-bis(oxazolinylphenyl)amido ligand. Macromolecules 46(9):3257–3265CrossRefGoogle Scholar
  32. 32.
    Manna K, Kruse ML, Sadow AD (2011) Concerted C–N/C–H bond formation in highly enantioselective yttrium(III)-catalyzed hydroamination. ACS Catal 1(11):1637–1642CrossRefGoogle Scholar
  33. 33.
    Wang Q, Zhang F, Song H, Zi G (2011) Synthesis, structure, and catalytic activity of organolanthanides with chiral biphenyl-based tridentate amidate ligands. J Organomet Chem 696(10):2186–2192CrossRefGoogle Scholar
  34. 34.
    Vitanova DV, Hampel F, Hultzsch KC (2011) Linked bis(β-diketiminato) yttrium and lanthanum complexes as catalysts in asymmetric hydroamination/cyclization of aminoalkenes (AHA). J Organomet Chem 696(1):321–330CrossRefGoogle Scholar
  35. 35.
    Hangaly NK, Petrov AR, Rufanov KA, Harms K, Elfferding M, Sundermeyer J (2011) Cyclopentadienylphosphazene (CpPN) complexes of rare-earth metals: synthesis, structural characterization, and hydroamination catalysis. Organometallics 30(17):4544–4554CrossRefGoogle Scholar
  36. 36.
    Xu X, Chen Y, Feng J, Zou G, Sun J (2010) Half-sandwich indenyl rare earth metal dialkyl complexes: syntheses, structures, and catalytic activities of (1,3-(SiMe3)2C9H5)Ln(CH2SiMe3)2(THF). Organometallics 29(3):549–553CrossRefGoogle Scholar
  37. 37.
    Chai Z, Hua D, Li K, Zhou S, Chu J, Yang G (2014) Rare-earth metal complexes with tridentate linked amido-indenyl ligand: synthesis, characterization, and catalytic properties for intramolecular hydroamination. J Organomet Chem 768:136–139CrossRefGoogle Scholar
  38. 38.
    Trambitas AG, Panda TK, Jenter J, Roesky PW, Daniliuc C, Hrib CG, Jones PG, Tamm M (2010) Rare-earth metal alkyl, amido, and cyclopentadienyl complexes supported by imidazolin-2-iminato ligands: synthesis, structural characterization, and catalytic application. Inorg Chem 49(5):2435–2446CrossRefGoogle Scholar
  39. 39.
    Trambitas Alexandra G, Panda Tarun K, Tamm M (2010) Rare earth metal complexes supported by ancillary imidazolin-2-iminato ligands. Z Anorg Allg Chem 636(12):2156–2171CrossRefGoogle Scholar
  40. 40.
    Roux EL, Liang Y, Storz MP, Anwander R (2010) Intramolecular hydroamination/cyclization of aminoalkenes catalyzed by Ln[N(SiMe3)2]3 grafted onto periodic mesoporous silicas. J Am Chem Soc 132(46):16368–16371CrossRefGoogle Scholar
  41. 41.
    Lyubov DM, Luconi L, Rossin A, Tuci G, Cherkasov AV, Fukin GK, Giambastiani G, Trifonov AA (2014) Metal-to-ligand alkyl migration inducing carbon–sulfur bond cleavage in dialkyl yttrium complexes supported by thiazole-containing amidopyridinate ligands: synthesis, characterization, and catalytic activity in the intramolecular hydroamination reaction. Chem Eur J 20(12):3487–3499CrossRefGoogle Scholar
  42. 42.
    Reznichenko AL, Hultzsch KC (2010) Catalytic σ-bond metathesis. Struct Bond 137:1–48CrossRefGoogle Scholar
  43. 43.
    Behrle AC, Schmidt JAR (2013) Insertion reactions and catalytic hydrophosphination of heterocumulenes using α-metalated N, N-dimethylbenzylamine rare-earth-metal complexes. Organometallics 32(5):1141–1149CrossRefGoogle Scholar
  44. 44.
    Liu B, Roisnel T, Carpentier J-F, Sarazin Y (2013) Heteroleptic alkyl and amide iminoanilide alkaline earth and divalent rare earth complexes for the catalysis of hydrophosphination and (cyclo)hydroamination reactions. Chem Eur J 19(40):13445–13462CrossRefGoogle Scholar
  45. 45.
    Trifonov A, Kissel A, Mahrova T, Lyubov D, Cherkasov A, Fukin GK, Maron L, Del Rosal I (2015) Metallacyclic yttrium alkyl and hydrido complexes: synthesis, structures and catalytic activity in intermolecular olefin hydrophosphination and hydroamination. Dalton Trans 44(27):12137–12148Google Scholar
  46. 46.
    LeBlanc FA, Piers WE, Parvez M (2014) Selective hydrosilation of CO2 to a bis(silylacetal) using an anilido bipyridyl-ligated organoscandium catalyst. Angew Chem Int Ed 53(3):789–792CrossRefGoogle Scholar
  47. 47.
    Abinet E, Martin D, Standfuss S, Kulinna H, Spaniol TP, Okuda J (2011) Rare-earth metal allyl and hydrido complexes supported by an (NNNN)-type macrocyclic ligand: synthesis, structure, and reactivity toward biomass-derived furanics. Chem Eur J 17(52):15014–15026CrossRefGoogle Scholar
  48. 48.
    Lyubov DM, Shavyrin AS, Kurskii YA, Trifonov AA (2010) Hydrosilylation of non-1-ene with phenylsilane in the presence of yttrium and lutetium bisguanidinate hydride complexes. Russ Chem Bull 59(9):1765–1770CrossRefGoogle Scholar
  49. 49.
    Jian Z, Tang S, Cui D (2010) A lutetium allyl complex that bears a pyridyl-functionalized cyclopentadienyl ligand: dual catalysis on highly syndiospecific and cis-1,4-selective (co)polymerizations of styrene and butadiene. Chem Eur J 16(47):14007–14015CrossRefGoogle Scholar
  50. 50.
    Zimmermann M, Volbeda J, Törnroos KW, Anwander R (2010) Tetramethylcyclopentadienyl-supported rare-earth metal bis(tetramethyl)aluminate complexes: synthesis, structural chemistry, cation formation, and isoprene polymerization. C R Chim 13(6–7):651–660CrossRefGoogle Scholar
  51. 51.
    Zimmermann M, Törnroos KW, Anwander R (2008) Cationic rare-earth-metal half-sandwich complexes for the living trans-1,4-isoprene polymerization. Angew Chem Int Ed 47(4):775–778CrossRefGoogle Scholar
  52. 52.
    Jende LN, Maichle-Mössmer C, Anwander R (2013) Rare-earth-metal alkylaluminates supported by N-donor-functionalized cyclopentadienyl ligands: C–H bond activation and performance in isoprene polymerization. Chem Eur J 19(48):16321–16333CrossRefGoogle Scholar
  53. 53.
    Roux EL, Liang Y, Törnroos KW, Nief F, Anwander R (2012) Heterogenization of lanthanum and neodymium monophosphacyclopentadienyl bis(tetramethylaluminate) complexes onto periodic mesoporous silica SBA-15. Organometallics 31(18):6526–6537CrossRefGoogle Scholar
  54. 54.
    Dettenrieder N, Hollfelder CO, Jende LN, Maichle-Mössmer C, Anwander R (2014) Half-sandwich rare-earth-metal alkylaluminate complexes bearing peripheral boryl ligands. Organometallics 33(7):1528–1531CrossRefGoogle Scholar
  55. 55.
    Jende LN, Hollfelder CO, Maichle-Mössmer C, Anwander R (2015) Rare-earth-metal allyl complexes supported by the [2-(N, N-dimethylamino)ethyl]tetramethylcyclopentadienyl ligand: structural characterization, reactivity, and isoprene polymerization. Organometallics 34(1):32–41CrossRefGoogle Scholar
  56. 56.
    Valente A, Zinck P, Vitorino MJ, Mortreux A, Visseaux M (2010) Rare earths/main group metal alkyls catalytic systems for the 1,4-trans stereoselective coordinative chain transfer polymerization of isoprene. J Polym Sci Part A Polym Chem 48(21):4640–4647CrossRefGoogle Scholar
  57. 57.
    Pan Y, Xu T, Yang G-W, Jin K, Lu X-B (2013) Bis(oxazolinyl)phenyl-ligated rare-earth-metal complexes: highly regioselective catalysts for cis-1,4-polymerization of isoprene. Inorg Chem 52(6):2802–2808CrossRefGoogle Scholar
  58. 58.
    Jenter J, Meyer N, Roesky PW, Thiele SKH, Eickerling G, Scherer W (2010) Borane and borohydride complexes of the rare-earth elements: synthesis, structures, and butadiene polymerization catalysis. Chem Eur J 16(18):5472–5480CrossRefGoogle Scholar
  59. 59.
    Yang Y, Lv K, Wang L, Wang Y, Cui D (2010) Isoprene polymerization with aminopyridinato ligand supported rare-earth metal complexes. Switching of the regio- and stereoselectivity. Chem Commun 46(33):6150–6152CrossRefGoogle Scholar
  60. 60.
    Bonnet F, Dyer HE, El Kinani Y, Dietz C, Roussel P, Bria M, Visseaux M, Zinck P, Mountford P (2015) Bis(phenolate)amine-supported lanthanide borohydride complexes for styrene and trans-1,4-isoprene (co-)polymerisations. Dalton Trans 44(27):12312–12325CrossRefGoogle Scholar
  61. 61.
    Luo Y, Fan S, Yang J, Fang J, Xu P (2011) Rare earth metal bis(amide) complexes bearing amidinate ancillary ligands: synthesis, characterization, and performance as catalyst precursors for cis-1,4 selective polymerization of isoprene. Dalton Trans 40(12):3053–3059CrossRefGoogle Scholar
  62. 62.
    Hamidi S, Jende LN, Martin Dietrich H, Maichle-Mössmer C, Törnroos KW, Deacon GB, Junk PC, Anwander R (2013) C–H bond activation and isoprene polymerization by rare-earth-metal tetramethylaluminate complexes bearing formamidinato N-ancillary ligands. Organometallics 32(5):1209–1223CrossRefGoogle Scholar
  63. 63.
    Luo Y, Lei Y, Fan S, Wang Y, Chen J (2013) Synthesis of mono-amidinate-ligated rare-earth-metal bis(silylamide) complexes and their reactivity with [Ph3C][B(C6F5)4], AlMe3 and isoprene. Dalton Trans 42(11):4040–4051CrossRefGoogle Scholar
  64. 64.
    Li L, Wu C, Liu D, Li S, Cui D (2013) Binuclear rare-earth-metal alkyl complexes ligated by phenylene-bridged β-diketiminate ligands: synthesis, characterization, and catalysis toward isoprene polymerization. Organometallics 32(11):3203–3209CrossRefGoogle Scholar
  65. 65.
    Sun S, Ouyang H, Luo Y, Zhang Y, Shen Q, Yao Y (2013) Synthesis of β-diketiminate-ligated bimetallic and monometallic lanthanide amide complexes and their reactivity with isoprene and AlMe3. Dalton Trans 42(46):16355–16364CrossRefGoogle Scholar
  66. 66.
    Li D, Li S, Cui D, Zhang X (2010) β-Diketiminato rare-earth metal complexes. Structures, catalysis, and active species for highly cis-1,4-selective polymerization of isoprene. Organometallics 29(9):2186–2193CrossRefGoogle Scholar
  67. 67.
    Chen F, Fan S, Wang Y, Chen J, Luo Y (2012) Unusual Si–H bond activation and formation of cationic scandium amide complexes from a mono(amidinate)-ligated scandium bis(silylamide) complex and their performance in isoprene polymerization. Organometallics 31(9):3730–3735CrossRefGoogle Scholar
  68. 68.
    Martins N, Bonnet F, Visseaux M (2014) Highly efficient cis-1,4 polymerisation of isoprene using simple homoleptic amido rare earth-based catalysts. Polymer 55(20):5013–5016CrossRefGoogle Scholar
  69. 69.
    Jian Z, Cui D, Hou Z, Li X (2010) Living catalyzed-chain-growth polymerization and block copolymerization of isoprene by rare-earth metal allyl precursors bearing a constrained-geometry-conformation ligand. Chem Commun 46(17):3022–3024CrossRefGoogle Scholar
  70. 70.
    Zhang Z, Cui D, Wang B, Liu B, Yang Y (2010) Polymerization of 1,3-conjugated dienes with rare-earth metal precursors. Struct Bond 137:49–108CrossRefGoogle Scholar
  71. 71.
    Liu B, Li L, Sun G, Liu J, Wang M, Li S, Cui D (2014) 3,4-Polymerization of isoprene by using NSN- and NPN-ligated rare earth metal precursors: switching of stereo selectivity and mechanism. Macromolecules 47(15):4971–4978CrossRefGoogle Scholar
  72. 72.
    Du G, Wei Y, Ai L, Chen Y, Xu Q, Liu X, Zhang S, Hou Z, Li X (2011) Living 3,4-polymerization of isoprene by cationic rare earth metal alkyl complexes bearing iminoamido ligands. Organometallics 30(1):160–170CrossRefGoogle Scholar
  73. 73.
    Luconi L, Lyubov DM, Rossin A, Glukhova TA, Cherkasov AV, Tuci G, Fukin GK, Trifonov AA, Giambastiani G (2014) Organolanthanide complexes supported by thiazole-containing amidopyridinate ligands: synthesis, characterization, and catalytic activity in isoprene polymerization. Organometallics 33(24):7125–7134CrossRefGoogle Scholar
  74. 74.
    Wang L, Cui D, Hou Z, Li W, Li Y (2011) Highly cis-1,4-selective living polymerization of 1,3-conjugated dienes and copolymerization with ε-caprolactone by bis(phosphino)carbazolide rare-earth-metal complexes. Organometallics 30(4):760–767CrossRefGoogle Scholar
  75. 75.
    Annunziata L, Duc M, Carpentier J-F (2011) Chain growth polymerization of isoprene and stereoselective isoprene–styrene copolymerization promoted by an ansa-bis(indenyl)allyl–yttrium complex. Macromolecules 44(18):7158–7166CrossRefGoogle Scholar
  76. 76.
    Ventura A, Chenal T, Bria M, Bonnet F, Zinck P, Ngono-Ravache Y, Balanzat E, Visseaux M (2013) Trans-stereospecific polymerization of butadiene and random copolymerization with styrene using borohydrido neodymium/magnesium dialkyl catalysts. Eur Polym J 49(12):4130–4140CrossRefGoogle Scholar
  77. 77.
    Valente A, Stoclet G, Bonnet F, Mortreux A, Visseaux M, Zinck P (2014) Isoprene–styrene chain shuttling copolymerization mediated by a lanthanide half-sandwich complex and a lanthanidocene: straightforward access to a new type of thermoplastic elastomers. Angew Chem Int Ed 53(18):4638–4641CrossRefGoogle Scholar
  78. 78.
    Liu S, Du G, He J, Long Y, Zhang S, Li X (2014) Cationic tropidinyl scandium catalyst: a perfectly acceptable substitute for cationic half-sandwich scandium catalysts in cis-1,4-polymerization of isoprene and copolymerization with norbornene. Macromolecules 47(11):3567–3573CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Karlsruhe Institute of TechnologyKarlsruheGermany

Personalised recommendations