Advertisement

Application of Fluorescence in Life Sciences for Basic Research and Medical Diagnostics

  • Gerhard HawaEmail author
Chapter
Part of the Springer Series on Fluorescence book series (SS FLUOR, volume 18)

Abstract

This chapter summarizes the use of fluorescence for either diagnostic or basic research in modern life sciences. While the first section concentrates on microscopic applications for, e.g., monitoring of living cells, the second one focuses on analytical aspects, i.e., detection and quantitation of nucleic acids or proteins for research or diagnostic purposes. The state-of-the-art microscopic technologies (CLSM, TIRF, TPFM, STED) and analytical methods (RT-PCR, next-gen sequencing, multiplexing, microarrays) are discussed.

Keywords

Apoptosis Endocytosis Gerontology Microarrays Multiplexing Phenotype 

References

  1. 1.
    Shaner NC et al (2005) A guide to choosing fluorescent proteins. Nat Methods 2:905–909PubMedGoogle Scholar
  2. 2.
    Eisenstein M (2006) Helping cells to tell a colorful tale. Nat Methods 3:647–655Google Scholar
  3. 3.
    Coling D, Kachar B (1997) Theory and application of fluorescence microscopy. Curr Protoc Neurosci; Chapter 2:1. Unit 2Google Scholar
  4. 4.
    Suzuki T et al (2007) Recent advances in fluorescent labeling techniques for fluorescence microscopy. Acta Histochem Cytochem 40:131–137PubMedPubMedCentralGoogle Scholar
  5. 5.
    Diaspro A et al (2006) Multi-photon excitation microscopy. Biomed Eng Online 5:36PubMedPubMedCentralGoogle Scholar
  6. 6.
    Hibbs AR (2004) Confocal microscopy for biologists. Springer, New YorkGoogle Scholar
  7. 7.
    Pawley JB (ed) (2006) Handbook of biological confocal microscopy. Springer, New YorkGoogle Scholar
  8. 8.
    Fish KN (2009) Total Internal Reflection Fluorescence (TIRF) Microscopy. Current protocols in cytometry/editorial board;0 12:Unit12.18Google Scholar
  9. 9.
    Kudalkar EM, Davis TN, Asbury CL (2016) Single-molecule total internal reflection fluorescence microscopy. Cold Spring Harb Protoc 2016(5)Google Scholar
  10. 10.
    Svoboda K, Yasuda R (2006) Principles of two-photon excitation microscopy and its applications to neuroscience. Neuron 50:823–839PubMedGoogle Scholar
  11. 11.
    Wallace W et al (2001) A workingperson’s guide to deconvolution in light microscopy. BioTechniques 31:1076–1080PubMedGoogle Scholar
  12. 12.
    Willig KI et al (2006) STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis. Nature 440:935–939PubMedGoogle Scholar
  13. 13.
    Willig KI et al (2007) STED microscopy with continuous wave beams. Nat Methods 4:915–918PubMedGoogle Scholar
  14. 14.
    Alonso C (2013) An overview of stimulated emission depletion (STED) microscopy and applications. J Biomol Tech 24(Suppl):S4PubMedCentralGoogle Scholar
  15. 15.
    Craig FE, Foon KA (2008) Flow cytometric immunophenotyping for hematologic neoplasms. Blood 111:3941–3967PubMedGoogle Scholar
  16. 16.
    Qadir M, Barcos M, Stewart CC, Sait SN, Ford LA, Baer MR (2006) Routine immunophenotyping in acute leukemia: role in lineage assignment and reassignment. Cytometry 70:329–334PubMedGoogle Scholar
  17. 17.
    Wood BL, Arroz M, Barnett D, DiGiuseppe J, Greig B, Kussick SJ, Oldaker T, Shenkin M, Stone E, Wallace P (2007) 2006 Bethesda international consensus recommendations on the immunophenotypic analysis of hematolymphoid neoplasia by flow cytometry: optimal reagents and reporting for the flow cytometric diagnosis of hematopoietic neoplasia. Cytometry B Clin Cytom 72(Suppl 1):S14–S22PubMedGoogle Scholar
  18. 18.
    Campana D, Coustan-Smith E (2004) Minimal residual disease studies by flow cytometry in acute leukemia. Acta Haematol 112:8–15PubMedGoogle Scholar
  19. 19.
    Kern W, Haferlach C, Haferlach T, Schnittger S (2008) Monitoring of minimal residual disease in acute myeloid leukemia. Cancer 112:4–16PubMedGoogle Scholar
  20. 20.
    Keeney M, Chin-Yee I, Weir K, Popma J, Nayar R, Sutherland DR (1998) Single platform flow cytometric absolute CD34+ cell counts based on the ISHAGE guidelines. Cytometry 34:61–70PubMedGoogle Scholar
  21. 21.
    Bell A, Shenton B, Garner G (1998) The flow cytometric crossmatch in solid organ transplantation. Proc RMS 33:219–220Google Scholar
  22. 22.
    Shanahan T (1997) Application of flow cytometry in transplantation medicine. Immunol Investig 26:91–101Google Scholar
  23. 23.
    Mandy F, Nicholson J, Autran B, Janossy G (2002) T-cell subset counting and the fight against AIDS: reflections over a 20-year struggle. Cytometry 50:39–45PubMedGoogle Scholar
  24. 24.
    Mandy F, Janossy G, Bergeron M, Pilon R, Faucher S (2008) Affordable CD4 T-cell enumeration for resource-limited regions: a status report for 2008. Cytometry 74(Suppl 1):S27–S39PubMedGoogle Scholar
  25. 25.
    Nance SJ, Nelson JM, Arndt PA, Lam HC, Garratty G (1989) Quantitation of fetal-maternal hemorrhage by flow cytometry. A simple and accurate method. Am J Clin Pathol 91:288–292PubMedGoogle Scholar
  26. 26.
    Davis BH, Bigelow NC (1994) Reticulocyte analysis and reticulocyte maturity index. In: Darzynkiewicz Z, Crissman HA (eds) Flow cytometry. Methods in cell biology, vol 42. Academic, San Diego, pp 263–274Google Scholar
  27. 27.
    Harrison P, Segal H, Briggs C, Murphy M, Machin S (2005) Impact of immunological platelet counting (by the platelet/RBC ratio) on haematological practice. Cytometry 67:1–5PubMedGoogle Scholar
  28. 28.
    Schröter C, Beck J, Krah S, Zielonka S, Doerner A, Rhiel L, Günther R, Toleikis L, Kolmar H, Hock B, Becker S (2018) Selection of antibodies with tailored properties by application of high-throughput multiparameter fluorescence-activated cell sorting of yeast-displayed immune libraries. Mol Biotechnol 60(10):727–735PubMedPubMedCentralGoogle Scholar
  29. 29.
    Miura I, Takahashi N, Kobayashi Y, Saito K, Miura AB (2000 Oct) Molecular cytogenetics of stem cells: target cells of chromosome aberrations as revealed by the application of fluorescence in situ hybridization to fluorescence-activated cell sorting. Int J Hematol 72(3):310–317PubMedGoogle Scholar
  30. 30.
    Miura I, Kobayashi Y, Takahashi N, Saitoh K, Miura AB (2000) Involvement of natural killer cells in patients with myelodysplastic syndrome carrying monosomy 7 revealed by the application of fluorescence in situ hybridization to cells collected by means of fluorescence-activated cell sorting. Br J Haematol 110(4):876–879PubMedGoogle Scholar
  31. 31.
    Ramakers C, Ruijter JM, Deprez RH, Moorman AF (2003) Assumption-free analysis of quantitative real-time PCR data. Neurosci Lett 339:62–66PubMedGoogle Scholar
  32. 32.
    Gentle A, Anastaopoulos F, McBrien NA (2001) High-resolution semi-quantitative real-time PCR without the use of a standard curve. BioTechniques 31:502–508PubMedGoogle Scholar
  33. 33.
    Kim J, Jung S, Byoun MS, Yoo C, Sim SJ, Lim CS, Kim SW, Kim SK (2018) Multiplex real-time PCR using temperature sensitive primer-supplying hydrogel particles and its application for malaria species identification. PLoS One 13(1):e0190451PubMedPubMedCentralGoogle Scholar
  34. 34.
    Li B, Liu H, Wang W (2017) Multiplex real-time PCR assay for detection of Escherichia coli O157:H7 and screening for non-O157 Shiga toxin-producing E. coli. BMC Microbiol 17:215PubMedPubMedCentralGoogle Scholar
  35. 35.
    Rashed-Ul Islam SM, Jahan M, Tabassum S (2015) Evaluation of a rapid one-step real-time PCR method as a high-throughput screening for quantification of hepatitis B virus DNA in a resource-limited setting. Euroasian J Hepatogastroenterol 5(1):11–15PubMedPubMedCentralGoogle Scholar
  36. 36.
    Mackay IM (2004) Real-time PCR in the microbiology laboratory. Clin Microbiol Infect 10:190–212PubMedGoogle Scholar
  37. 37.
    Mitchell LA, Phillips NA, Lafont A, Martin JA, Cutting R, Boeke JD (2015) pCRTag Analysis - a high throughput, real time PCR assay for Sc2.0 genotyping. J Vis Exp 99:52941Google Scholar
  38. 38.
    Wittwer CT, Reed GH, Gundry CN, Vandersteen JG, Pryor RJ (2003) High-resolution genotyping by amplicon melting analysis using LCGreen. Clin Chem 49:853–860PubMedGoogle Scholar
  39. 39.
    Guarnaccia M, Iemmolo R, Petralia S, Conoci S, Cavallaro S (2017) Miniaturized real-time PCR on a Q3 system for rapid KRAS genotyping. Sensors (Basel) 17(4):831Google Scholar
  40. 40.
    Nieto-Aponte L, Quer J, Ruiz-Ripa A, Tabernero D, Gonzalez C, Gregori J, Vila M, Asensio M, Garcia-Cehic D, Ruiz G, Chen Q, Ordeig L, Llorens M, Saez M, Esteban JI, Esteban R, Buti M, Pumarola T, Rodriguez-Frias F (2017) Assessment of a novel automatic real-time PCR assay on the Cobas 4800 analyzer as a screening platform for hepatitis C virus genotyping in clinical practice: comparison with massive sequencing. J Clin Microbiol 55(2):504–509PubMedPubMedCentralGoogle Scholar
  41. 41.
    Deligezer U, Akisik E, Dalay N (2003) Genotyping of the MTHFR gene polymorphism, C677T in patients with leukemia by melting curve analysis. Mol Diagn 7:181–185PubMedGoogle Scholar
  42. 42.
    Zuna J, Muzikova K, Madzo J, Krejci O, Trka J (2002) Temperature nonhomogeneity in rapid airflow-based cycler significantly affects real-time PCR. BioTechniques 33:508–512PubMedGoogle Scholar
  43. 43.
    Bennett ST, Barnes C, Cox A et al (2005) Toward the 1000 dollars human genome. Pharmacogenomics 6:373PubMedGoogle Scholar
  44. 44.
    Goldfeder RL, Wall DP, Khoury MJ et al (2017) Human genome sequencing at the population scale: a primer on high-throughput DNA sequencing and analysis. Am J Epidemiol 186:1000PubMedPubMedCentralGoogle Scholar
  45. 45.
    Deurenberg HR et al (2017) Application of next generation sequencing in clinical microbiology and infection prevention. J Biotechnol 243:16–24PubMedGoogle Scholar
  46. 46.
    Easton DF, Pharoah PD, Antoniou AC et al (2015) Gene-panel sequencing and the prediction of breast-cancer risk. N Engl J Med 372:2243PubMedPubMedCentralGoogle Scholar
  47. 47.
    Rehm HL, Bale SJ, Bayrak-Toydemir P et al (2013) ACMG clinical laboratory standards for next-generation sequencing. Genet Med 15:733PubMedPubMedCentralGoogle Scholar
  48. 48.
    Zehir A, Benayed R, Shah RH et al (2017) Mutational landscape of metastatic cancer revealed from prospective clinical sequencing of 10,000 patients. Nat Med 23:703PubMedPubMedCentralGoogle Scholar
  49. 49.
    Rizzo JM, Buck MJ (2012) Key principles and clinical applications of “next-generation” DNA sequencing. Cancer Prev Res (Phila) 5:887Google Scholar
  50. 50.
    Taylor JC, Martin HC, Lise S et al (2015) Factors influencing success of clinical genome sequencing across a broad spectrum of disorders. Nat Genet 47:717PubMedPubMedCentralGoogle Scholar
  51. 51.
    Biesecker LG, Green RC (2014) Diagnostic clinical genome and exome sequencing. N Engl J Med 370:2418PubMedGoogle Scholar
  52. 52.
    Lazaridis KN, Schahl KA, Cousin MA et al (2016) Outcome of whole exome sequencing for diagnostic odyssey cases of an individualized medicine clinic. The Mayo Clinic experience. Mayo Clin Proc 91:297PubMedGoogle Scholar
  53. 53.
    Vassy JL, Christensen KD, Schonman EF et al (2017) The impact of whole-genome sequencing on the primary care and outcomes of healthy adult patients: a pilot randomized trial. Ann Intern Med 167(3):159–169PubMedPubMedCentralGoogle Scholar
  54. 54.
    Tarailo-Graovac M, Shyr C, Ross CJ et al (2016) Exome sequencing and the management of neurometabolic disorders. N Engl J Med 374:2246PubMedPubMedCentralGoogle Scholar
  55. 55.
    Wild D (2005) The immunoassay handbook, 4th edn. Elsevier, London. ISBN: 9780080970370Google Scholar
  56. 56.
    Crowther JR (2009) Methods in molecular biology, the ELISA guidebook, 2nd edn. Humana Press, New YorkGoogle Scholar
  57. 57.
    Butler JE (1992) The behavior of antigens and antibodies immobilized on a solid phase. In: Van Regenmortel MHV (ed) Structure of antigens, vol 1. CRC Press, Boca Raton, pp 209–259Google Scholar
  58. 58.
    Lequin RM (2005) Enzyme immunoassay (EIA)/enzyme-linked immunosorbent assay (ELISA). Clin Chem 51(12):2415–2418Google Scholar
  59. 59.
    Engvall E, Perlmann P (1971) Enzyme-linked immunosorbent assay (ELISA) quantitative assay of immunoglobulin G. Immunochemistry 8(9):871–874PubMedGoogle Scholar
  60. 60.
    Kalarestaghi A, Bayat M, Hashemi SJ, Razavilar V (2015) Highly sensitive FRET-based fluorescence immunoassay for detecting of aflatoxin B1 using magnetic/silica core-shell as a signal intensifier. Iran J Biotechnol 13(3):25–31PubMedPubMedCentralGoogle Scholar
  61. 61.
    Han J-H, Sudheendra L, Kennedy IM (2015) FRET-based homogeneous immunoassay on nanoparticle-based photonic crystal. Anal Bioanal Chem 407(18):5243–5247PubMedPubMedCentralGoogle Scholar
  62. 62.
    Kattke MD, Gao EJ, Spsford KE, Stephenson LD, Kumar A (2011) FRET-based quantum dot immunoassay for rapid and sensitive detection of Aspergillus amstelodami. Sensors (Basel) 11(6):6396–6410Google Scholar
  63. 63.
    Farino ZJ, Morgenstern TJ, Vallaghe J et al (2016) Development of a rapid insulin assay by homogenous time-resolved fluorescence. PLoS One 11(2):e0148684PubMedPubMedCentralGoogle Scholar
  64. 64.
    De Silva CR, Vagner J, Lynch R, Gillies RJ, Hruby VJ (2010) Optimization of time-resolved fluorescence assay for detection of Eu-DOTA-labeled ligand-receptor interactions. Anal Biochem 398(1):15–23PubMedGoogle Scholar
  65. 65.
    Lopez-Crapez E, Bazin H, Andre E, Noletti J, Grenier J, Mathis G (2001) A homogeneous europium cryptate-based assay for the diagnosis of mutations by time-resolved fluorescence resonance energy transfer. Nucleic Acids Res 29(14):e70PubMedPubMedCentralGoogle Scholar
  66. 66.
    Gryczynski Z, Malicka J, Gryczynski I et al (2004) Metal-enhanced fluorescence: a novel approach to ultra-sensitive fluorescence sensing assay platforms. Proc SPIE Int Soc Opt Eng 5321(275):275–282PubMedPubMedCentralGoogle Scholar
  67. 67.
    Aslan K, Geddes CD (2006) Microwave-accelerated and metal-enhanced fluorescence myoglobin detection on silvered surfaces: potential application to myocardial infarction diagnosis. Plasmonics 1(1):53–59PubMedPubMedCentralGoogle Scholar
  68. 68.
    Aslan K (2010) Rapid whole blood bioassays using microwave-accelerated metal-enhanced fluorescence. Nano Biomed Eng 2(1):1–9PubMedPubMedCentralGoogle Scholar
  69. 69.
    Hawa G et al (2018) Single step, direct fluorescence immunoassays based on metal enhanced fluorescence (MEF-FIA) applicable as micro plate-, array-, multiplexing- or point of care-format. Anal Biochem 549:39–44PubMedGoogle Scholar
  70. 70.
    Lim CT, Zhang Y (2007) Bead-based microfluidic immunoassays: the next generation. Biosens Bioelectron 22(7):1197–1204PubMedGoogle Scholar
  71. 71.
    Houser B (2012) Bio-Rad’s Bio-Plex® suspension array system, xMAP technology overview. Arch Physiol Biochem 118(4):192–196PubMedPubMedCentralGoogle Scholar
  72. 72.
    Khan IH, Mendoza S, Yee J et al (2006) Simultaneous detection of antibodies to six nonhuman-primate viruses by multiplex microbead immunoassay. Clin Vaccine Immunol 13(1):45–52PubMedPubMedCentralGoogle Scholar
  73. 73.
    Rashtak S, Ettore MW, Homburger HA, Murray JA (2008) Combination testing for antibodies in the diagnosis of coeliac disease: comparison of multiplex immunoassay and ELISA methods. Aliment Pharmacol Ther 28(6):805–813PubMedPubMedCentralGoogle Scholar
  74. 74.
    Lim K-H, Langley E, Gao F et al (2017) A clinically feasible multiplex proteomic immunoassay as a novel functional diagnostic for pancreatic ductal adenocarcinoma. Oncotarget 8(15):24250–24261PubMedPubMedCentralGoogle Scholar
  75. 75.
    Rudi K, Rud I, Holck A (2003) A novel multiplex quantitative DNA array based PCR (MQDA-PCR) for quantification of transgenic maize in food and feed. Nucleic Acids Res 31(11):e62PubMedPubMedCentralGoogle Scholar
  76. 76.
    Gannot G, Tangrea MA, Erickson HS et al (2007) Layered peptide array for multiplex immunohistochemistry. J Mol Diagn 9(3):297–304PubMedPubMedCentralGoogle Scholar
  77. 77.
    Light M, Minor KH, DeWitt P, Jasper KH, Davies SJ (2012) Multiplex array proteomics detects increased MMP-8 in CSF after spinal cord injury. J Neuroinflammation 9:122PubMedPubMedCentralGoogle Scholar
  78. 78.
    Bünger S, Haug U, Kelly M et al (2012) A novel multiplex-protein array for serum diagnostics of colon cancer: a case–control study. BMC Cancer 12:393PubMedPubMedCentralGoogle Scholar
  79. 79.
    Welton JL, Brennan P, Gurney M et al (2016) Proteomics analysis of vesicles isolated from plasma and urine of prostate cancer patients using a multiplex, aptamer-based protein array. J Extracell Vesicles 5:10.3402Google Scholar
  80. 80.
    Purohit S, Li T, Guan W, Song X, Song J, Tian Y, Li L, Sharma A, Dun B, Mysona D, Ghamande S, Rungruang B, Cummings RD, Wang PG, She J-X (2018) Multiplex glycan bead array for high throughput and high content analyses of glycan binding proteins. Nat Commun 9:258PubMedPubMedCentralGoogle Scholar
  81. 81.
    Shen H, Zhu B, Wang S et al (2015) Association of targeted multiplex PCR with resequencing microarray for the detection of multiple respiratory pathogens. Front Microbiol 6:532PubMedPubMedCentralGoogle Scholar
  82. 82.
    Datukishvili N, Kutateladze T, Gabriadze I, Bitskinashvili K, Vishnepolsky B (2015) New multiplex PCR methods for rapid screening of genetically modified organisms in foods. Front Microbiol 6:757.  https://doi.org/10.3389/fmicb.2015.00757 PubMedPubMedCentralGoogle Scholar
  83. 83.
    Olwagen CP, Adrian PV, Nunes MC et al (2017) Use of multiplex quantitative PCR to evaluate the impact of pneumococcal conjugate vaccine on nasopharyngeal pneumococcal colonization in African children. mSphere 2(6):e00404–e00417PubMedPubMedCentralGoogle Scholar
  84. 84.
    Li B, Liu H, Wang W (2017) Multiplex real-time PCR assay for detection of Escherichia coli O157:H7 and screening for nony-O157 Shiga toxin-producing E. coli. BMC Microbiol 17:215PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.FIANOSTICS GmbHWiener NeustadtAustria

Personalised recommendations