Advertisement

pp 1-79 | Cite as

The Impact of Metal-Rich Sediments Derived from Mining on Freshwater Stream Life

  • John Iwan JonesEmail author
  • John F. Murphy
  • Adrian L. Collins
  • Kate L. Spencer
  • Philip S. Rainbow
  • Amanda Arnold
  • James L. Pretty
  • Arabella M. L. Moorhouse
  • Victor Aguilera
  • Paul Edwards
  • Fred Parsonage
  • Hugh Potter
  • Paul Whitehouse
Chapter
Part of the Reviews of Environmental Contamination and Toxicology book series

Abstract

Metal-rich sediments have the potential to impair life in freshwater streams and rivers and, thereby, to inhibit recovery of ecological conditions after any remediation of mine water discharges. Sediments remain metal-rich over long time periods and have long-term potential ecotoxicological interactions with local biota, unless the sediments themselves are physically removed or replaced by less metal-rich sediment. Laboratory-derived environmental quality standards are difficult to apply to the field situation, as many complicating factors exist in the real world. Therefore, there is a strong case to consider other, field-relevant, measures of toxic effects as alternatives to laboratory-derived standards and to seek better biological tools to detect, diagnose and ideally predict community-level ecotoxicological impairment. Hence, this review concentrated on field measures of toxic effects of metal-rich sediment in freshwater streams, with less emphasis on laboratory-based toxicity testing approaches. To this end, this review provides an overview of the impact of metal-rich sediments on freshwater stream life, focusing on biological impacts linked to metal contamination.

Keywords

Acid mine drainage Bioavailability Biomarkers Biomonitors Biotic index Community ecotoxicology Community-level biological monitoring Covarying stressors Ecosystem functioning Environmental quality standards Field scale Freshwater biota Impact assessment Legislation Metalloids Metallothioneins Metals Mining Morphological abnormalities Population-level effects Sediment Species Sensitivity Distributions Tolerance Toxicity tests Weight of evidence 

Abbreviations

AMD

Acid Mine Drainage

AMDI

Acid Mine Drainage Index

AMR

Average Metabolism Response

ANZECC

Australian and New Zealand Environment and Conservation Council

ARISA

Automated Ribosomal Intergenic Spacer Analysis

ARMCANZ

Agriculture and Resource Management Council of Australia and New Zealand

ASPT

Average Score Per Taxon

AVS

Acid volatile sulphides

AVS-SEM

Simultaneously extracted metals released from a sediment sample during AVS extraction

AWIC

Acid Water Indicator Community

BLM

Biotic Ligand Models

BMWP

Biological Monitoring Working Party

BSI

Biotic Sediment Index

CCAR

Chronic Criterion Accumulation Ratio

CCME

Canadian Council of Ministers of the Environment

CCU

Cumulative Criterion Unit

CMD

Community Metabolism Diversity

DARLEQ

Diatoms for Assessing River and Lake Ecological Quality

DNA

Deoxyribonucleic acid

DOM

Dissolved organic matter

EPA

US Environmental Protection Agency

EPT

Number of Ephemeroptera, Plecoptera and Trichoptera taxa

EQG

Environmental quality guidelines

EQS

Environmental quality standards

FIAM

Free Ion Activity Model

HA

Humic acid

IOBS

Oligochaete Index of Sediment Bioindication

LC50

Lethal concentration (that will kill 50% of the population)

LEAFPACS

Assessment method for macrophytes (UK)

LOEC

Lowest observable effect concentration

NOEC

No observed effect concentration

NTAXA

Number of scoring families

O/E

Observed/expected

PCBs

Polychlorinated biphenyls

PEC

Predicted environmental concentration

PICT

Pollution-induced community tolerance

PNEC

Predicted environmental no effect concentration

QMCI

Quantitative Macroinvertebrate Community Index

RIVPACS

River Invertebrate Prediction and Classification System

RNA

Deoxyribonucleic acid

SEM

Simultaneously extracted metals

SFG

Scope for growth

SIGNAL-MET

Stream Invertebrate Grade Number Average Level–metals

SQC

Sediment Quality Criteria

SQG

Sediment Quality Guidelines

SSD

Species Sensitivity Distributions

TITAN

Threshold Indicator Taxa Analysis

TOSC

Total Oxyradical Scavenging Capacity

T-RFLP

Terminal Restriction Fragment Length Polymorphism

WFD

Water Framework Directive (of the European Union)

WFD-UKTAG

Water Framework Directive – UK Technical Advisory Group

WHAM

Windermere Humic Aqueous Model

WoE

Weight of evidence

WQC

Water quality criteria

WQG

Water quality guidelines

Notes

Acknowledgements

We acknowledge the UK Department for Food and Rural Affairs (Defra) for funding and supporting the project WT0970 Characterisation and targeting of measures for (non-coal) polluted mine waters – impacts of contaminated sediment on ecological recovery, which supported this work – together with the Coal Authority, the Environment Agency and Natural Resources Wales for their support. The views expressed in this paper are those of the authors, and not necessarily Defra, the Coal Authority, the Environment Agency or Natural Resources Wales. ALC is supported by the UK Biotechnology and Biological Sciences Research Council (BBSRC) through the Soil to Nutrition strategic programme (BBS/E/C/000I0330) at Rothamsted Research.

References

  1. Adams WJ, Rowland CD (2003) Aquatic toxicology test methods. In: Hoffman DJ, Rattner BA, Burton GA, Cairns J (eds) Handbook of ecotoxicology. CRC Press, Boca Raton, pp 19–45Google Scholar
  2. Adams SM, Shepard KL, Greeley MS, Jimenez BD, Ryon MG, Shugart LR, McCarthy JF, Hinton DE (1989) The use of bioindicators for assessing the effects of pollutant stress on fish. Mar Environ Res 28:459–464.  https://doi.org/10.1016/0141-1136(89)90284-5CrossRefGoogle Scholar
  3. Adams WJ, Blust R, Borgmann U, Brix KV, DeForest DK, Green AS, Meyer J, McGeer JC, Paquin P, Rainbow PS, Wood C (2010) Utility of tissue residues for predicting effects of metals on aquatic organisms. Integr Environ Assess Manag 7:75–98.  https://doi.org/10.1002/ieam.108CrossRefGoogle Scholar
  4. Allan IJ, Vrana B, Greenwood R, Mills GA, Roig B, Gonzalez C (2006) A “toolbox” for biological and chemical monitoring requirements for the European Union’s Water Framework Directive. Talanta 69:302–322.  https://doi.org/10.1016/j.talanta.2005.09.043CrossRefGoogle Scholar
  5. Allen JI, Moore MN (2004) Environmental prognostics: Is the current use of biomarkers appropriate for environmental risk evaluation? Mar Environ Res 58:227–232.  https://doi.org/10.1016/j.marenvres.2004.03.119CrossRefGoogle Scholar
  6. Amiard JC, Amiard-Triquet C, Barka S, Pellerin J, Rainbow PS (2006) Metallothioneins in aquatic invertebrates: their role in metal detoxification and their use as biomarkers. Aquat Toxicol 76:160–202.  https://doi.org/10.1016/j.aquatox.2005.08.015CrossRefGoogle Scholar
  7. Amiard-Triquet C (2009) Behavioral disturbances: the missing link between sub-organismal and supra-organismal responses to stress? Prospects based on aquatic research. Hum Ecol Risk Assess 15:87–110.  https://doi.org/10.1080/10807030802615543CrossRefGoogle Scholar
  8. Amiard-Triquet C, Amiard J-C (2013a) Behavioural ecotoxicology. In: Amiard-Triquet C, Amiard J-C, Rainbow PS (eds) Ecological biomarkers: indicators of ecotoxicological effects. CRC Press, Boca Raton, pp 253–277Google Scholar
  9. Amiard-Triquet C, Amiard J-C (2013b) Introduction. In: Amiard-Triquet C, Amiard J-C, Rainbow PS (eds) Ecological biomarkers: indicators of ecotoxicological effects. CRC Press, Boca Raton, pp 1–14Google Scholar
  10. Amiard-Triquet C, Rainbow PS, Roméo M (2011) Tolerance to environmental contaminants. CRC Press, Boca Raton.Google Scholar
  11. Amiard-Triquet C, Amiard J-C, Rainbow PS (2013) Ecological biomarkers: indicators of ecotoxicological effects. CRC Press, Boca RatonGoogle Scholar
  12. Amiard-Triquet C, Amiard J-C, Mouneyrac C (2015) Aquatic ecotoxicology: advancing tools for dealing with emerging risks. Elsevier, AmsterdamGoogle Scholar
  13. Amisah S, Cowx IG (2000) Impacts of abandoned mine and industrial discharges on fish abundance and macroinvertebrate diversity of the upper River Don in South Yorkshire, UK. J Freshw Ecol 15:237–250.  https://doi.org/10.1080/02705060.2000.9663741CrossRefGoogle Scholar
  14. Ancion PY, Lear G, Lewis GD (2010) Three common metal contaminants of urban runoff (Zn, Cu & Pb) accumulate in freshwater biofilm and modify embedded bacterial communities. Environ Pollut 158:2738–2745.  https://doi.org/10.1016/j.envpol.2010.04.013CrossRefGoogle Scholar
  15. Ancion PY, Lear G, Dopheide A, Lewis GD (2013) Metal concentrations in stream biofilm and sediments and their potential to explain biofilm microbial community structure. Environ Pollut 173:117–124.  https://doi.org/10.1016/j.envpol.2012.10.012CrossRefGoogle Scholar
  16. Ankley GT, Phipps GL, Leonard EN, Benoit DA, Mattson VR, Kosian PA, Cotter AM, Dierkes JR, Hansen DJ, Mahony JD (1991) Acid-volatile sulfide as a factor mediating cadmium and nickel bioavailability in contaminated sediments. Environ Toxicol Chem 10:1299–1307.  https://doi.org/10.1897/1552-8618(1991)10[1299:asaafm]2.0.co;2CrossRefGoogle Scholar
  17. Ankley GT, Thomas NA, Ditoro DM, Hansen DJ, Mahony JD, Berry WJ, Swartz RC, Hoke RA, Garrison AW, Allen HE, Zarba CS (1994) Assessing potential bioavailability of metals in sediments – a proposed approach. Environ Manag 18:331–337.  https://doi.org/10.1007/bf02393863CrossRefGoogle Scholar
  18. Ankley GT, DiToro DM, Hansen DJ, Berry WJ (1996) Assessing the ecological risk of metals in sediments. Environ Toxicol Chem 15:2053–2055.  https://doi.org/10.1897/1551-5028(1996)015<2053:aterom>2.3.co;2CrossRefGoogle Scholar
  19. ANZECC, ARMCANZ (2000) Australian and New Zealand guidelines for fresh and marine water quality. Volume 1. The guidelines. National water quality management strategy; no.4, Australian and New Zealand Environment and Conservation Council, Agriculture and Resource Management Council of Australia and New ZealandGoogle Scholar
  20. Archaimbault V, Usseglio-Polatera P, Garric J, Wasson JG, Babut M (2010) Assessing pollution of toxic sediment in streams using bio-ecological traits of benthic macroinvertebrates. Freshw Biol 55:1430–1446.  https://doi.org/10.1111/j.1365-2427.2009.02281.xCrossRefGoogle Scholar
  21. Armitage PD (1980) The effects of mine drainage and organic enrichment on benthos in the River Nent system, Northern Pennines. Hydrobiologia 74:119–128Google Scholar
  22. Armitage PD, Moss D, Wright JF, Furse MT (1983) The performance of a new biological water-quality score system based on macroinvertebrates over a wide-range of unpolluted running-water sites. Water Res 17:333–347.  https://doi.org/10.1016/0043-1354(83)90188-4CrossRefGoogle Scholar
  23. Armitage PD, Gunn RJM, Furse MT, Wright JF, Moss D (1987) The use of prediction to assess macroinvertebrate response to river regulation. Hydrobiologia 144:25–32Google Scholar
  24. Awrahman ZA, Rainbow PS, Smith BD, Khan FR, Bury NR, Fialkowski W (2015) Bioaccumulation of arsenic and silver by the caddisfly larvae Hydropsyche siltalai and H. pellucidula: a biodynamic modeling approach. Aquat Toxicol 161:196–207.  https://doi.org/10.1016/j.aquatox.2015.01.004CrossRefGoogle Scholar
  25. Awrahman ZA, Rainbow PS, Smith BD, Khan FR, Fialkowski W (2016) Caddisflies Hydropsyche spp. as biomonitors of trace metal bioavailability thresholds causing disturbance in freshwater stream benthic communities. Environ Pollut 216:793–805.  https://doi.org/10.1016/j.envpol.2016.06.049CrossRefGoogle Scholar
  26. Barjhoux I, Clerandeau C, Le Menach K, Anschutz P, Gonzalez P, Budzinski H, Morin B, Baudrimont M, Cachot J (2017) A comprehensive study of the toxicity of natural multi-contaminated sediments: new insights brought by the use of a combined approach using the medaka embryo-larval assay and physico-chemical analyses. Ecotoxicol Environ Saf 142:509–521.  https://doi.org/10.1016/j.ecoenv.2017.04.059CrossRefGoogle Scholar
  27. Barka S, Ouanes Z, Gharbi A, Gdara I, Mouelhi S, Hamza-Chaffai A (2016) Monitoring genotoxicity in freshwater microcrustaceans: a new application of the micronucleus assay. Mutat Res Genet Toxicol Environ Mutagen 803:27–33.  https://doi.org/10.1016/j.mrgentox.2016.05.002CrossRefGoogle Scholar
  28. Battuello M, Sartor RM, Brizio P, Nurra N, Pessani D, Abete MC, Squadrone S (2017) The influence of feeding strategies on trace element bioaccumulation in copepods (Calanoida). Ecol Indic 74:311–320.  https://doi.org/10.1016/j.ecolind.2016.11.041CrossRefGoogle Scholar
  29. Batty LC, Auladell M, Sadler J (2010) The impacts of metalliferous drainage on aquatic communities in streams and rivers. In: Batty LC, Hallberg KB (eds) Ecology of industrial pollution. Cambridge University Press, Cambridge, pp 70–100Google Scholar
  30. Beghelli FGD, Lopez-Doval JC, Rosa AH, Pompeo M, Carlos VM (2018) Lethal and sublethal effects of metal-polluted sediments on Chironomus sancticaroli Strixino and Strixino, 1981. Ecotoxicology 27:286–299.  https://doi.org/10.1007/s10646-018-1894-8CrossRefGoogle Scholar
  31. Beltman DJ, Clements WH, Lipton J, Cacela D (1999) Benthic invertebrate metals exposure, accumulation, and community-level effects downstream from a hard-rock mine site. Environ Toxicol Chem 18:299–307.  https://doi.org/10.1897/1551-5028(1999)018<0299:bimeaa>2.3.co;2CrossRefGoogle Scholar
  32. Benedetti M, Ciaprini F, Piva F, Onorati F, Fattorini D, Notti A, Ausili A, Regoli F (2012) A multidisciplinary weight of evidence approach for classifying polluted sediments: integrating sediment chemistry, bioavailability, biomarkers responses and bioassays. Environ Int 38:17–28.  https://doi.org/10.1016/j.envint.2011.08.003CrossRefGoogle Scholar
  33. Bervoets L, Knaepkens G, Eens M, Blust R (2005) Fish community responses to metal pollution. Environ Pollut 138:338–349.  https://doi.org/10.1016/j.envpol.2005.03.005CrossRefGoogle Scholar
  34. Besser JM, Brumbaugh WG, May TW, Church SE, Kimball BA (2001) Bioavailability of metals in stream food webs and hazards to brook trout (Salvelinus fontinalis) in the upper Animas River watershed, Colorado. Arch Environ Contam Toxicol 40:48–59Google Scholar
  35. Besser JM, Brumbaugh WG, Ingersoll CG, Ivey CD, Kunz JL, Kemble NE, Schlekat CE, Garman ER (2013) Chronic toxicity of nickel-spiked freshwater sediments: variation in toxicity among eight invertebrate taxa and eight sediments. Environ Toxicol Chem 32:2495–2506.  https://doi.org/10.1002/etc.2271CrossRefGoogle Scholar
  36. Besser JM, Brumbaugh WG, Ingersoll CG (2015) Characterizing toxicity of metal-contaminated sediments from mining areas. Appl Geochem 57:73–84.  https://doi.org/10.1016/j.apgeochem.2014.05.021CrossRefGoogle Scholar
  37. Biological Monitoring Working Party (1978) Final report: assessment of the quality of rivers in Great Britain. Unpublished report, LondonGoogle Scholar
  38. Bird G, Brewer PA, Macklin MG, Nikolova M, Kotsev T, Mollov M, Swain C (2010) Dispersal of contaminant metals in the mining-affected Danube and Maritsa drainage basins, Bulgaria, Eastern Europe. Water Air Soil Pollut 206:105–127.  https://doi.org/10.1007/s11270-009-0090-0CrossRefGoogle Scholar
  39. Blanck H, Wangberg SA (1988) Induced community tolerance in marine periphyton established under arsenate stress. Can J Fish Aquat Sci 45:1816–1819.  https://doi.org/10.1139/f88-213CrossRefGoogle Scholar
  40. Blanck H, Wängberg SA, Molander S (1988) Pollution-induced community tolerance – a new ecotoxicological tool. In: Cairns J, Pratt JR (eds) Functional testing of aquatic biota for estimating hazards of chemicals ASTM 988. American Society for Testing and Materials, Philadelphia, pp 219–230Google Scholar
  41. Blanco S, Becares E (2010) Are biotic indices sensitive to river toxicants? A comparison of metrics based on diatoms and macro-invertebrates. Chemosphere 79:18–25.  https://doi.org/10.1016/j.chemosphere.2010.01.059CrossRefGoogle Scholar
  42. Brix KV, DeForest DK, Adams WJ (2001) Assessing acute and chronic copper risks to freshwater aquatic life using species sensitivity distributions for different taxonomic groups. Environ Toxicol Chem 20:1846–1856.  https://doi.org/10.1897/1551-5028(2001)020<1846:aaaccr>2.0.co;2CrossRefGoogle Scholar
  43. Brown BE (1977) Uptake of copper and lead by a metal-tolerant isopod Asellus meridianus Rac. Freshw Biol 7:235–244.  https://doi.org/10.1111/j.1365-2427.1977.tb01671.xCrossRefGoogle Scholar
  44. Bundy JG, Spurgeon DJ, Svendsen C, Hankard PK, Weeks JM, Osborn D, Lindon JC, Nicholson JK (2004) Environmental metabonomics: applying combination biomarker analysis in earthworms at a metal contaminated site. Ecotoxicology 13:797–806.  https://doi.org/10.1007/s10646-003-4477-1CrossRefGoogle Scholar
  45. Burton GA Jr, Rosen G, Chadwick DB, Greenberg MS, Taulbee WK, Lotufo GR, Reible DD (2012) A sediment ecotoxicity assessment platform for in situ measures of chemistry, bioaccumulation and toxicity. Part 1: system description and proof of concept. Environ Pollut 162:449–456.  https://doi.org/10.1016/j.envpol.2011.11.018CrossRefGoogle Scholar
  46. Burton SM, Rundle SD, Jones MB (2001) The relationship between trace metal contamination and stream meiofauna. Environ Pollut 111:159–167.  https://doi.org/10.1016/s0269-7491(99)00323-1CrossRefGoogle Scholar
  47. Burton GA, Denton DL, Ho K, Ireland DS (2003) Sediment toxicity testing: issues and methods. In: Hoffman DJ, Rattner BA, Burton GAJ, Cairns J (eds) Handbook of ecotoxicology. CRC Press, Boca Raton, pp 111–150Google Scholar
  48. Bury NR, Chung MJ, Sturm A, Walker PA, Hogstrand C (2008) Cortisol stimulates the zinc signaling pathway and expression of metallothioneins and ZnT1 in rainbow trout gill epithelial cells. Am J Phys Regul Integr Comp Phys 294:R623–R629.  https://doi.org/10.1152/ajpregu.00646.2007CrossRefGoogle Scholar
  49. Butler BA, Ranville JF, Ross PE (2009) Spatial variations in the fate and transport of metals in a mining-influenced stream, North Fork Clear Creek, Colorado. Sci Total Environ 407:6223–6234.  https://doi.org/10.1016/j.scitotenv.2009.08.040CrossRefGoogle Scholar
  50. Byrne P, Reid I, Wood PJ (2010) Sediment geochemistry of streams draining abandoned lead/zinc mines in Central Wales: the Afon Twymyn. J Soils Sediments 10:683–697.  https://doi.org/10.1007/s11368-009-0183-9CrossRefGoogle Scholar
  51. Byrne P, Reid I, Wood PJ (2013a) Changes in macroinvertebrate community structure provide evidence of neutral mine drainage impacts. Environ Sci Process Impact 15:393–404.  https://doi.org/10.1039/c2em30447cCrossRefGoogle Scholar
  52. Byrne P, Reid I, Wood PJ (2013b) Stormflow hydrochemistry of a river draining an abandoned metal mine: the Afon Twymyn, Central Wales. Environ Monit Assess 185:2817–2832.  https://doi.org/10.1007/s10661-012-2751-5CrossRefGoogle Scholar
  53. Cade BS, Noon BR (2003) A gentle introduction to quantile regression for ecologists. Front Ecol Environ 1:412–420.  https://doi.org/10.2307/3868138CrossRefGoogle Scholar
  54. Cadmus P, Clements WH, Williamson JL, Ranville JF, Meyer JS, Gines MJG (2016) The use of field and mesocosm experiments to quantify effects of physical and chemical stressors in mining-contaminated streams. Environ Sci Technol 50:7825–7833.  https://doi.org/10.1021/acs.est.6b01911CrossRefGoogle Scholar
  55. Cain D, Croteau M-N, Luoma S (2011) Bioaccumulation dynamics and exposure routes of Cd and Cu among species of aquatic mayflies. Environ Toxicol Chem 30:2532–2541.  https://doi.org/10.1002/etc.663CrossRefGoogle Scholar
  56. Cairns J, Mount DI (1990) Aquatic toxicology. Part 2 of a four-part series. Environ Sci Technol 24:154–161.  https://doi.org/10.1021/es00072a001CrossRefGoogle Scholar
  57. Campbell PGC (1995) Interaction between trace metals and aquatic organisms: a critique of the free-ion activity model. In: Tessier A, Turner DR (eds) Metal speciation and aquatic systems. Wiley, New York, pp 45–102Google Scholar
  58. Cantonati M, Angeli N, Virtanen L, Wojtal AZ, Gabrieli J, Falasco E, Lavoie I, Morin S, Marchetto A, Fortin C, Smirnova S (2014) Achnanthidium minutissimum (Bacillariophyta) valve deformities as indicators of metal enrichment in diverse widely-distributed freshwater habitats. Sci Total Environ 475:201–215.  https://doi.org/10.1016/j.scitotenv.2013.10.018CrossRefGoogle Scholar
  59. Cardwell RD, DeForest DK, Brix KV, Adams WJ (2013) Do Cd, Cu, Ni, Pb, and Zn biomagnify in aquatic ecosystems? In: Whitacre DM (ed) Reviews of environmental contamination and toxicology, vol 226, pp 101–122Google Scholar
  60. Carlisle DM, Clements WH (2005) Leaf litter breakdown, microbial respiration and shredder production in metal-polluted streams. Freshw Biol 50:380–390.  https://doi.org/10.1111/j.1365-2427.2004.01323.xCrossRefGoogle Scholar
  61. Carpenter KE (1924) A study of the fauna of rivers polluted by lead mining in the Aberystwyth District of Cardiganshire. Ann Appl Biol 11:1–23Google Scholar
  62. Casado-Martinez MC, Smith BD, DelValls TA, Luoma SN, Rainbow PS (2009) Biodynamic modelling and the prediction of accumulated trace metal concentrations in the polychaete Arenicola marina. Environ Pollut 157:2743–2750.  https://doi.org/10.1016/j.envpol.2009.04.032CrossRefGoogle Scholar
  63. Casado-Martinez MC, Smith BD, Luoma SN, Rainbow PS (2010a) Bioaccumulation of arsenic from water and sediment by a deposit-feeding polychaete (Arenicola marina): a biodynamic modelling approach. Aquat Toxicol 98:34–43.  https://doi.org/10.1016/j.aquatox.2010.01.015CrossRefGoogle Scholar
  64. Casado-Martinez MC, Smith BD, Luoma SN, Rainbow PS (2010b) Metal toxicity in a sediment-dwelling polychaete: threshold body concentrations or overwhelming accumulation rates? Environ Pollut 158:3071–3076.  https://doi.org/10.1016/j.envpol.2010.06.026CrossRefGoogle Scholar
  65. CCME (1999) Canadian water quality guidelines for the protection of aquatic life. Canadian Council of Ministers of the Environment, WinnipegGoogle Scholar
  66. Chapman PM (2007a) Determining when contamination is pollution – weight of evidence determinations for sediments and effluents. Environ Int 33:492–501.  https://doi.org/10.1016/j.envint.2006.09.001CrossRefGoogle Scholar
  67. Chapman PM (2007b) Do not disregard the benthos in sediment quality assessments! Mar Pollut Bull 54:633–635.  https://doi.org/10.1016/j.marpolbul.2007.03.006CrossRefGoogle Scholar
  68. Chapman PM, Anderson J (2005) A decision-making framework for sediment contamination. Integr Environ Assess Manag 1:163–173.  https://doi.org/10.1897/2005-013r.1CrossRefGoogle Scholar
  69. Chapman PM, Hollert H (2006) Should the sediment quality triad become a tetrad, a pentad, or possibly even a hexad? J Soils Sediments 6:4–8.  https://doi.org/10.1065/jss2006.01.152CrossRefGoogle Scholar
  70. Chaumot A, Geffard O, Armengaud J, Maltby L (2015) Gammarids as reference species for freshwater monitoring. In: Amiard-Triquet C, Amiard J-C, Mouneyrac C (eds) Aquatic ecotoxicology: advancing tools for dealing with emerging risks. Elsevier, Amsterdam, pp 253–280Google Scholar
  71. Chessman BC, McEvoy PK (1998) Towards diagnostic biotic indices for river macroinvertebrates. Hydrobiologia 364:169–182Google Scholar
  72. Christophe M, Rachid A, Mario L (2015) Fish as reference species in different water masses. In: Amiard-Triquet C, Amiard J-C, Mouneyrac C (eds) Aquatic ecotoxicology: advancing tools for dealing with emerging risks. Elsevier, Amsterdam, pp 309–331Google Scholar
  73. Clapcott JE, Goodwin EO, Harding JS (2016) Identifying catchment-scale predictors of coal mining impacts on New Zealand stream communities. Environ Manag 57:711–721.  https://doi.org/10.1007/s00267-015-0627-5CrossRefGoogle Scholar
  74. Clark JL, Clements WH (2006) The use of in situ and stream microcosm experiments to assess population- and community-level responses to metals. Environ Toxicol Chem 25:2306–2312.  https://doi.org/10.1897/05-552.1CrossRefGoogle Scholar
  75. Clarke RT, Davy-Bowker J, Dunbar M, Laize C, Scarlett PM, Murphy JF (2011) Enhancement of the river invertebrate classification tool. Final report project WFD 119, Scotland and Northern Ireland Forum for Environmental Research (SNIFFER), Edinburgh, ScotlandGoogle Scholar
  76. Clements WH (1991) Community responses of stream organisms to heavy metals: a review of observational and experimental approaches. In: Newman MC, McIntosh AW (eds) Metal ecotoxicology. Lewis Publishers, Chelsea, pp 363–391Google Scholar
  77. Clements WH (2000) Integrating effects of contaminants across levels of biological organization: an overview. J Aquat Ecosyst Stress Recover 7:113–116Google Scholar
  78. Clements WH (2004) Small-scale experiments support causal relationships between metal contamination and macroinvertebrate community responses. Ecol Appl 14:954–967.  https://doi.org/10.1890/03-5009CrossRefGoogle Scholar
  79. Clements WH, Kiffney PM (1994) Integrated laboratory and field approach for assessing impacts of heavy-metals at the Arkansas River, Colorado. Environ Toxicol Chem 13:397–404.  https://doi.org/10.1897/1552-8618(1994)13[397:ilafaf]2.0.co;2CrossRefGoogle Scholar
  80. Clements WH, Newman MC (2002) Community ecotoxicology. Wiley, ChichesterGoogle Scholar
  81. Clements WH, Ranville J (2002) Evaluating recovery of stream ecosystems from mining pollution: integrating biochemical, population, community and ecosystem indicators. In: Proceedings of the ninth international conference on tailings and mine waste. AA Balkema, Leiden, pp 23–24Google Scholar
  82. Clements WH, Rohr JR (2009) Community responses to contaminants: using basic ecological principles to predict ecotoxicological effects. Environ Toxicol Chem 28:1789–1800.  https://doi.org/10.1897/09-140.1CrossRefGoogle Scholar
  83. Clements WH, Cherry DS, Cairns J (1988) Structural alterations in aquatic insect communities exposed to copper in laboratory streams. Environ Toxicol Chem 7:715–722.  https://doi.org/10.1897/1552-8618(1988)7[715:saiaic]2.0.co;2CrossRefGoogle Scholar
  84. Clements WH, Cherry DS, Cairns J (1990) Macroinvertebrate community responses to copper in laboratory and field experimental streams. Arch Environ Contam Toxicol 19:361–365.  https://doi.org/10.1007/bf01054979CrossRefGoogle Scholar
  85. Clements WH, Carlisle DM, Lazorchak JM, Johnson PC (2000) Heavy metals structure benthic communities in Colorado mountain streams. Ecol Appl 10:626–638.  https://doi.org/10.1890/1051-0761(2000)010[0626:hmsbci]2.0.co;2CrossRefGoogle Scholar
  86. Clements WH, Vieira NKM, Church SE (2010) Quantifying restoration success and recovery in a metal-polluted stream: a 17-year assessment of physicochemical and biological responses. J Appl Ecol 47:899–910.  https://doi.org/10.1111/j.1365-2664.2010.01838.xCrossRefGoogle Scholar
  87. Clements WH, Cadmus P, Brinkman SF (2013) Responses of aquatic insects to Cu and Zn in stream microcosms: understanding differences between single species tests and field responses. Environ Sci Technol 47:7506–7513.  https://doi.org/10.1021/es401255hCrossRefGoogle Scholar
  88. Clements WH, Kashian DR, Kiffney PM, Zuellig RE (2016) Perspectives on the context-dependency of stream community responses to contaminants. Freshw Biol 61:2162–2170.  https://doi.org/10.1111/fwb.12599CrossRefGoogle Scholar
  89. Collier TK, Chiang MWL, Au DWT, Rainbow PS (2013) Biomarkers currently used in environmental monitoring. In: Amiard-Triquet C, Amiard J-C, Rainbow PS (eds) Ecological biomarkers: indicators of ecotoxicological effects. CRC Press, Boca Raton, pp 385–409Google Scholar
  90. Collins AL, Anthony SG (2008) Assessing the likelihood of catchments across England and Wales meeting ‘good ecological status’ due to sediment contributions from agricultural sources. Environ Sci Policy 11:163–170Google Scholar
  91. Collins AL, Anthony SG, Hawley J, Turner T (2009) The potential impact of projected change in farming by 2015 on the importance of the agricultural sector as a sediment source in England and Wales. Catena 79:243–250.  https://doi.org/10.1016/j.catena.2009.05.007CrossRefGoogle Scholar
  92. Collins AL, Naden PS, Sear DA, Jones JI, Foster IDL, Morrow K (2011) Sediment targets for informing river catchment management: international experience and prospects. Hydrol Process 25:2112–2129.  https://doi.org/10.1002/hyp.7965CrossRefGoogle Scholar
  93. Cooter WS (2004) Clean Water Act assessment processes in relation to changing US Environmental Protection Agency management strategies. Environ Sci Technol 38:5265–5273.  https://doi.org/10.1021/es030690hCrossRefGoogle Scholar
  94. Costasa N, Pardo I, Méndez-Fernández L, Martínez-Madrid M, Rodríguez P (2018) Sensitivity of macroinvertebrate indicator taxa to metal gradients in mining areas in Northern Spain. Ecol Indic 93:2017–2218.  https://doi.org/10.1016/j.ecolind.2018.04.059CrossRefGoogle Scholar
  95. Costello DM, Burton GA, Hammerschmidt CR, Taulbee WK (2012) Evaluating the performance of diffusive gradients in thin films for predicting Ni sediment toxicity. Environ Sci Technol 46:10239–10246.  https://doi.org/10.1021/es302390mCrossRefGoogle Scholar
  96. Couillard Y, Grapentine LC, Borgmann U, Doyle P, Masson S (2008) The amphipod Hyalella azteca as a biomonitor in field deployment studies for metal mining. Environ Pollut 156:1314–1324.  https://doi.org/10.1016/j.envpol.2008.03.001CrossRefGoogle Scholar
  97. Crane M, Kwok KWH, Wells C, Whitehouse P, Lui GCS (2007) Use of field data to support European water framework directive quality standards for dissolved metals. Environ Sci Technol 41:5014–5021.  https://doi.org/10.1021/es0629460CrossRefGoogle Scholar
  98. Croisetière L, Hare L, Tessier A (2006) A field experiment to determine the relative importance of prey and water as sources of As, Cd, Co, Cu, Pb, and Zn for the aquatic invertebrate Sialis velata. Environ Sci Technol 40:873–879.  https://doi.org/10.1021/es0516209CrossRefGoogle Scholar
  99. Croteau MN, Luoma SN (2009) Predicting dietborne metal toxicity from metal influxes. Environ Sci Technol 43:4915–4921.  https://doi.org/10.1021/es9007454CrossRefGoogle Scholar
  100. Dalu T, Wasserman RJ, Tonkin JD, Mwedzi T, Magoro ML, Weyl OLF (2017) Water or sediment? Partitioning the role of water column and sediment chemistry as drivers of macroinvertebrate communities in an austral South African stream. Sci Total Environ 607:317–325.  https://doi.org/10.1016/j.scitotenv.2017.06.267CrossRefGoogle Scholar
  101. Davies G, Butler D, Mills M, Williams D (1997) A survey of ferruginous minewater impacts in the Welsh coalfields. Water Environ Manag 11:140–146Google Scholar
  102. Davy-Bowker J, Murphy JF, Rutt GR, Steel JEC, Furse MT (2005) The development and testing of a macroinvertebrate biotic index for detecting the impact of acidity on streams. Arch Hydrobiol 163:383–403.  https://doi.org/10.1127/0003-9136/2005/0163-0383CrossRefGoogle Scholar
  103. de Bisthoven LJ, Gerhardt A, Soares A (2004) Effects of acid mine drainage on larval Chironomus (diptera, chironomidae) measured with the multispecies freshwater biomonitor. Environ Toxicol Chem 23:1123–1128.  https://doi.org/10.1897/02-603CrossRefGoogle Scholar
  104. de Deckere E, de Cooman W, Leloup V, Meire P, Schmitt C, von der Ohe PC (2011) Development of sediment quality guidelines for freshwater ecosystems. J Soils Sediments 11:504–517.  https://doi.org/10.1007/s11368-010-0328-xCrossRefGoogle Scholar
  105. de Forest DK, Meyer JS (2015) Critical review: toxicity of dietborne metals to aquatic organisms. Crit Rev Environ Sci Technol 45:1176–1241.  https://doi.org/10.1080/10643389.2014.955626CrossRefGoogle Scholar
  106. de Haas EM, Kraak MHS (2008) Species-specific responses of two benthic invertebrates explain their distribution along environmental gradients in freshwater habitats. Sci Total Environ 406:430–435.  https://doi.org/10.1016/j.scitotenv.2008.05.048CrossRefGoogle Scholar
  107. de Jonge M, de Vijuer BV, Blust R, Bervoets L (2008) Responses of aquatic organisms to metal pollution in a lowland river in Flanders: a comparison of diatoms and macroinvertebrates. Sci Total Environ 407:615–629.  https://doi.org/10.1016/j.scitotenv.2008.07.020CrossRefGoogle Scholar
  108. de Jonge M, Dreesen F, de Paepe J, Blust R, Bervoets L (2009) Do acid volatile sulfides (AVS) influence the accumulation of sediment-bound metals to benthic invertebrates under natural field conditions? Environ Sci Technol 43:4510–4516.  https://doi.org/10.1021/es8034945CrossRefGoogle Scholar
  109. de Jonge M, Blust R, Bervoets L (2010) The relation between Acid Volatile Sulfides (AVS) and metal accumulation in aquatic invertebrates: implications of feeding behavior and ecology. Environ Pollut 158:1381–1391.  https://doi.org/10.1016/j.envpol.2010.01.001CrossRefGoogle Scholar
  110. de Jonge M, Eyckmans M, Blust R, Bervoets L (2011) Are accumulated sulfide-bound metals metabolically available in the benthic oligochaete Tubifex tubifex? Environ Sci Technol 45:3131–3137.  https://doi.org/10.1021/es1037595CrossRefGoogle Scholar
  111. de Jonge M, Belpaire C, Geeraerts C, de Cooman W, Blust R, Bervoets L (2012) Ecological impact assessment of sediment remediation in a metal-contaminated lowland river using translocated zebra mussels and resident macroinvertebrates. Environ Pollut 171:99–108.  https://doi.org/10.1016/j.envpol.2012.07.038CrossRefGoogle Scholar
  112. de Jonge M, Tipping E, Lofts S, Bervoets L, Blust R (2013) The use of invertebrate body burdens to predict ecological effects of metal mixtures in mining-impacted waters. Aquat Toxicol 142:294–302.  https://doi.org/10.1016/j.aquatox.2013.08.018CrossRefGoogle Scholar
  113. de Pauw N, Heylen S (2001) Biotic index for sediment quality assessment of watercourses in Flanders, Belgium. Aquat Ecol 35:121–133Google Scholar
  114. de Pauw N, Beyst B, Heylen S (2001) Development of a biological assessment method for river sediments in Flanders, Belgium. Proc Int Assoc Theor Appl Limnol 27:2703–2708Google Scholar
  115. Dedourge-Geffard O, Palais F, Biagianti-Risbourg S, Geffard O, Geffard A (2009) Effects of metals on feeding rate and digestive enzymes in Gammarus fossarum: an in situ experiment. Chemosphere 77:1569–1576.  https://doi.org/10.1016/j.chemosphere.2009.09.042CrossRefGoogle Scholar
  116. DEFRA and the Welsh Government (2014) Water Framework Directive implementation in England and Wales: new and updated standards to protect the water environment. https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/307788/river-basin-planning-standards.pdf
  117. Dekker T, Greve GD, Ter Laak TL, Boivin ME, Veuger B, Gortzak G, Dumfries S, Lucker SMG, Kraak MHS, Admiraal W, van der Geest HG (2006) Development and application of a sediment toxicity test using the benthic cladoceran Chydorus sphaericus. Environ Pollut 140:231–238.  https://doi.org/10.1016/j.envpol.2005.07.015CrossRefGoogle Scholar
  118. DeNicola DM, Layton L, Czapski TR (2012) Epilithic community metabolism as an indicator of impact and recovery in streams affected by acid mine drainage. Environ Manag 50:1035–1046.  https://doi.org/10.1007/s00267-012-9936-0CrossRefGoogle Scholar
  119. Dennis IA, Macklin MG, Coulthard TJ, Brewer PA (2003) The impact of the October-November 2000 floods on contaminant metal dispersal in the River Swale catchment, North Yorkshire, UK. Hydrol Process 17:1641–1657.  https://doi.org/10.1002/hyp.1206CrossRefGoogle Scholar
  120. Dennis IA, Coulthard TJ, Brewer P, Macklin MG (2009) The role of floodplains in attenuating contaminated sediment fluxes in formerly mined drainage basins. Earth Surf Process Landf 34:453–466.  https://doi.org/10.1002/esp.1762CrossRefGoogle Scholar
  121. di Toro DM, Zarba CS, Hansen DJ, Berry WJ, Swartz RC, Cowan CE, Pavlou SP, Allen HE, Thomas NA, Paquin PR (1991) Technical basis for establishing sediment quality criteria for nonionic organic-chemicals using equilibrium partitioning. Environ Toxicol Chem 10:1541–1583.  https://doi.org/10.1002/etc.5620101203CrossRefGoogle Scholar
  122. di Toro DM, Mahony JD, Hansen DJ, Scott KJ, Carlson AR, Ankley GT (1992) Acid volatile sulfide predicts the acute toxicity of cadmium and nickel in sediments. Environ Sci Technol 26:96–101.  https://doi.org/10.1021/es00025a009CrossRefGoogle Scholar
  123. di Veroli A, Goretti E, Paumen ML, Kraak MHS, Admiraal W (2012) Induction of mouthpart deformities in chironomid larvae exposed to contaminated sediments. Environ Pollut 166:212–217.  https://doi.org/10.1016/j.envpol.2012.03.029CrossRefGoogle Scholar
  124. di Veroli A, Santoro F, Pallottini M, Selvaggi R, Scardazza F, Cappelletti D, Goretti E (2014) Deformities of chironomid larvae and heavy metal pollution: from laboratory to field studies. Chemosphere 112:9–17.  https://doi.org/10.1016/j.chemosphere.2014.03.053CrossRefGoogle Scholar
  125. Dong XY, Jia XH, Jiang WX, Wu NC, Tan T, Cai QH (2015) Development and testing of a diatom-based index of biotic integrity for river ecosystems impacted by acid mine drainage in Gaolan River, China. Fresen Environ Bull 24:4114–4124Google Scholar
  126. Durou C, Smith BD, Romeo M, Rainbow PS, Mouneyrac C, Mouloud M, Gnassia-Barelli M, Gillet P, Deutch B, Amiard-Triquet C (2007) From biomarkers to population responses in Nereis diversicolor: assessment of stress in estuarine ecosystems. Ecotoxicol Environ Saf 66:402–411.  https://doi.org/10.1016/j.ecoenv.2006.02.016CrossRefGoogle Scholar
  127. Environment Agency (2008a) Abandoned mines and the water environment. Science project report SC030136–41, Environment Agency, BristolGoogle Scholar
  128. Environment Agency (2008b) Assessment of metal-mining contaminated river sediments in England and Wales. Science project report SC030136/SR4, Environment Agency, BristolGoogle Scholar
  129. Environment Agency (2009) Ecological indicators for abandoned mines. Phase 1: review of the literature. Science project report SC030136/R49, Environment Agency, BristolGoogle Scholar
  130. Environment Agency (2012) Prioritisation of abandoned non-coal mine impacts on the environment: the national picture. Science project report SC030136/R2, Environment Agency, BristolGoogle Scholar
  131. Erickson RJ, Mount DR, Highland TL, Hockett JR, Jenson CT (2011) The relative importance of waterborne and dietborne arsenic exposure on survival and growth of juvenile rainbow trout. Aquat Toxicol 104:108–115.  https://doi.org/10.1016/j.aquatox.2011.04.003CrossRefGoogle Scholar
  132. European Council (2007) Council Regulation (EC) No 1354/2007 of 15 November 2007 adapting Regulation (EC) No 1907/2006 of the European Parliament and of the Council on the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH), by reason of the accession of Bulgaria and Romania. Off J Eur Union L304:1Google Scholar
  133. European Parliament (2000) Parliament and Council Directive 2000/60/EC Establishing a framework for community action in the field of water policy. Official Journal of the European Union, Brussels, Belgium, PE-CONS 3639/3631/3600 REV 3631Google Scholar
  134. European Parliament (2001) Decision No 2455/2001/EC of the European Parliament and of the Council of 20 November 2001 establishing the list of priority substances in the field of water policy and amending Directive 2000/60/EC. Official Journal of the European Parliament, L212Google Scholar
  135. European Parliament (2013) Directive 2013/39/EU of the European Parliament and of the Council of 12 August 2013 amending Directives 2000/60/EC and 2008/105/EC as regards priority substances in the field of water policy. Official Journal of the European Union 26: L266Google Scholar
  136. Extence CA, Chadd RP, England J, Dunbar MJ, Wood PJ, Taylor ED (2013) The assessment of fine sediment accumulation in rivers using macro-invertebrate community response. River Res Appl 29:17–55.  https://doi.org/10.1002/rra.1569CrossRefGoogle Scholar
  137. Falasco E, Bona F, Badino G, Hoffmann L, Ector L (2009) Diatom teratological forms and environmental alterations: a review. Hydrobiologia 623:1–35.  https://doi.org/10.1007/s10750-008-9687-3CrossRefGoogle Scholar
  138. Farag AM, Boese CJ, Woodward DF, Bergman HL (1994) Physiological-changes and tissue metal accumulation in rainbow-trout exposed to foodborne and waterborne metals. Environ Toxicol Chem 13:2021–2029.  https://doi.org/10.1897/1552-8618(1994)13[2021:pcatma]2.0.co;2CrossRefGoogle Scholar
  139. Farag AM, Stansbury MA, Hogstrand C, Macconnell E, Bergman HL (1995) The physiological impairment of free-ranging brown trout exposed to metals in the Clark Fork River, Montana. Can J Fish Aquat Sci 52:2038–2050.  https://doi.org/10.1139/f95-795CrossRefGoogle Scholar
  140. Farag AM, Woodward DF, Goldstein JN, Brumbaugh W, Meyer JS (1998) Concentrations of metals associated with mining waste in sediments, biofilm, benthic macroinvertebrates, and fish from the Coeur d’Alene River Basin, Idaho. Arch Environ Contam Toxicol 34:119–127.  https://doi.org/10.1007/s002449900295.CrossRefGoogle Scholar
  141. Farag AM, Suedkamp MJ, Meyer JS, Barrows R, Woodward DF (2000) Distribution of metals during digestion by cutthroat trout fed benthic invertebrates contaminated in the Clark Fork River, Montana and the Coeur d’Alene River, Idaho, USA, and fed artificially contaminated Artemia. J Fish Biol 56:173–190.  https://doi.org/10.1006/jfbi.1999.1150CrossRefGoogle Scholar
  142. Faria MS, Lopes RJ, Nogueira AJA, Soares A (2007) In situ and laboratory bioassays with Chironomus riparius larvae to assess toxicity of metal contamination in rivers: the relative toxic effect of sediment versus water contamination. Environ Toxicol Chem 26:1968–1977.  https://doi.org/10.1897/06-435r1.1CrossRefGoogle Scholar
  143. Faria MS, Lopes RJ, Malcato J, Nogueira AJA, Soares A (2008) In situ bioassays with Chironomus riparius larvae to biomonitor metal pollution in rivers and to evaluate the efficiency of restoration measures in mine areas. Environ Pollut 151:213–221.  https://doi.org/10.1016/j.envpol.2007.01.050CrossRefGoogle Scholar
  144. Faria MS, Re A, Malcato J, Silva P, Pestana J, Agra AR, Nogueira AJA, Soares A (2006) Biological and functional responses of in situ bioassays with Chironomus riparius larvae to assess river water quality and contamination. Sci Total Environ 371:125–137.  https://doi.org/10.1016/j.scitotenv.2006.08.036CrossRefGoogle Scholar
  145. Fernandez MR, Martin G, Corzo J, de la Linde A, Garcia E, Lopez M, Sousa M (2018) Design and testing of a new diatom-based index for heavy metal pollution. Arch Environ Contam Toxicol 74:170–192.  https://doi.org/10.1007/s00244-017-0409-6CrossRefGoogle Scholar
  146. Ferreira V, Koricheva J, Duarte S, Niyogi DK, Guerold F (2016) Effects of anthropogenic heavy metal contamination on litter decomposition in streams – a meta-analysis. Environ Pollut 210:261–270.  https://doi.org/10.1016/j.envpol.2015.12.060CrossRefGoogle Scholar
  147. Fiałkowski W, Rainbow PS (2006) The discriminatory power of two biomonitors of trace metal bioavailabilities in freshwater streams. Water Res 40:1805–1810.  https://doi.org/10.1016/j.watres.2006.02.035CrossRefGoogle Scholar
  148. Fiałkowski W, Fiałkowska E, Smith BD, Rainbow PS (2003a) Biomonitoring survey of trace metal pollution in streams of a catchment draining a zinc and lead mining area of Upper Silesia, Poland using the amphipod Gammarus fossarum. Int Rev Hydrobiol 88:187–200.  https://doi.org/10.1002/iroh.200390014CrossRefGoogle Scholar
  149. Fiałkowski W, Klonowska-Olejnik M, Smith BD, Rainbow PS (2003b) Mayfly larvae (Baetis rhodani and B-vernus) as biomonitors of trace metal pollution in streams of a catchment draining a zinc and lead mining area of Upper Silesia, Poland. Environ Pollut 121:253–267.  https://doi.org/10.1016/s0269-7491(02)00214-2CrossRefGoogle Scholar
  150. Fisher MM, Triplett EW (1999) Automated approach for ribosomal intergenic spacer analysis of microbial diversity and its application to freshwater bacterial communities. Appl Environ Microbiol 65:4630–4636Google Scholar
  151. Foster PL (1977) Copper exclusion as a mechanism of heavy-metal tolerance in a green alga. Nature 269:322–323.  https://doi.org/10.1038/269322a0CrossRefGoogle Scholar
  152. Foster PL (1982a) Metal resistances of Chlorophyta from rivers polluted by heavy-metals. Freshw Biol 12:41–61.  https://doi.org/10.1111/j.1365-2427.1982.tb00602.xCrossRefGoogle Scholar
  153. Foster PL (1982b) Species associations and metal contents of algae from rivers polluted by heavy-metals. Freshw Biol 12:17–39.  https://doi.org/10.1111/j.1365-2427.1982.tb00601.xCrossRefGoogle Scholar
  154. Furse MT, Wright JF, Armitage PD, Moss D (1981) An appraisal of pond-net samples for biological monitoring of lotic macro-invertebrates. Water Res 15:679–689Google Scholar
  155. Garcia ALH, Matzenbacher CA, Santos MS, Prado L, Picada JN, Premoli SM, Correa DS, Niekraszewicz L, Dias JF, Grivicich I, da Silva J (2017) Genotoxicity induced by water and sediment samples from a river under the influence of brewery effluent. Chemosphere 169:239–248.  https://doi.org/10.1016/j.chemosphere.2016.11.081CrossRefGoogle Scholar
  156. Gerhardt A (1993) Review of impact of heavy-metals on stream invertebrates with special emphasis on acid conditions. Water Air Soil Pollut 66:289–314Google Scholar
  157. Gerhardt A (1995) Monitoring behavioural responses to metals in Gammarus pulex (L) (Crustacea) with impedance conversion. Environ Sci Pollut Res 2:15–23.  https://doi.org/10.1007/bf02987506CrossRefGoogle Scholar
  158. Gerhardt A (1996) Behavioural early warning responses to polluted water – performance of gammarus pulex L (Crustacea) and Hydropsyche angustipennis (Curtis) (Insecta) to a complex industrial effluent. Environ Sci Pollut Res 3:63–70.  https://doi.org/10.1007/bf02985490CrossRefGoogle Scholar
  159. Gerhardt A (2001) A new multispecies freshwater biomonitor for ecologically relevant supervision of surface waters. In: Butterworth FM, Gunatilaka A, Gonsebatt ME (eds) Biomonitors and biomarkers as indicators of environmental change 2 a handbook. Kluwer Academic, Dordrecht, pp 301–316Google Scholar
  160. Gerhardt A (2007) Aquatic behavioral ecotoxicology – prospects and limitations. Hum Ecol Risk Assess 13:481–491.  https://doi.org/10.1080/10807030701340839CrossRefGoogle Scholar
  161. Gerhardt A, de Bisthoven LJ, Soares A (2004) Macroinvertebrate response to acid mine drainage: community metrics and on-line behavioural toxicity bioassay. Environ Pollut 130:263–274.  https://doi.org/10.1016/j.envpol.2003.11.016CrossRefGoogle Scholar
  162. Gerhardt A, de Bisthoven LJ, Guhr K, Soares A, Pereira MJ (2008) Phytoassessment of acid mine drainage: lemna gibba bioassay and diatom community structure. Ecotoxicology 17:47–58.  https://doi.org/10.1007/s10646-007-0175-8CrossRefGoogle Scholar
  163. Goldstein JN, Woodward DF, Farag AM (1999) Movements of adult Chinook salmon during spawning migration in a metals-contaminated system, Coeur d’Alene River, Idaho. Trans Am Fish Soc 128:121–129.  https://doi.org/10.1577/1548-8659(1999)128<0121:moacsd>2.0.co;2CrossRefGoogle Scholar
  164. Goldstein JN, Hubert WA, Woodward DF, Farag AM, Meyer JS (2001) Naturalized salmonid populations occur in the presence of elevated trace element concentrations and temperatures in the Firehole River, Yellowstone National Park, Wyoming, USA. Environ Toxicol Chem 20:2342–2352.  https://doi.org/10.1897/1551-5028(2001)020<2342:nspoit>2.0.co;2CrossRefGoogle Scholar
  165. Gonzalez P, Pierron F (2015) Omics in aquatic ecotoxicology: the ultimate response to biological questions? In: Amiard-Triquet C, Amiard J-C, Mouneyrac C (eds) Aquatic ecotoxicology: advancing tools for dealing with emerging risks. Elsevier, Amsterdam, pp 183–203Google Scholar
  166. Gower AM, Darlington ST (1990) Relationships between copper concentrations in larvae of Plectrocnemia conspersa (Curtis) (Trichoptera) and in mine drainage streams. Environ Pollut 65:155–168.  https://doi.org/10.1016/0269-7491(90)90181-bCrossRefGoogle Scholar
  167. Gower AM, Myers G, Kent M, Foulkes ME (1994) Relationships between macroinvertebrate communities and environmental variables in metal-contaminated streams in south-West England. Freshw Biol 32:199–221.  https://doi.org/10.1111/j.1365-2427.1994.tb00877.xCrossRefGoogle Scholar
  168. Gozzard E, Mayes WM, Potter HAB, Jarvis AP (2011) Seasonal and spatial variation of diffuse (non-point) source zinc pollution in a historically metal mined river catchment, UK. Environ Pollut 159:3113–3122.  https://doi.org/10.1016/j.envpol.2011.02.010CrossRefGoogle Scholar
  169. Gray NF, Delaney E (2008) Comparison of benthic macroinvertebrate indices for the assessment of the impact of acid mine drainage on an Irish river below an abandoned Cu-S mine. Environ Pollut 155:31–40.  https://doi.org/10.1016/j.envpol.2007.11.002CrossRefGoogle Scholar
  170. Gray DP, Harding JS (2012) Acid Mine Drainage Index (AMDI): a benthic invertebrate biotic index for assessing coal mining impacts in New Zealand streams. New Zealand J Mar Fresh 46:335–352.  https://doi.org/10.1080/00288330.2012.663764CrossRefGoogle Scholar
  171. Gray JB, Vis ML (2013) Reference diatom assemblage response to restoration of an acid mine drainage stream. Ecol Indic 29:234–245.  https://doi.org/10.1016/j.ecolind.2013.01.002CrossRefGoogle Scholar
  172. Groenendijk D, Lucker SMG, Plans M, Kraak MHS, Admiraal W (2002) Dynamics of metal adaptation in riverine chironomids. Environ Pollut 117:101–109.  https://doi.org/10.1016/s0269-7491(01)00154-3CrossRefGoogle Scholar
  173. Hansen DJ, Berry WJ, Mahony JD, Boothman WS, DiToro DM, Robson DL, Ankley GT, Ma D, Yan Q, Pesch CE (1996) Predicting the toxicity of metal-contaminated field sediments using interstitial concentration of metals and acid-volatile sulfide normalizations. Environ Toxicol Chem 15:2080–2094.  https://doi.org/10.1897/1551-5028(1996)015<2080:pttomc>2.3.co;2CrossRefGoogle Scholar
  174. Hansen JA, Woodward DF, Little EE, DeLonay AJ, Bergman HL (1999) Behavioral avoidance: possible mechanism for explaining abundance and distribution of trout species in a metal-impacted river. Environ Toxicol Chem 18:313–317.  https://doi.org/10.1897/1551-5028(1999)018<0313:bapmfe>2.3.co;2CrossRefGoogle Scholar
  175. Hansen BH, Romma S, Garmo OA, Olsvik PA, Andersen RA (2006) Antioxidative stress proteins and their gene expression in brown trout (Salmo trutta) from three rivers with different heavy metal levels. Comp Biochem Physiol C Toxicol Pharmacol 143:263–274.  https://doi.org/10.1016/j.cbpc.2006.02.010CrossRefGoogle Scholar
  176. Harding JPC, Whitton BA (1976) Resistance to zinc of Stigeoclonium tenue in field and laboratory. Br Phycol J 11:417–426.  https://doi.org/10.1080/00071617600650471CrossRefGoogle Scholar
  177. Hare L (1992) Aquatic insects and trace-metals – bioavailability, bioaccumulation, and toxicity. Crit Rev Toxicol 22:327–369.  https://doi.org/10.3109/10408449209146312CrossRefGoogle Scholar
  178. Hare L, Carignan R, Huertadiaz MA (1994) A field-study of metal toxicity and accumulation by benthic invertebrates – implications for the acid volatile sulfide (AVS) model. Limnol Oceanogr 39:1653–1668.  https://doi.org/10.4319/lo.1994.39.7.1653CrossRefGoogle Scholar
  179. Hickey CW, Clements WH (1998) Effects of heavy metals on benthic macroinvertebrate communities in New Zealand streams. Environ Toxicol Chem 17:2338–2346.  https://doi.org/10.1897/1551-5028(1998)017<2338:eohmob>2.3.co;2CrossRefGoogle Scholar
  180. Hickey CW, Golding LA (2002) Response of macroinvertebrates to copper and zinc in a stream mesocosm. Environ Toxicol Chem 21:1854–1863.  https://doi.org/10.1002/etc.5620210913CrossRefGoogle Scholar
  181. Hiller E, Lalinska B, Chovan M, Jurkovic L, Klimko T, Jankular M, Hovoric R, Sottnik P, Flakova R, Zenisova Z, Ondrejkova I (2012) Arsenic and antimony contamination of waters, stream sediments and soils in the vicinity of abandoned antimony mines in the Western Carpathians, Slovakia. Appl Geochem 27:598–614.  https://doi.org/10.1016/j.apgeochem.2011.12.005CrossRefGoogle Scholar
  182. Hirst H, Juttner I, Ormerod SJ (2002) Comparing the responses of diatoms and macroinvertebrates to metals in upland streams of Wales and Cornwall. Freshw Biol 47:1752–1765Google Scholar
  183. Hogsden KL, Harding JS (2012) Consequences of acid mine drainage for the structure and function of benthic stream communities: a review. Freshw Sci 31:108–120.  https://doi.org/10.1899/11-091.1CrossRefGoogle Scholar
  184. Hubler S, Huff DD, Edwards P, Pan YD (2016) The biological sediment tolerance index: assessing fine sediments conditions in Oregon streams using macroinvertebrates. Ecol Indic 67:132–145.  https://doi.org/10.1016/j.ecolind.2016.02.009CrossRefGoogle Scholar
  185. Hudson-Edwards KA, Schell C, Macklin MG (1999) Mineralogy and geochemistry of alluvium contaminated by metal mining in the Rio Tinto area, Southwest Spain. Appl Geochem 14:1015–1030.  https://doi.org/10.1016/s0883-2927(99)00008-6CrossRefGoogle Scholar
  186. Hunting ER, Mulder C, Kraak MHS, Breure AM, Admiraal W (2013) Effects of copper on invertebrate-sediment interactions. Environ Pollut 180:131–135.  https://doi.org/10.1016/j.envpol.2013.05.027CrossRefGoogle Scholar
  187. Ilkova J, Michailova P, Szarek-Gwiazda E, Kownacki A, Ciszewski D (2017) The response of genome of the chironomidae (Diptera) to heavy metal pollution in two rivers of Southern Poland. Acta Zool Bulg 8:9–15Google Scholar
  188. Ingersoll CG, Brumbaugh WG, Dwyer FJ, Kemble NE (1994) Bioaccumulation of metals by Hyalella azteca exposed to contaminated sediments from the Upper Clark-Fork River, Montana. Environ Toxicol Chem 13:2013–2020.  https://doi.org/10.1897/1552-8618(1994)13[2013:baombh]2.0.co;2CrossRefGoogle Scholar
  189. Ivorra N, Hettelaar J, Tubbing GMJ, Kraak MHS, Sabater S, Admiraal W (1999) Translocation of microbenthic algal assemblages used for in situ analysis of metal pollution in rivers. Arch Environ Contam Toxicol 37:19–28Google Scholar
  190. Ivorra N, Bremer S, Guasch H, Kraak MHS, Admiraal W (2000) Differences in the sensitivity of benthic microalgae to Zn and Cd regarding biofilm development and exposure history. Environ Toxicol Chem 19:1332–1339.  https://doi.org/10.1897/1551-5028(2000)019<1332:ditsob>2.3.co;2CrossRefGoogle Scholar
  191. Ivorra N, Barranguet C, Jonker M, Kraak MHS, Admiraal W (2002a) Metal-induced tolerance in the freshwater microbenthic diatom Gomphonema parvulum. Environ Pollut 116:147–157.  https://doi.org/10.1016/s0269-7491(01)00152-xCrossRefGoogle Scholar
  192. Ivorra N, Hettelaar J, Kraak MHS, Sabater S, Admiraal W (2002b) Responses of biofilms to combined nutrient and metal exposure. Environ Toxicol Chem 21:626–632.  https://doi.org/10.1002/etc.5620210323CrossRefGoogle Scholar
  193. Iwasaki Y, Cadmus P, Clements WH (2013) Comparison of different predictors of exposure for modeling impacts of metal mixtures on macroinvertebrates in stream microcosms. Aquat Toxicol 132:151–156.  https://doi.org/10.1016/j.aquatox.2013.02.007CrossRefGoogle Scholar
  194. Iwasaki Y, Schmidt TS, Clements WH (2018) Quantifying differences in response of aquatic insects to trace metal exposure in field studies and short-term mesocosm experiments. Environ Sci Technol 52:4378–4384Google Scholar
  195. Jarvis AP, Younger PL (1997) Dominating factors in mine water induced impoverishment of the invertebrate fauna of two streams in the Durham coalfield, UK. Chem Ecol 13:249–270Google Scholar
  196. Jarvis AP, Younger PL (2000) Broadening the scope of mine water environmental impact assessment. Environ Impact Assess Rev 20:85–96Google Scholar
  197. Jeppe KJ, Carew ME, Pettigrove V, Hoffmannz AA (2017a) Toxicant mixtures in sediment alter gene expression in the cysteine metabolism of Chironomus tepperi. Environ Toxicol Chem 36:691–698.  https://doi.org/10.1002/etc.3570CrossRefGoogle Scholar
  198. Jeppe KJ, Yang JH, Long SM, Carew ME, Zhang XW, Pettigrove V, Hoffmann AA (2017b) Detecting copper toxicity in sediments: from the subindividual level to the population level. J Appl Ecol 54:1331–1342.  https://doi.org/10.1111/1365-2664.12840CrossRefGoogle Scholar
  199. Jones JI, Davy-Bowker J, Murphy J, Keller V, Williams R, Davies C (2008) Review of the evidence for organic pollution thresholds to protect rivers with special designations for wildlife. NERC/Centre for Ecology & HydrologyGoogle Scholar
  200. Jones JI, Davy-Bowker J, Murphy JF, Pretty JL (2010) Ecological monitoring and assessment of pollution in rivers. In: Batty LC, Hallberg KB (eds) Ecology of industrial pollution. Cambridge University Press, Cambridge, pp 126–146Google Scholar
  201. Jones JI, Collins AL, Naden PS, Sear DA (2012a) The relationship between fine sediment and macrophytes in rivers. River Res Appl 28:1006–1018.  https://doi.org/10.1002/rra.1486CrossRefGoogle Scholar
  202. Jones JI, Murphy JF, Collins AL, Sear DA, Naden PS, Armitage PD (2012b) The impact of fine sediment on macro-invertebrates. River Res Appl 28:1055–1071.  https://doi.org/10.1002/rra.1516CrossRefGoogle Scholar
  203. Jones A, Rogerson M, Greenway G, Potter HAB, Mayes WM (2013) Mine water geochemistry and metal flux in a major historic Pb-Zn-F orefield, the Yorkshire Pennines, UK. Environ Sci Pollut Res 20:7570–7581.  https://doi.org/10.1007/s11356-013-1513-4CrossRefGoogle Scholar
  204. Jones JI, Duerdoth CP, Collins AL, Naden PS, Sear DA (2014) Interactions between diatoms and fine sediment. Hydrol Process 28:1226–1237.  https://doi.org/10.1002/hyp.9671CrossRefGoogle Scholar
  205. Kelly M (1988) Mining and the freshwater environment. Elsevier, LondonGoogle Scholar
  206. Kemp P, Sear D, Collins A, Naden P, Jones I (2011) The impacts of fine sediment on riverine fish. Hydrol Process 25:1800–1821.  https://doi.org/10.1002/hyp.7940CrossRefGoogle Scholar
  207. Kiffney PM, Clements WH (1994) Effects of heavy-metals on a macroinvertebrate assemblage from a Rocky Mountain stream in experimental microcosms. J N Am Benthol Soc 13:511–523.  https://doi.org/10.2307/1467847CrossRefGoogle Scholar
  208. Kiffney PM, Clements WH (1996) Size-dependent response of macroinvertebrates to metals in experimental streams. Environ Toxicol Chem 15:1352–1356.  https://doi.org/10.1897/1551-5028(1996)015<1352:sdromt>2.3.co;2CrossRefGoogle Scholar
  209. Kiser T, Hansen J, Kennedy B (2010) Impacts and pathways of mine contaminants to bull trout (Salvelinus confluentus) in an Idaho watershed. Arch Environ Contam Toxicol 59:301–311.  https://doi.org/10.1007/s00244-009-9457-xCrossRefGoogle Scholar
  210. Klerks PL, Weis JS (1987) Genetic adaptation to heavy-metals in aquatic organisms – a review. Environ Pollut 45:173–205.  https://doi.org/10.1016/0269-7491(87)90057-1CrossRefGoogle Scholar
  211. Klok C, Kraak MHS (2008) Living in highly dynamic polluted river floodplains, do contaminants contribute to population and community effects? Sci Total Environ 406:455–461.  https://doi.org/10.1016/j.scitotenv.2008.05.058CrossRefGoogle Scholar
  212. Kraak MHS, Scholten MCT, Peeters WHM, Dekock WC (1991) Biomonitoring of heavy-metals in the western European rivers Rhine and Meuse using the freshwater mussel Dreissena polymorpha. Environ Pollut 74:101–114.  https://doi.org/10.1016/0269-7491(91)90107-8CrossRefGoogle Scholar
  213. Kraal MH, Kraak MHS, Degroot CJ, Davids C (1995) Uptake and tissue distribution of dietary and aqueous cadmium by carp (Cyprinus carpio). Ecotoxicol Environ Saf 31:179–183.  https://doi.org/10.1006/eesa.1995.1060CrossRefGoogle Scholar
  214. Kwan KHM, Chan HM, de Lafontaine Y (2003) Metal contamination in zebra mussels (Dreissena polymorpha) along the St. Lawrence River. Environ Monit Assess 88:193–219.  https://doi.org/10.1023/a:1025517007605CrossRefGoogle Scholar
  215. Langer-Jaesrich M, Kohler HR, Gerhardt A (2010) Can mouth part deformities of Chironomus riparius serve as indicators for water and sediment pollution? A laboratory approach. J Soils Sediments 10:414–422.  https://doi.org/10.1007/s11368-010-0195-5CrossRefGoogle Scholar
  216. Langevoord M, Kraak MHS, Kraal MH, Davids C (1995) Importance of prey choice for Cd uptake by carp (Cyprinus carpio) fingerlings. J N Am Benthol Soc 14:423–429.  https://doi.org/10.2307/1467208CrossRefGoogle Scholar
  217. Lavoie I, Lavoie M, Fortin C (2012) A mine of information: benthic algal communities as biomonitors of metal contamination from abandoned tailings. Sci Total Environ 425:231–241.  https://doi.org/10.1016/j.scitotenv.2012.02.057CrossRefGoogle Scholar
  218. Lavoie I, Hamilton PB, Morin S, Tiam SK, Kahlert M, Goncalves S, Falasco E, Fortin C, Gontero B, Heudre D, Kojadinovic-Sirinelli M, Manoylov K, Pandey LK, Taylor JC (2017) Diatom teratologies as biomarkers of contamination: are all deformities ecologically meaningful. Ecol Indic 82:539–550.  https://doi.org/10.1016/j.ecolind.2017.06.043CrossRefGoogle Scholar
  219. Lavoie I, Morin S, Laderriere V, Fortin C (2018) Freshwater diatoms as indicators of combined long-term mining and urban stressors in Junction Creek (Ontario, Canada). Environment 5.  https://doi.org/10.3390/environments5020030Google Scholar
  220. Lecce SA, Pavlowsky RT (2014) Floodplain storage of sediment contaminated by mercury and copper from historic gold mining at Gold Hill, North Carolina, USA. Geomorphology 206:122–132.  https://doi.org/10.1016/j.geomorph.2013.10.004CrossRefGoogle Scholar
  221. Lee BG, Griscom SB, Lee JS, Choi HJ, Koh CH, Luoma SN, Fisher NS (2000a) Influences of dietary uptake and reactive sulfides on metal bioavailability from aquatic sediments. Science 287:282–284.  https://doi.org/10.1126/science.287.5451.282CrossRefGoogle Scholar
  222. Lee BG, Lee JS, Luoma SN, Choi HJ, Koh CH (2000b) Influence of acid volatile sulfide and metal concentrations on metal bioavailability to marine invertebrates in contaminated sediments. Environ Sci Technol 34:4517–4523.  https://doi.org/10.1021/es001033hCrossRefGoogle Scholar
  223. Lee JS, Lee BG, Luoma SN, Choi HJ, Koh CH, Brown CL (2000c) Influence of acid volatile sulfides and metal concentrations on metal partitioning in contaminated sediments. Environ Sci Technol 34:4511–4516.  https://doi.org/10.1021/es001034+CrossRefGoogle Scholar
  224. Lee JS, Lee BG, Yoo H, Koh CH, Luoma SN (2001) Influence of reactive sulfide (AVS) and supplementary food on Ag, Cd and Zn bioaccumulation in the marine polychaete Neanthes arenaceodentata. Mar Ecol Prog Ser 216:129–140.  https://doi.org/10.3354/meps216129CrossRefGoogle Scholar
  225. Lenat DR (1988) Water quality assessment using a qualitative collection method for benthic macroinvertebrates. J N Am Benthol Soc 7:222–233Google Scholar
  226. Leslie HA, Pavluk TI, de Vaate AB, Kraak MHS (1999) Triad assessment of the impact of chromium contamination on benthic macroinvertebrates in the Chusovaya River (Urals, Russia). Arch Environ Contam Toxicol 37:182–189.  https://doi.org/10.1007/s002449900504CrossRefGoogle Scholar
  227. Liess M, Gerner NV, Kefford BJ (2017) Metal toxicity affects predatory stream invertebrates less than other functional feeding groups. Environ Pollut 227:505–512.  https://doi.org/10.1016/j.envpol.2017.05.017CrossRefGoogle Scholar
  228. Liu ZZ, Lozupone C, Hamady M, Bushman FD, Knight R (2007) Short pyrosequencing reads suffice for accurate microbial community analysis. Nucleic Acids Res 35.  https://doi.org/10.1093/nar/gkm541Google Scholar
  229. Loayza-Muro RA, Elias-Letts R, Marticorena-Ruiz JK, Palomino EJ, Duivenvoorden JF, Kraak MHS, Admiraal W (2010) Metal-induced shifts in benthic macroinvertebrate community composition in Andean high altitude streams. Environ Toxicol Chem 29:2761–2768.  https://doi.org/10.1002/etc.327CrossRefGoogle Scholar
  230. Loayza-Muro RA, de Baat ML, Palomino EJ, Kuperus P, Kraak MHS, Admiraal W, Breeuwer JAJ (2014a) Metals and altitude drive genetic diversity of chironomids in Andean streams. Freshw Biol 59:56–63.  https://doi.org/10.1111/fwb.12245CrossRefGoogle Scholar
  231. Loayza-Muro RA, Duivenvoorden JF, Kraak MHS, Admiraal W (2014b) Metal leaching, acidity, and altitude confine benthic macroinvertebrate community composition in Andean streams. Environ Toxicol Chem 33:404–411.  https://doi.org/10.1002/etc.2436CrossRefGoogle Scholar
  232. Lofts S, Tipping E (2011) Assessing WHAM/model VII against field measurements of free metal ion concentrations: model performance and the role of uncertainty in parameters and inputs. Environ Chem 8:501–516.  https://doi.org/10.1071/en11049CrossRefGoogle Scholar
  233. Long ER, Chapman PM (1985) A sediment quality triad – measures of sediment contamination, toxicity and infaunal community composition in Puget Sound. Mar Pollut Bull 16:405–415.  https://doi.org/10.1016/0025-326x(85)90290-5CrossRefGoogle Scholar
  234. Luoma SN (1977) Detection of trace contaminant effects in aquatic ecosystems. J Fish Res Board Can 34:436–439.  https://doi.org/10.1139/f77-072CrossRefGoogle Scholar
  235. Luoma SN, Rainbow PS (2005) Why is metal bioaccumulation so variable? Biodynamics as a unifying concept. Environ Sci Technol 39:1921–1931.  https://doi.org/10.1021/es048947eCrossRefGoogle Scholar
  236. Luoma SN, Rainbow PS (2008) Metal contamination in aquatic environments: science and lateral management. Cambridge University Press, CambridgeGoogle Scholar
  237. Luoma SN, Rainbow PS (2010) Linking new science frontiers in metal ecotoxicology to better risk management: lateral thinking. In: Bury NR, Handy RD (eds) Surface chemistry, bioavailability and metal homeostasis in aquatic organisms: an integrated approach. Society for Experimental Biology, London, pp 1–28Google Scholar
  238. Luoma SN, Stewart AR, Kidd KA (2005) Processes affecting trophic transfer and resultant effects of metals. In: Meyer JS, Adams WJ, Brix KV, Luoma SN, Mount DR, Stubblefield WA, Wood CM (eds) Toxicity of dietborne metals to aquatic organisms. SETAC Press, Pensacola, pp 247–261Google Scholar
  239. Luoma SN, Cain DJ, Rainbow PS (2010) Calibrating biomonitors to ecological disturbance: a new technique for explaining metal effects in natural waters. Integr Environ Assess Manag 6:199–209.  https://doi.org/10.1897/IEAM_2009-067.1CrossRefGoogle Scholar
  240. MacDonald DD, Ingersoll CG, Berger TA (2000) Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems. Arch Environ Contam Toxicol 39:20–31.  https://doi.org/10.1007/s002440010075CrossRefGoogle Scholar
  241. Macklin MG, Brewer PA, Hudson-Edwards KA, Bird G, Coulthard TJ, Dennis IA, Lechler PJ, Miller JR, Turner JN (2006) A geomorphological approach to the management of rivers contaminated by metal mining. Geomorphology 79:423–447.  https://doi.org/10.1016/j.geomorph.2006.06.024CrossRefGoogle Scholar
  242. Maia F, Pinto C, Waerenborgh JC, Goncalves MA, Prazeres C, Carreira O, Serio S (2012) Metal partitioning in sediments and mineralogical controls on the acid mine drainage in Ribeira da Agua Forte (Aljustrel, Iberian Pyrite Belt, Southern Portugal). Appl Geochem 27:1063–1080.  https://doi.org/10.1016/j.apgeochem.2012.02.036CrossRefGoogle Scholar
  243. Malmqvist B, Hoffsten PO (1999) Influence of drainage from old mine deposits on benthic macroinvertebrate communities in central Swedish streams. Water Res 33:2415–2423.  https://doi.org/10.1016/s0043-1354(98)00462-xCrossRefGoogle Scholar
  244. Malouf C (1974) Economy and land use by the Indians of western Montana. In: Fuller EO (ed) Interior Salish and eastern Washington Indians. Garland Publishing, New YorkGoogle Scholar
  245. Maltby L, Naylor C, Calow P (1990a) Effect of stress on a freshwater benthic detritivore – scope for growth in Gammarus pulex. Ecotoxicol Environ Saf 19:285–291.  https://doi.org/10.1016/0147-6513(90)90030-9CrossRefGoogle Scholar
  246. Maltby L, Naylor C, Calow P (1990b) Field deployment of a scope for growth assay involving Gammarus pulex, a freshwater benthic invertebrate. Ecotoxicol Environ Saf 19:292–300.  https://doi.org/10.1016/0147-6513(90)90031-yCrossRefGoogle Scholar
  247. Maltby L, Clayton SA, Wood RM, McLoughlin N (2002) Evaluation of the Gammarus pulex in situ feeding assay as a biomonitor of water quality: robustness, responsiveness, and relevance. Environ Toxicol Chem 21:361–368.  https://doi.org/10.1002/etc.5620210219CrossRefGoogle Scholar
  248. Mandich M (2018) Ranked effects of heavy metals on marine bivalves in laboratory mesocosms: a meta-analysis. Mar Pollut Bull 131:773–781.  https://doi.org/10.1016/j.marpolbul.2018.04.068CrossRefGoogle Scholar
  249. Marr JCA, Bergman HL, Parker M, Lipton J, Cacela D, Erickson W, Phillips GR (1995) Relative sensitivity of brown and rainbow trout to pulsed exposures of an acutely lethal mixture of metals typical of the Clark-Fork River, Montana. Can J Fish Aquat Sci 52:2005–2015.  https://doi.org/10.1139/f95-792CrossRefGoogle Scholar
  250. Martinez EA, Moore BC, Schaumloffel J, Dasgupta N (2003) Morphological abnormalities in Chironomus tentans exposed to cadmium and copper-spiked sediments. Ecotoxicol Environ Saf 55:204–212.  https://doi.org/10.1016/s0147-6513(02)00136-7CrossRefGoogle Scholar
  251. Martinez EA, Moore BC, Schaumloffel J, Dasgupta N (2004) Effects of exposure to a combination of zinc- and lead-spiked sediments on mouthpart development and growth in Chironomus tentans. Environ Toxicol Chem 23:662–667.  https://doi.org/10.1897/02-512CrossRefGoogle Scholar
  252. Martinez EA, Wold L, Moore BC, Schaumloffel J, Dasgupta N (2006) Morphologic and growth responses in Chironomus tentans to arsenic exposure. Arch Environ Contam Toxicol 51:529–536.  https://doi.org/10.1007/s00244-005-0308-0CrossRefGoogle Scholar
  253. Maund SJ, Taylor EJ, Pascoe D (1992) Population responses of the fresh-water amphipod crustacean Gammarus pulex (L) to copper. Freshw Biol 28:29–36.  https://doi.org/10.1111/j.1365-2427.1992.tb00559.xCrossRefGoogle Scholar
  254. Mayes WM, Johnston D, Potter HAB, Jarvis AP (2009) A national strategy for identification, prioritisation and management of pollution from abandoned non-coal mine sites in England and Wales. I. Methodology development and initial results. Sci Total Environ 407:5435–5447.  https://doi.org/10.1016/j.scitotenv.2009.06.019CrossRefGoogle Scholar
  255. Mayes WM, Potter HAB, Jarvis AP (2010) Inventory of aquatic contaminant flux arising from historical metal mining in England and Wales. Sci Total Environ 408:3576–3583.  https://doi.org/10.1016/j.scitotenv.2010.04.021CrossRefGoogle Scholar
  256. Méndez-Fernández L, Martínez-Madrid M, Pardo I, Rodríguez P (2017) Baseline tissue concentrations of metal in aquatic oligochaetes: field and laboratory approaches. Environ Pollut 223:636–643.  https://doi.org/10.1016/j.envpol.2017.01.070CrossRefGoogle Scholar
  257. Menezes S, Baird DJ, Soares A (2010) Beyond taxonomy: a review of macroinvertebrate trait-based community descriptors as tools for freshwater biomonitoring. J Appl Ecol 47:711–719.  https://doi.org/10.1111/j.1365-2664.2010.01819.xCrossRefGoogle Scholar
  258. Michailova P, Ilkova J, Kerr R, White K (2009) Chromosome variability in Chironomus acidophilus Keyl, 1960 from the Afon Goch, UK – a river subject to long-term trace metal pollution. Aquat Insects 31:213–225.  https://doi.org/10.1080/01650420903113711CrossRefGoogle Scholar
  259. Michailova P, Ilkova J, Dean AP, White KN (2015) Cytogenetic index and functional genome alterations in Chironomus piger Strenzke (Diptera, Chironomidae) in the assessment of sediment pollution: a case study of Bulgarian and UK rivers. Ecotoxicol Environ Saf 111:220–227.  https://doi.org/10.1016/j.ecoenv.2014.10.018CrossRefGoogle Scholar
  260. Michailova P, Ilkova J, White K (2016) Implications of genome alterations in Chironomus bernensis Klȍtzli (Diptera) for assessment of trace metal pollution in two Bulgarian Rivers. River Res Appl 32:914–924.  https://doi.org/10.1002/rra.2927CrossRefGoogle Scholar
  261. Mighanetara K, Braungardt CB, Rieuwerts JS, Azizi F (2009) Contaminant fluxes from point and diffuse sources from abandoned mines in the river Tamar catchment, UK. J Geochem Explor 100:116–124.  https://doi.org/10.1016/j.gexplo.2008.03.003CrossRefGoogle Scholar
  262. Minghetti M, Schnell S, Chadwick MA, Hogstrand C, Bury NR (2014) A primary FIsh Gill Cell System (FIGCS) for environmental monitoring of river waters. Aquat Toxicol 154:184–192.  https://doi.org/10.1016/j.aquatox.2014.05.019CrossRefGoogle Scholar
  263. Mondy CP, Villeneuve B, Archaimbault V, Usseglio-Polatera P (2012) A new macroinvertebrate-based multimetric index (I2M2) to evaluate ecological quality of French wadeable streams fulfilling the WFD demands: a taxonomical and trait approach. Ecol Indic 18:452–467.  https://doi.org/10.1016/j.ecolind.2011.12.013CrossRefGoogle Scholar
  264. Moore MN, Allen JI, McVeigh A (2006a) Environmental prognostics: an integrated model supporting lysosomal stress responses as predictive biomarkers of animal health status. Mar Environ Res 61:278–304.  https://doi.org/10.1016/j.marenvres.2005.10.005CrossRefGoogle Scholar
  265. Moore MN, Allen JI, McVeigh A, Shaw J (2006b) Lysosomal and autophagic reactions as predictive indicators of environmental impact in aquatic animals. Autophagy 2:217–220.  https://doi.org/10.4161/auto.2663CrossRefGoogle Scholar
  266. Moore MN, Viarengo AG, Somerfield PJ, Sforzini S (2013) Linking lysosomal biomarkers and ecotoxicological effects at higher biological levels. In: Amiard-Triquet C, Amiard J-C, Rainbow PS (eds) Ecological biomarkers: indicators of ecotoxicological effects. CRC Press, Boca Raton, pp 107–130Google Scholar
  267. Moss D, Furse MT, Wright JF, Armitage PD (1987) The prediction of the macroinvertebrate fauna of unpolluted running water sites in Great Britain using environmental data. Freshw Biol 17:41–52Google Scholar
  268. Murphy JF, Davy-Bowker J, McFarland B, Ormerod SJ (2013) A diagnostic biotic index for assessing acidity in sensitive streams in Britain. Ecol Indic 24:562–572.  https://doi.org/10.1016/j.ecolind.2012.08.014CrossRefGoogle Scholar
  269. Murphy JF, Winterbottom JH, Orton S, Simpson GL, Shilland EM, Hildrew AG (2014) Evidence of recovery from acidification in the macroinvertebrate assemblages of UK fresh waters: a 20-year time series. Ecol Indic 37:330–340.  https://doi.org/10.1016/j.ecolind.2012.07.009CrossRefGoogle Scholar
  270. Murphy JF, Jones JI, Pretty JL, Duerdoth CP, Hawczak A, Arnold A, Blackburn JH, Naden PS, Old G, Sear DA, Hornby D, Clarke RT, Collins AL (2015) Development of a biotic index using stream macroinvertebrates to assess stress from deposited fine sediment. Freshw Biol 60:2019–2036.  https://doi.org/10.1111/fwb.12627CrossRefGoogle Scholar
  271. Nichols SJ, Barmuta LA, Chessman BC, Davies PE, Dyer FJ, Harrison ET, Hawkins CP, Jones I, Kefford BJ, Linke S, Marchant R, Metzeling L, Moon K, Ogden R, Peat M, Reynoldson TB, Thompson RM (2017) The imperative need for nationally coordinated bioassessment of rivers and streams. Mar Freshw Res 68:599–613.  https://doi.org/10.1071/mf15329CrossRefGoogle Scholar
  272. Niyogi DK, Lewis WM, McKnight DM (2001) Litter breakdown in mountain streams affected by mine drainage: biotic mediation of abiotic controls. Ecol Appl 11:506–516.  https://doi.org/10.2307/3060905CrossRefGoogle Scholar
  273. Niyogi DK, Lewis WM, McKnight DM (2002) Effects of stress from mine drainage on diversity, biomass, and function of primary producers in mountain streams. Ecosystems 5:554–567.  https://doi.org/10.1007/s10021-002-0182-9CrossRefGoogle Scholar
  274. Nocker A, Burr M, Camper AK (2007) Genotypic microbial community profiling: a critical technical review. Microb Ecol 54:276–289.  https://doi.org/10.1007/s00248-006-9199-5CrossRefGoogle Scholar
  275. Olsen T, Ellerbeck L, Fisher T, Callaghan A, Crane M (2001) Variability in acetylcholinesterase and glutathione S-transferase activities in Chironomus riparius Meigen deployed in situ at uncontaminated field sites. Environ Toxicol Chem 20:1725–1732.  https://doi.org/10.1897/1551-5028(2001)020<1725:viaags>2.0.co;2CrossRefGoogle Scholar
  276. Oyoo-Okoth E, Admiraal W, Osano O, Kraak MHS, Were-Kogogo PJA, Gichuki J, Ngure V, Makwali J, Ogwai C (2012) Dynamics of metal uptake and depuration in a parasitized cyprinid fish (Rastrineobola argentea). Aquat Toxicol 124:34–40.  https://doi.org/10.1016/j.aquatox.2012.07.006CrossRefGoogle Scholar
  277. Palmer MA, Bernhardt ES, Schlesinger WH, Eshleman KN, Foufoula-Georgiou E, Hendryx MS, Lemly AD, Likens GE, Loucks OL, Power ME, White PS, Wilcock PR (2010) Mountaintop mining consequences. Science 327:148–149.  https://doi.org/10.1126/science.1180543CrossRefGoogle Scholar
  278. Palumbo-Roe B, Banks VJ, Chenery S, Weiss D (2010) Tracing sources and fate of zinc in a mining-impacted river catchment: insights from flow measurements, synoptic sampling, and zinc isotope. In: Wolkersdorfer C, Freund A (eds) Mine water & innovative thinking. International Mine Water Association, Sydney, pp 383–386Google Scholar
  279. Pandey LK, Lavoie I, Morin S, Park J, Lyu J, Choi S, Lee H, Han T (2018) River water quality assessment based on a multi-descriptor approach including chemistry, diatom assemblage structure, and non-taxonomical diatom metrics. Ecol Indic 84:140–151.  https://doi.org/10.1016/j.ecolind.2017.07.043CrossRefGoogle Scholar
  280. Paquin PR, Gorsuch JW, Apte S, Batley GE, Bowles KC, Campbell PGC, Delos CG, di Toro DM, Dwyer RL, Galvez F, Gensemer RW, Goss GG, Hogstrand C, Janssen CR, McGeer JC, Naddy RB, Playle RC, Santore RC, Schneider U, Stubblefield WA, Wood CM, Wu KB (2002) The biotic ligand model: a historical overview. Comp Biochem Physiol C Toxicol Pharmacol 133:3–35.  https://doi.org/10.1016/s1532-0456(02)00112-6CrossRefGoogle Scholar
  281. Paris JR, King RA, Stevens JR (2015) Human mining activity across the ages determines the genetic structure of modern brown trout (Salmo trutta L.) populations. Evol Appl 8:573–585.  https://doi.org/10.1111/eva.12266CrossRefGoogle Scholar
  282. Peeters E, Dewitte A, Koelmans AA, van der Velden JA, den Besten PJ (2001) Evaluation of bioassays versus contaminant concentrations in explaining the macroinvertebrate community structure in the Rhine-Meuse delta, the Netherlands. Environ Toxicol Chem 20:2883–2891.  https://doi.org/10.1897/1551-5028(2001)020<2883:eobvcc>2.0.co;2CrossRefGoogle Scholar
  283. Pereira AMM, Soares A, Goncalves F, Ribeiro R (2000) Water-column, sediment, and in situ chronic bioassays with cladocerans. Ecotoxicol Environ Saf 47:27–38.  https://doi.org/10.1006/eesa.2000.1926CrossRefGoogle Scholar
  284. Piva F, Ciaprini F, Onorati F, Benedetti M, Fattorini D, Ausili A, Regoli F (2011) Assessing sediment hazard through a weight of evidence approach with bioindicator organisms: a practical model to elaborate data from sediment chemistry, bioavailability, biomarkers and ecotoxicological bioassays. Chemosphere 83:475–485.  https://doi.org/10.1016/j.chemosphere.2010.12.064CrossRefGoogle Scholar
  285. Posthuma L, Traas TP, Suter IIGW (2002) Species sensitivity distributions in ecotoxicology. Lewis Publishers, Boca RatonGoogle Scholar
  286. Poteat MD, Buchwalter DB (2014) Four reasons why traditional metal toxicity testing with aquatic insects is irrelevant. Environ Sci Technol 48:887–888.  https://doi.org/10.1021/es405529nCrossRefGoogle Scholar
  287. Prygiel J, Rosso-Darmet A, Lafont M, Lesniak C, Durbec A, Ouddane B (1999) Use of oligochaete communities for assessment of ecotoxicological risk in fine sediment of rivers and canals of the Artois-Picardie water basin (France). Hydrobiologia 410:25–37.  https://doi.org/10.1023/a:1003799224961CrossRefGoogle Scholar
  288. Radivojević M, Rehren T, Pernicka E, Šljivar D, Brauns M, Borić D (2010) On the origins of extractive metallurgy: new evidence from Europe. J Archaeol Sci 37:2775–2787.  https://doi.org/10.1016/j.jas.2010.06.012CrossRefGoogle Scholar
  289. Rainbow PS, Luoma SN (2011a) Metal toxicity, uptake and bioaccumulation in aquatic invertebrates-modelling zinc in crustaceans. Aquat Toxicol 105:455–465.  https://doi.org/10.1016/j.aquatox.2011.08.001CrossRefGoogle Scholar
  290. Rainbow PS, Luoma SN (2011b) Trace metals in aquatic invertebrates. In: Beyer WN, Meador JP (eds) Environmental contaminants in biota: interpreting tissue concentrations. Taylor and Francis Books, Boca Raton, pp 231–252Google Scholar
  291. Rainbow PS, Smith BD, Luoma SN (2009) Biodynamic modelling and the prediction of Ag, Cd and Zn accumulation from solution and sediment by the polychaete Nereis diversicolor. Mar Ecol Prog Ser 390:145–155.  https://doi.org/10.3354/meps08218CrossRefGoogle Scholar
  292. Rainbow PS, Hildrew AG, Smith BD, Geatches T, Luoma SN (2012) Caddisflies as biomonitors identifying thresholds of toxic metal bioavailability that affect the stream benthos. Environ Pollut 166:196–207.  https://doi.org/10.1016/j.envpol.2012.03.017CrossRefGoogle Scholar
  293. Ranville M, Rough D, Flegal AR (2004) Metal attenuation at the abandoned Spenceville copper mine. Appl Geochem 19:803–815.  https://doi.org/10.1016/j.apgeochem.2003.09.013CrossRefGoogle Scholar
  294. Regoli F (2000) Total oxyradical scavenging capacity (TOSC) in polluted and translocated mussels: a predictive biomarker of oxidative stress. Aquat Toxicol 50:351–361.  https://doi.org/10.1016/s0166-445x(00)00091-6CrossRefGoogle Scholar
  295. Regoli F, Gorbi S, Frenzilli G, Nigro M, Corsi I, Focardi S, Winston GW (2002) Oxidative stress in ecotoxicology: from the analysis of individual antioxidants to a more integrated approach. Mar Environ Res 54:419–423.  https://doi.org/10.1016/s0141-1136(02)00146-0CrossRefGoogle Scholar
  296. Regoli F, Benedetti M, Giuliani ME (2011) Antioxidant defences and acquisition of tolerance to chemical stress. In: Amiard-Triquet C, Rainbow PS, Romeo M (eds) Tolerance to environmental contaminants. CRC Press, Boca Raton, pp 153–173Google Scholar
  297. Reiss J, Bridle JR, Montoya JM, Woodward G (2009) Emerging horizons in biodiversity and ecosystem functioning research. Trends Ecol Evol 24:505–514.  https://doi.org/10.1016/j.tree.2009.03.018CrossRefGoogle Scholar
  298. Riato L, Leira M, Della Bella V, Oberholster PJ (2018) Development of a diatom-based multimetric index for acid mine drainage impacted depressional wetlands. Sci Total Environ 612:214–222.  https://doi.org/10.1016/j.scitotenv.2017.08.181CrossRefGoogle Scholar
  299. Rieuwerts JS, Mighanetara K, Braungardt CB, Rollinson GK, Pirrie D, Azizi F (2014) Geochemistry and mineralogy of arsenic in mine wastes and stream sediments in a historic metal mining area in the UK. Sci Total Environ 472:226–234.  https://doi.org/10.1016/j.scitotenv.2013.11.029CrossRefGoogle Scholar
  300. Roig N, Sierra J, Moreno-Garrido I, Nieto E, Gallego EP, Schuhmacher M, Blasco J (2016) Metal bioavailability in freshwater sediment samples and their influence on ecological status of river basins. Sci Total Environ 540:287–296.  https://doi.org/10.1016/j.scitotenv.015.06.107CrossRefGoogle Scholar
  301. Roméo M, Giambérini L (2013) History of biomarkers. In: Amiard-Triquet C, Amiard J-C, Rainbow PS (eds) Ecological biomarkers: indicators of ecotoxicological effects. CRC Press, Boca Raton, pp 15–43Google Scholar
  302. Roméo M, Poirier L, Berthet B (2009) Biomarkers based upon biochemical responses. In: Amiard-Triquet C, Rainbow PS (eds) Environmental assessment of estuarine ecosystems. CRC Press, Boca Raton, pp 59–81Google Scholar
  303. Rosso A, Lafont M, Exinger A (1994) Impact of heavy-metals on benthic oligochaete communities in the River Ill and its tributaries. Water Sci Technol 29:241–248Google Scholar
  304. Salice CJ, Miller TJ (2003) Population-level responses to long-term cadmium exposure in two strains of the freshwater gastropod Biomphalaria glabrata: results from a life-table response experiment. Environ Toxicol Chem 22:678–688.  https://doi.org/10.1897/1551-5028(2003)022<0678:plrtlt>2.0.co;2CrossRefGoogle Scholar
  305. Sanchez W, Porcher JM (2009) Fish biomarkers for environmental monitoring within the Water Framework Directive of the European Union. Trends Anal Chem 28:150–158.  https://doi.org/10.1016/j.trac.2008.10.012CrossRefGoogle Scholar
  306. Sanchez W, Burgeot T, Porcher JM (2013) A novel “Integrated Biomarker Response” calculation based on reference deviation concept. Environ Sci Pollut R 20:2721–2725.  https://doi.org/10.1007/s11356-012-1359-1CrossRefGoogle Scholar
  307. Say PJ, Whitton BA (1981a) Changes in flora down a stream showing a zinc gradient. Hydrobiologia 76:255–262.  https://doi.org/10.1007/bf00006217CrossRefGoogle Scholar
  308. Say PJ, Whitton BA (1981b) Heavy metals in Northern England: environmental and biological aspects. Department of Botany, University of Durham, DurhamGoogle Scholar
  309. Say PJ, Diaz BM, Whitton BA (1977) Influence of zinc on lotic plants.1. Tolerance of Hormidium species to zinc. Freshw Biol 7:357–376.  https://doi.org/10.1111/j.1365-2427.1977.tb01684.xCrossRefGoogle Scholar
  310. Schlekat CE, Garman ER, Vangheluwe MLU, Burton GA (2016) Development of a bioavailability-based risk assessment approach for nickel in freshwater sediments. Integr Environ Assess Manag 12:735–746.  https://doi.org/10.1002/ieam.1720CrossRefGoogle Scholar
  311. Schmidt TS, Clements WH, Mitchell KA, Church SE, Wanty RB, Fey DL, Verplanck PL, San Juan CA (2010) Development of a new toxic-unit model for the bioassessment of metals in streams. Environ Toxicol Chem 29:2432–2442.  https://doi.org/10.1002/etc.302CrossRefGoogle Scholar
  312. Schmidt TS, Clements WH, Zuellig RE, Mitchell KA, Church SE, Wanty RB, San Juan CA, Adams M, Lamothe PJ (2011) Critical tissue residue approach linking accumulated metals in aquatic insects to population and community-level effects. Environ Sci Technol 45:7004–7010.  https://doi.org/10.1021/es200215sCrossRefGoogle Scholar
  313. Schmidt TS, Clements WH, Cade BS (2012a) Estimating risks to aquatic life using quantile regression. Freshw Sci 31:709–723.  https://doi.org/10.1899/11-133.1CrossRefGoogle Scholar
  314. Schmidt TS, Clements WH, Wanty RB, Verplanck PL, Church SE, San Juan CA, Fey DL, Rockwell BW, DeWitt EH, Klein TL (2012b) Geologic processes influence the effects of mining on aquatic ecosystems. Ecol Appl 22:870–879.  https://doi.org/10.1890/11-0806.1CrossRefGoogle Scholar
  315. Schmidt TS, Kraus JM, Walters DM, Wanty RB (2013) Emergence flux declines disproportionately to larval density along a stream metals gradient. Environ Sci Technol 47:8784–8792.  https://doi.org/10.1021/es3051857CrossRefGoogle Scholar
  316. Schmitt-Jansen M, Veit U, Dudel G, Altenburger R (2008) An ecological perspective in aquatic ecotoxicology: approaches and challenges. Basic Appl Ecol 9:337–345.  https://doi.org/10.1016/j.baae.2007.08.008CrossRefGoogle Scholar
  317. Schnell S, Bawa-Allah K, Otitoloju A, Hogstrand C, Miller TH, Barron LP, Bury NR (2015) Environmental monitoring of urban streams using a primary fish gill cell culture system (FIGCS). Ecotoxicol Environ Saf 120:279–285.  https://doi.org/10.1016/j.ecoenv.2015.06.012CrossRefGoogle Scholar
  318. Schnell S, Stott LC, Hogstrand C, Wood CM, Kelly SP, Part P, Owen SF, Bury NR (2016) Procedures for the reconstruction, primary culture and experimental use of rainbow trout gill epithelia. Nat Protoc 11:490–498.  https://doi.org/10.1038/nprot.2016.029CrossRefGoogle Scholar
  319. Schowe KA, Harding JS (2014) Development of two diatom-based indices: a biotic and a multimetric index for assessing mine impacts in New Zealand streams. N Z J Mar Freshw Res 48:163–176.  https://doi.org/10.1080/00288330.2013.852113CrossRefGoogle Scholar
  320. Schultheis AS, Sanchez M, Hendricks AC (1997) Structural and functional responses of stream insects to copper pollution. Hydrobiologia 346:85–93.  https://doi.org/10.1023/a:1002909914774CrossRefGoogle Scholar
  321. Scullion J, Edwards RW (1980a) The effect of pollutants from the coal industry on the fish fauna of a small river in the South-Wales coalfield. Environ Pollut Ser A Ecol Biol 21:141–153.  https://doi.org/10.1016/0143-1471(80)90042-2CrossRefGoogle Scholar
  322. Scullion J, Edwards RW (1980b) Effects of coal industry pollutants on the macroinvertebrate fauna of a small river in the South Wales coalfield. Freshw Biol 10:141–162.  https://doi.org/10.1111/j.1365-2427.1980.tb01189.xCrossRefGoogle Scholar
  323. Shoults-Wilson WA, Elsayed N, Leckrone K, Unrine J (2015) Zebra mussels (Dreissena polymorpha) as a biomonitor of trace elements along the southern shoreline of Lake Michigan. Environ Toxicol Chem 34:412–419.  https://doi.org/10.1002/etc.2825CrossRefGoogle Scholar
  324. Simpson SL, Batley GE, Hamilton IL, Spadaro DA (2011) Guidelines for copper in sediments with varying properties. Chemosphere 85:1487–1495.  https://doi.org/10.1016/j.chemosphere.2011.08.044CrossRefGoogle Scholar
  325. Singh B, Wilson MJ, McHardy WJ, Fraser AR, Merrington G (1999) Mineralogy and chemistry of ochre sediments from an acid mine drainage near a disused mine in Cornwall, UK. Clay Miner 34:301–317.  https://doi.org/10.1180/claymin.1999.034.2.09CrossRefGoogle Scholar
  326. Sloane PIW, Norris RH (2003) Relationship of AUSRIVAS-based macroinvertebrate predictive model outputs to a metal pollution gradient. J N Am Benthol Soc 22:457–471.  https://doi.org/10.2307/1468274CrossRefGoogle Scholar
  327. Spurgeon DJ, Weeks JM, van Gestel CAM (2003) A summary of eleven years progress in earthworm ecotoxicology. Pedobiologia 47:588–606Google Scholar
  328. Stockdale A, Tipping E, Lofts S, Ormerod SJ, Clements WH, Blust R (2010) Toxicity of proton-metal mixtures in the field: linking stream macroinvertebrate species diversity to chemical speciation and bioavailability. Aquat Toxicol 100:112–119.  https://doi.org/10.1016/j.aquatox.2010.07.018CrossRefGoogle Scholar
  329. Stockdale A, Tipping E, Fjellheim A, Garmo OA, Hildrew AG, Lofts S, Monteith DT, Ormerod SJ, Shilland EM (2014) Recovery of macroinvertebrate species richness in acidified upland waters assessed with a field toxicity model. Ecol Indic 37:341–350.  https://doi.org/10.1016/j.ecolind.2011.11.002CrossRefGoogle Scholar
  330. Sunjog K, Kolarevic S, Kracun-Kolarevic M, Visnjic-Jeftic Z, Skoric S, Gacic Z, Lenhardt M, Vasic N, Vukovic-Gacic B (2016) Assessment of status of three water bodies in Serbia based on tissue metal and metalloid concentration (ICP-OES) and genotoxicity (comet assay). Environ Pollut 213:600–607.  https://doi.org/10.1016/j.envpol.2016.03.008CrossRefGoogle Scholar
  331. Svendsen C, Spurgeon DJ, Hankard PK, Weeks JM (2004) A review of lysosomal membrane stability measured by neutral red retention: is it a workable earthworm biomarker? Ecotoxicol Environ Saf 57:20–29.  https://doi.org/10.1016/j.ecoenv.2003.08.009CrossRefGoogle Scholar
  332. Szarek-Gwiazda E, Michailova P, Ilkova J, Kownacki A, Ciszewski D, Aleksander-Kwaterczak U (2013) The effect of long-term contamination by heavy metals on community and genome alterations of Chironomidae (Diptera) in a stream with mine drainage water (southern Poland). Oceanol Hydrobiol Stud 42:460–469.  https://doi.org/10.2478/s13545-013-0102-yCrossRefGoogle Scholar
  333. Taylor EJ, Jones DPW, Maund SJ, Pascoe D (1993) A new method for measuring the feeding-activity of Gammarus pulex (L). Chemosphere 26:1375–1381.  https://doi.org/10.1016/0045-6535(93)90188-b.CrossRefGoogle Scholar
  334. Teuchies J, de Jonge M, Meire P, Blust R, Bervoets L (2012) Can Acid Volatile Sulfides (AVS) influence metal concentrations in the macrophyte Myriophyllum aquaticum? Environ Sci Technol 46:9129–9137.  https://doi.org/10.1021/es300816yCrossRefGoogle Scholar
  335. Tipping E (1994) WHAM – a chemical-equilibrium model and computer code for waters, sediments, and soils incorporating a discrete site electrostatic model of ion-binding by humic substances. Comput Geosci 20:973–1023.  https://doi.org/10.1016/0098-3004(94)90038-8CrossRefGoogle Scholar
  336. Tipping E, Lofts S, Lawlor AJ (1998) Modelling the chemical speciation of trace metals in the surface waters of the Humber system. Sci Total Environ 210:63–77.  https://doi.org/10.1016/s0048-9697(98)00045-xCrossRefGoogle Scholar
  337. Tipping E, Lofts S, Sonke JE (2011) Humic ion-binding model VII: a revised parameterisation of cation-binding by humic substances. Environ Chem 8:225–235.  https://doi.org/10.1071/en11016CrossRefGoogle Scholar
  338. Tipping E, Lofts S, Stockdale A (2016) Metal speciation from stream to open ocean: modelling v. measurement. Environ Chem 13:464–477.  https://doi.org/10.1071/en15111CrossRefGoogle Scholar
  339. Tlili A, Montuelle B (2011) Microbial pollution-induced community tolerance. In: Amiard-Triquet C, Rainbow PS, Romeo M (eds) Tolerance to environmental contaminants. CRC Press, Boca Raton, pp 85–108Google Scholar
  340. Tohtz J (1992) Survey and inventory of cold water streams, Oct. 21, 1991 through June 30, 1992. Progress report for Statewide Fisheries Investigation, Project No. F-46-R-5, Montana Department of Fish, Wildlife and Parks, Helena, MontanaGoogle Scholar
  341. USEPA (1986) Quality Criteria for Water. EPA No. 440/5-86-001, Office of Water, U.S. Environmental Protection Agency, WashingtonGoogle Scholar
  342. USEPA (2001) Update of ambient water quality criteria for cadmium. EPA 822-R-01-001, US Environmental Protection Agency, WashingtonGoogle Scholar
  343. Vangheluwe MLU, Verdonck FAM, Besser JM, Brumbaugh WG, Ingersoll CG, Schlekat CE, Garman ER (2013) Improving sediment-quality guidelines for nickel: development and application of predictive bioavailability models to assess chronic toxicity of nickel in freshwater sediments. Environ Toxicol Chem 32:2507–2519.  https://doi.org/10.1002/etc.2373CrossRefGoogle Scholar
  344. Vasseur P, Atienzar F, Cossu-Leguille C, Rodius F, Lemière S (2013) Biomarkers of genotoxicity for in situ studies at individual and population levels. In: Amiard-Triquet C, Amiard J-C, Rainbow PS (eds) Ecological biomarkers: indicators of ecotoxicological effects. CRC Press, Boca Raton, pp 327–359Google Scholar
  345. Villarroel LF, Miller JR, Lechler PJ, Germanoski D (2006) Lead, zinc, and antimony contamination of the Rio Chilco-Rio Tupiza drainage system, southern Bolivia. Environ Geol 51:283–299.  https://doi.org/10.1007/s00254-006-0326-xCrossRefGoogle Scholar
  346. Virsek MK, Hubad B, Lapanje A (2013) Mercury induced community tolerance in microbial biofilms is related to pollution gradients in a long-term polluted river. Aquat Toxicol 144:208–217.  https://doi.org/10.1016/j.aquatox.2013.09.023CrossRefGoogle Scholar
  347. Wagner A, Boman J (2004) Biomonitoring of trace elements in Vietnamese freshwater mussels. Spectrochim Acta Part B 59:1125–1132.  https://doi.org/10.1016/j.sab.2003.11.009CrossRefGoogle Scholar
  348. Walker PA, Bury NR, Hogstrand C (2007) Influence of culture conditions on metal-induced responses in a cultured rainbow trout gill epithelium. Environ Sci Technol 41:6505–6513.  https://doi.org/10.1021/es071008cCrossRefGoogle Scholar
  349. Walker PA, Kille P, Hurley A, Bury NR, Hogstrand C (2008) An in vitro method to assess toxicity of waterborne metals to fish. Toxicol Appl Pharmacol 230:67–77.  https://doi.org/10.1016/j.taap.2008.02.012CrossRefGoogle Scholar
  350. Wang WX (2002) Interactions of trace metals and different marine food chains. Mar Ecol Prog Ser 243:295–309.  https://doi.org/10.3354/meps243295CrossRefGoogle Scholar
  351. Wang WX (2013) Dietary toxicity of metals in aquatic animals: recent studies and perspectives. Chin Sci Bull 58:203–213.  https://doi.org/10.1007/s11434-012-5413-7CrossRefGoogle Scholar
  352. Wang WX, Ke CH (2002) Dominance of dietary intake of cadmium and zinc by two marine predatory gastropods. Aquat Toxicol 56:153–165.  https://doi.org/10.1016/s0166-445x(01)00205-3CrossRefGoogle Scholar
  353. Wang WX, Fisher NS, Luoma SN (1995) Assimilation of trace elements ingested by the mussel Mytilus edulis: effects of algal food abundance. Mar Ecol Prog Ser 129:165–176.  https://doi.org/10.3354/meps129165CrossRefGoogle Scholar
  354. Wang WX, Fisher NS, Luoma SN (1996) Kinetic determinations of trace element bioaccumulation in the mussel Mytilus edulis. Mar Ecol Prog Ser 140:91–113.  https://doi.org/10.3354/meps140091CrossRefGoogle Scholar
  355. Wang SL, Wang P, Men B, Lin CY, He MC (2012) Chemical forms and ecological risk of arsenic in the sediment of the Daliao River System in China. Environ Monit Assess 184:2237–2245.  https://doi.org/10.1007/s10661-011-2113-8CrossRefGoogle Scholar
  356. Warwick WF (1988) Morphological deformities in Chironomidae (Diptera) larvae as biological indicators of toxic stress. In: Evans MS (ed) Toxic contaminants and ecosystem health: a Great Lakes focus. Wiley, New York, pp 281–320Google Scholar
  357. Webster TMU, Bury N, van Aerle R, Santos EM (2013) Global transcriptome profiling reveals molecular mechanisms of metal tolerance in a chronically exposed wild population of brown trout. Environ Sci Technol 47:8869–8877.  https://doi.org/10.1021/es401380pCrossRefGoogle Scholar
  358. Webster TMU, Williams TD, Katsiadaki L, Lange A, Lewis C, Shears JA, Tyler CR, Santos EM (2017) Hepatic transcriptional responses to copper in the three-spined stickleback are affected by their pollution exposure history. Aquat Toxicol 184:26–36.  https://doi.org/10.1016/j.aquatox.2016.12.023CrossRefGoogle Scholar
  359. Weis JS, Smith G, Zhou T, Santiago-Bass C, Weis P (2001) Effects of contaminants on behavior: biochemical mechanisms and ecological consequences. Bioscience 51:209–217.  https://doi.org/10.1641/0006-3568(2001)051[0209:eocobb]2.0.co;2CrossRefGoogle Scholar
  360. Weis JS, Samson J, Zhou T, Skurnick J, Weis P (2003) Evaluating prey capture by larval mummichogs (Fundulus heteroclitus) as a potential biomarker for contaminants. Mar Environ Res 55:27–38.  https://doi.org/10.1016/s0141-1136(02)00204-0CrossRefGoogle Scholar
  361. WFD-UKTAG (2008) UK Environmental Standards and Conditions (Phase 1). Final report SR1-2006, Water Framework Directive-United Kingdom Advisory Group. https://www.wfduk.org/sites/default/files/Media/Environmental%20standards/Environmental%20standards%20phase%201_Finalv2_010408.pdf
  362. WFD-UKTAG (2014) River & Lake assessment method specific pollutants (Metals). In: Metal bioavailability assessment tool (M-BAT). Water Framework Directive-United Kingdom Advisory Group. http://wfduk.org/resources/rivers-lakes-metal-bioavailability-assessment-tool-m-bat
  363. Wilson WA, Fritts AK, Fritts MW, Unrine JM, Casper AF (2018) Freshwater mussel (Unionidae) shells document the decline of trace element pollution in the regional watersheds of Chicago (Illinois, USA). Hydrobiologia 816:179–196.  https://doi.org/10.1007/s10750-018-3582-3CrossRefGoogle Scholar
  364. Wolfram G, Hoess S, Orendt C, Schmitt C, Adamek Z, Bandow N, Grossschartner M, Kukkonen JVK, Leloup V, Lopez Doval JC, Munoz I, Traunspurger W, Tuikka A, van Liefferinge C, von der Ohe PC, de Deckere E (2012) Assessing the impact of chemical pollution on benthic invertebrates from three different European rivers using a weight-of-evidence approach. Sci Total Environ 438:498–509.  https://doi.org/10.1016/j.scitotenv.2012.07.065CrossRefGoogle Scholar
  365. Wong KW, Yap CK, Nulit R, Hamzah MS, Chen SK, Cheng WH, Karami A, Al-Shami SA (2017) Effects of anthropogenic activities on the heavy metal levels in the clams and sediments in a tropical river. Environ Sci Pollut Res 24:116–134.  https://doi.org/10.1007/s11356-016-7951-zCrossRefGoogle Scholar
  366. Woodward DF, Farag AM, Bergman HL, Delonay AJ, Little EE, Smith CE, Barrows FT (1995) Metals-contaminated benthic invertebrates in the Clark-Fork River, Montana – effects on age-0 brown trout and rainbow-trout. Can J Fish Aquat Sci 52:1994–2004.  https://doi.org/10.1139/f95-791CrossRefGoogle Scholar
  367. Woodward DF, Goldstein JN, Farag AM, Brumbaugh WG (1997) Cutthroat trout avoidance of metals and conditions characteristic of a mining waste site: Coeur d’Alene River, Idaho. Trans Am Fish Soc 126:699–706.  https://doi.org/10.1577/1548-8659(1997)126<0699:ctaoma>2.3.co;2CrossRefGoogle Scholar
  368. Wright JF, Moss D, Armitage PD, Furse MT (1984) A preliminary classification of running-water sites in Great Britain based on macroinvertebrate species and the prediction of community type using environmental data. Freshw Biol 14:221–256Google Scholar
  369. Yologlu E, Uckun M, Uckun AA (2018) Metal accumulation and biochemical variations in the freshwater mussels (Unio mancus) collected from Ataturk Dam Lake, Turkey. Biochem Syst Ecol 79:60–68.  https://doi.org/10.1016/j.bse.2018.05.006CrossRefGoogle Scholar
  370. Yoo H, Lee JS, Lee BG, Lee IT, Schlekat CE, Koh CH, Luoma SN (2004) Uptake pathway for Ag bioaccumulation in three benthic invertebrates exposed to contaminated sediments. Mar Ecol Prog Ser 270:141–152.  https://doi.org/10.3354/meps270141CrossRefGoogle Scholar
  371. Younger PL, Teutsch G, Custodio E, Elliot T, Manzano M, Sauter M (2002) Assessments of the sensitivity to climate change of flow and natural water quality in four major carbonate aquifers of Europe. In: Hiscock KM, Rivett MO, Davison RM (eds) Sustainable groundwater development. Geological Society, London, pp 303–323Google Scholar
  372. Zalack JT, Smucker NJ, Vis ML (2010) Development of a diatom index of biotic integrity for acid mine drainage impacted streams. Ecol Indic 10:287–295.  https://doi.org/10.1016/j.ecolind.2009.06.003CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • John Iwan Jones
    • 1
    Email author
  • John F. Murphy
    • 1
  • Adrian L. Collins
    • 2
  • Kate L. Spencer
    • 1
  • Philip S. Rainbow
    • 3
  • Amanda Arnold
    • 1
  • James L. Pretty
    • 1
  • Arabella M. L. Moorhouse
    • 4
  • Victor Aguilera
    • 5
  • Paul Edwards
    • 6
  • Fred Parsonage
    • 5
  • Hugh Potter
    • 7
  • Paul Whitehouse
    • 7
  1. 1.Queen Mary University of LondonLondonUK
  2. 2.Rothamsted Research, North WykeOkehamptonUK
  3. 3.Natural History MuseumLondonUK
  4. 4.The Coal AuthorityMansfieldUK
  5. 5.DefraLondonUK
  6. 6.Natural Resources WalesCardiffUK
  7. 7.Environment AgencyBristolUK

Personalised recommendations