Advertisement

Explosives Detection: From Sensing to Response

  • Liliana Marques MarteloEmail author
  • Lino Forte Marques
  • Hugh Douglas Burrows
  • Mário Nuno Berberan-Santos
Chapter
Part of the Springer Series on Fluorescence book series (SS FLUOR, volume 18)

Abstract

The purpose of this chapter is to summarize the state of art of fluorescence-based explosive sensors in a simple way, focusing especially on the research progress. Importantly, the advances in this field are organized in the different strategies and improvements in the exploitation of fluorescence explosives detection. Mechanisms of fluorescence explosives detection are reviewed, not only fluorescence-quenching-based mechanisms but also some novel mechanism which are applied in explosives detection. We also focused our discussion on several fluorescent probes that can be used for the detection of explosives, in this way the discussion is organized based on their structures. Some design and data treatment requirements for obtaining an optical sensor are discussed, including statistical analysis and signal modelling. At the end of the chapter, future directions and perspectives are presented and discussed.

Keywords

Explosives detection Fluorescence sensing Optical sensing Terrorism and countermeasures Trace analysis 

Notes

Acknowledgements

This work was supported by Fundação para a Ciência e Tecnologia (Portugal) within project FAPESP/20107/2014. L. Martelo was supported by Fundação para a Ciência e Tecnologia (FCT, Portugal) with a Postdoctoral Fellowship (SFRH/BPD/121728/2016). H. D. Burrows is grateful for funding from “The Coimbra Chemistry Centre” which is supported by the Fundação para a Ciência e a Tecnologia (FCT), through the programmes UID/QUI/UI0313/2019 and COMPETE.

References

  1. 1.
    Meyer R, Köhler J, Homburg A (2015) Explosives, 7th edn. Wiley, WeinheimGoogle Scholar
  2. 2.
    Woodfin RL (2007) Trace chemical sensing explosives. Wiley, HobokenGoogle Scholar
  3. 3.
    Sun X, Wang Y, Lei Y (2015). Chem Soc Rev 44:8019–8061CrossRefGoogle Scholar
  4. 4.
    Cooper PW (1996) Explosives engineering. Wiley, HobokenGoogle Scholar
  5. 5.
    Aziz A, Mamat R, Ali W, Perang M (2015). J Eng Appl Sci 10(15):6188–6191Google Scholar
  6. 6.
    Schulte-Ladbeck R, Vogel M, Karst U (2006). Anal Bioanal Chem 386:559–565CrossRefGoogle Scholar
  7. 7.
    Östmark H, Wallin S, Ang HG (2012). Propellants Explos Pyrotch 37:12–33CrossRefGoogle Scholar
  8. 8.
    Harper RJ, Almirall JR, Furton KG (2005). Talanta 67:313–327CrossRefGoogle Scholar
  9. 9.
    Schulte-Ladbeck R, Kolla P, Karst U (2002). Analyst 127:1152–1154CrossRefGoogle Scholar
  10. 10.
    Johnen D, Heuwieser W, Fischer-Tenhagen C (2013). Appl Anim Behav Sci 148:201–208CrossRefGoogle Scholar
  11. 11.
    Ong T, Mendum T, Guertsen G, Kelley J, Ostrinskaya A, Kunz R (2017). Anal Chem 89:6482–6490CrossRefGoogle Scholar
  12. 12.
    Caygill JS, Davis F, Higson SPJ (2012). Talanta 88:14–29CrossRefGoogle Scholar
  13. 13.
    Brown KE, Greenfield MT, McGrane SD, More DS (2016). Anal Bioanal Chem 408:35–47CrossRefGoogle Scholar
  14. 14.
    Bello R (2013). Front Sci 3(1):27–42Google Scholar
  15. 15.
    Moore DS (2004). Appl Phys Lett 75(8):2499–2512Google Scholar
  16. 16.
    Steinfeld JL, Wormhoudt J (1998). Annu Rev Phys Chem 49:203–232CrossRefGoogle Scholar
  17. 17.
    Cheng S, Dou J, Wang W, Chen C, Hua L, Zhou Q, Hou K, Li J, Li H (2013). Anal Chem 85:319–326CrossRefGoogle Scholar
  18. 18.
    Tabrizchi M, Ilbeigi V (2010). J Hazard Mater 176:692–696CrossRefGoogle Scholar
  19. 19.
    Ewing RG, Alkison DA, Eiceman GA, Ewing GJ (2001). Talanta 54:515–529CrossRefGoogle Scholar
  20. 20.
    Singh S (2007). J Hazard Mater 144:15–28CrossRefGoogle Scholar
  21. 21.
    Marshall M, Oxley J (eds) (2009) Aspects of explosives detection, 1st edn. Elsevier, OxfordGoogle Scholar
  22. 22.
    Mokalled L, Al-Husseini M, Kabalan KY, El-Hajj A (2014). Int J Sci Eng Res 5(6):337–350Google Scholar
  23. 23.
    Evans RC, Douglas P, Burrows HD (eds) (2013) Applied photochemistry. Springer, DordrechtGoogle Scholar
  24. 24.
    Germain MG, Knapp MJ (2009). Chem Soc Rev 38:2543–2555CrossRefGoogle Scholar
  25. 25.
    Pablos JL, Sarabia LA, Ortiz MC, Mendína A, Muñoz A, Serna F, García FC, García JM (2015). Sens Actuat B Chem 212:18–27CrossRefGoogle Scholar
  26. 26.
    Pablos JL, Trigo-López M, Serna F, García FC, García JM (2014). RSC Adv 49:25562–25568CrossRefGoogle Scholar
  27. 27.
    Wang S, Li N, Pan W, Tang B (2012). Trends Anal Chem 39:3–37CrossRefGoogle Scholar
  28. 28.
    Ma Y, Wang S, Wang L (2015). Trends Anal Chem 65:13–21CrossRefGoogle Scholar
  29. 29.
    Salinas Y, Martínez-Máñez R, Marcos MD, Sancenón F, Costero AM, Parra M, Gil S (2012). Chem Soc Rev 41:1261–1296CrossRefGoogle Scholar
  30. 30.
    Valeur B, Berberan-Santos MN (2012) Molecular fluorescence, principles and applications, 2nd edn. Wiley, WeinheimGoogle Scholar
  31. 31.
    He G, Yang N, Wang H, Ding L, Yin S, Fang Y (2011). Macromolecules 44:4759–4766CrossRefGoogle Scholar
  32. 32.
    Nie H, Lv Y, Yao L, Pan Y, Zhao Y, Li P, Sun G, Ma Y, Zhang M (2014). J Hazard Mater 264:474–480CrossRefGoogle Scholar
  33. 33.
    Wu J, Liu W, Ge J, Zhang H, Wang P (2011). Chem Soc Rev 40:3483–3495CrossRefGoogle Scholar
  34. 34.
    Lakowicz J (2006) Principles of fluorescence spectroscopy3th edn. Springer, New YorkCrossRefGoogle Scholar
  35. 35.
    Feng L, Li H, Qu Y, Lu C (2012). Chem Commun 48:4633–4635CrossRefGoogle Scholar
  36. 36.
    Wang Y, La A, Brückner C, Lei Y (2012). Chem Commun 48:9903–9905CrossRefGoogle Scholar
  37. 37.
    Fan L, Zhang Y, Murphy CB, Angell SE, Parker MFL, Flynn BR, Jones Jr WE (2009). Coord Chem 253:410–422CrossRefGoogle Scholar
  38. 38.
    Kundu S, Patra A (2017). Chem Rev 117:712–757CrossRefGoogle Scholar
  39. 39.
    McQuade DT, Pullen AE, Swager TM (2000). Chem Rev 100:2537–2574CrossRefGoogle Scholar
  40. 40.
    Amara JP, Swager TM (2005). Macromolecules 38(22):9091–9094CrossRefGoogle Scholar
  41. 41.
    Wasnick JH, Mello CM, Swager TM (2005). J Am Chem Soc 127(10):3400–3405CrossRefGoogle Scholar
  42. 42.
    Feng X, Liu L, Wang S, Zhu D (2010). Chem Soc Rev 39:2411–2419CrossRefGoogle Scholar
  43. 43.
    Cotts PM, Swager TM, Zhou Q (1996). Macromolecules 29:7323–7338CrossRefGoogle Scholar
  44. 44.
    Yang JS, Swager TM (1998). J Am Chem Soc 120:5321–5322CrossRefGoogle Scholar
  45. 45.
    Yang JS, Swager TM (1998). J Am Chem Soc 120:11864–11873CrossRefGoogle Scholar
  46. 46.
    Cumming CJ, Aker C, Fisher M, Fox M, La Grone MJ, Reust D, Rockley MG, Swager TM, Towers E, Willians V (2001). IEEE Trans Geosci Remote Sens 39:1119–1128CrossRefGoogle Scholar
  47. 47.
    Xie L, Yin C, Lai W, Fan Q, Huang W (2012). Prog Polym Sci 37:1192–1264CrossRefGoogle Scholar
  48. 48.
    Martelo L, Neves T, Figueiredo J, Marques L, Fedorov A, Charas A, Berberan-Santos MN, Burrows H (2017). Sensors 17(11):2532CrossRefGoogle Scholar
  49. 49.
    Martelo L, Valente A, Fonseca S, Burrows H, Marques A, Forster M, Scherf U, Peltzer M, Jiménez A (2012). Polym Int 61:1023–1030CrossRefGoogle Scholar
  50. 50.
    Neves T, Marques L, Martelo L, Burrows HD (2014). IEEE Sens Proc 11:1415–1418Google Scholar
  51. 51.
    Shanmugaraju S, Mukherjee PS (2015). Chem Commun 51:16014–16032CrossRefGoogle Scholar
  52. 52.
    Martelo L, Fedorov A, Berberan-Santos MN (2015). J Phys Chem B 119(48):15023–15029CrossRefGoogle Scholar
  53. 53.
    Goodpaster JV, McGuffin VL (2001). Anal Chem 73:2004–2011CrossRefGoogle Scholar
  54. 54.
    Focsaneanu KS, Scaiano JC (2005). Photochem Photobiol Sci 4:817–821CrossRefGoogle Scholar
  55. 55.
    Akhavan J (2011) The chemistry of explosives, 3rd edn. RSC, CambridgeGoogle Scholar
  56. 56.
    Peng Y, Zhang A, Dong M, Wang Y (2011). Chem Commun 47:4505–4507CrossRefGoogle Scholar
  57. 57.
    Du H, He G, Liu T, Ding L, Fang Y (2011). J Photochem Photobiol A 217:356–362CrossRefGoogle Scholar
  58. 58.
    Ding A, Yang L, Zhang Y, Zhang G, Kong L, Zhang X, Tian Y, Tao X, Yang J (2014). Chem Eur J 20:12215–12222CrossRefGoogle Scholar
  59. 59.
    Akhgari F, Fattahi H, Oskei YM (2015). Sens Actuat B 221:867–878CrossRefGoogle Scholar
  60. 60.
    Goldman ER, Medintz IL, Whitley JL, Hayhurst A, Clapp AR, Uyeda HT, Deschamps JR, Lassman ME, Mattoussi H (2005). J Am Chem Soc 127:6744–6751CrossRefGoogle Scholar
  61. 61.
    Enkin N, Sharon E, Golub E, Willner I (2014). Nano Lett 14:4918–4922CrossRefGoogle Scholar
  62. 62.
    Toal SJ, Magde D, Trogler WC (2005). Chem Commun 0:5465–5467CrossRefGoogle Scholar
  63. 63.
    Sohn H, Sailor MJ, Magde M, Trogler WC (2003). J Am Chem Soc 125:3821–3830CrossRefGoogle Scholar
  64. 64.
    Jerónimo PCA, Araújo AN, Conceição M, Montenegro BSM (2007). Talanta 72:13–27CrossRefGoogle Scholar
  65. 65.
    Daly R, Harrington TS, Martin GD, Hutcchings IM (2015). Int J Pharm 494:554–567CrossRefGoogle Scholar
  66. 66.
    Derby B (2010). Annu Rev Mater Res 40:395–414CrossRefGoogle Scholar
  67. 67.
    Kipphan H (2001) Handbook of print meida, 1st edn. Springer, New YorkGoogle Scholar
  68. 68.
    Ihalainen P, Määttänen A, Sandler N (2015). Int J Pharm 494:585–592CrossRefGoogle Scholar
  69. 69.
    Owens GJ, Singh RK, Foroutan F, Alqaysi M, Han CM, Mahapatra C, Kim HW, Knowles JC (2016). Prog Mater Sci 77:1–79CrossRefGoogle Scholar
  70. 70.
    Leung A, Shankar PM, Mutharasan R (2007). Sens Actuat B 125:688–703CrossRefGoogle Scholar
  71. 71.
    Pantano P, Walt DR (1996). Chem Mater 8:2832–2835CrossRefGoogle Scholar
  72. 72.
    Walt DR (2006). BioTechniques 41:529–535CrossRefGoogle Scholar
  73. 73.
    Thomsen V, Schatzlein D, Mercuro D (2003). Spectroscopy 18(12):112–114Google Scholar
  74. 74.
    Winquist F, Lundström I, Wide P (1999). Sens Actuat B 58:512–517CrossRefGoogle Scholar
  75. 75.
    Dasary SSR, Singh AK, Lee KS, Yu H, Ray PC (2018). Sens Actuat B 255:1646–1654CrossRefGoogle Scholar
  76. 76.
    Guiterrez-Osuna R (2002). IEEE Sensors J 2:189–202CrossRefGoogle Scholar
  77. 77.
    Pioggia G, Ferro M, Di Francesco F, Ahluwalia A, De Rossi D (2008). Bioinspir Biomim 3:1–11CrossRefGoogle Scholar
  78. 78.
    Goodner K, Dreher G, Rouseff R (2001). Sens Actuat B 80:261–266CrossRefGoogle Scholar
  79. 79.
    Banerjee R, Tudu B, Bandyopadhyay R, Bhattacharyya N (2016). J Food Eng 190:110–121CrossRefGoogle Scholar
  80. 80.
    Shannon WD (2007). Handbook Statist 27:342–366CrossRefGoogle Scholar
  81. 81.
    Massart DL, Kaufman L (1983) The interpretation of analytical chemical data by the use of cluster analysis. Wiley, New YorkGoogle Scholar
  82. 82.
    Askim JR, Mahmoudi M, Suslick KS (2013). Chem Soc Rev 42:8649–8682CrossRefGoogle Scholar
  83. 83.
    Lin H, Suslick KS (2010). J Am Chem Soc 132:15519–15521CrossRefGoogle Scholar
  84. 84.
    Li H, Kim MK, Altman N (2010). Ann Stat 38:1094–1121CrossRefGoogle Scholar
  85. 85.
    Zeng P, Zhang W (2013). Top Appl Stat 55:213–217CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Liliana Marques Martelo
    • 1
    • 2
    Email author
  • Lino Forte Marques
    • 3
  • Hugh Douglas Burrows
    • 2
  • Mário Nuno Berberan-Santos
    • 1
  1. 1.Centro de Química-Física Molecular (CQFM), The Institute of Nanoscience and Nanotechnology (IN) and The Institute for Bioengineering and Biosciences (iBB), Instituto Superior TécnicoUniversity of LisbonLisbonPortugal
  2. 2.Department of ChemistryUniversity of CoimbraCoimbraPortugal
  3. 3.Institute of Systems and Robotics (ISR)University of CoimbraCoimbraPortugal

Personalised recommendations