Advertisement

Environmental Problems of Mining Waste Disposal Sites in Russia

  • Svetlana V. AzarovаEmail author
  • Tatiana V. Usmanova
  • Antonina M. MezhiborEmail author
Chapter
Part of the Reviews of Environmental Contamination and Toxicology book series (RECT, volume 247)

Abstract

The exploitation of mineral deposits is followed by the formation of huge amounts of wastes, which have strong negative impacts on the surrounding environment. This paper presents the results of the compilation of data on general environmental problems in sites of waste disposal from mining and ore processing in Russia, based on the analysis of published data and own research. The own research of the authors relates to the estimation of the environmental hazards of mining waste using geochemical investigations and biotesting, as well as the development of the classification of technogenic mineral resources counting the reasons of the accumulation of precious components in them and findings on their environmental impact. The influence of waste disposal was determined as significant and diverse, leading to the transformation of all natural compartments surrounding waste disposal sites. The situation is especially aggravated when there are some mining and processing facilities within one relatively small territory. As a result, strong influence zones are formed. These zones have pronounced geochemical features reflecting the specificity of extracted rocks and produced raw materials. The analyzed information can serve as a basis for the development of nature protection measures for the mining waste disposal sites in Russia. Such measures using modern technical means for monitoring can minimize environmental damage from technogenic mineral formations.

Keywords

Environmental pollution Nature protection Pollution from mining Waste disposal Waste of mining and processing industry 

References

  1. Adibee N, Osanloo M, Rahmanpour M (2013) Adverse effects of coal mine waste dumps on the environment and their management. Environ Earth Sci 70:1581–1592CrossRefGoogle Scholar
  2. Artamonova SV (2012) Geoecological problems of the formation of natural-technogenic systems as an example of the Gaiskoe deposit in Oreburg region (in Russian: Geojekologicheskie problemy formirovanija prirodno-tehnogennyh sistem na primere Gajskogo mestorozhdenija Orenburgskoj oblasti). Dissertation, Astrachan, RussiaGoogle Scholar
  3. Azarova SV (2005) Waste from mining and complex assessment of their hazard for the environment (as an example of Republic Khakassia) (in Russian: Othody gornodobyvajushhih predprijatij i kompleksnaja ocenka ih opasnosti dlja okruzhajushhej sredy (na primere ob’ektov Respubliki Hakasija)) Dissertation, Tomsk Polytechnic University, RussiaGoogle Scholar
  4. Bachurin BA (2007) Geochemical transformation of mining waste (in Russian: Geohimicheskaja transformacija othodov gornogo proizvodstva). In: Mineralogija tehnogeneza. IMin UrO RAN, MiassGoogle Scholar
  5. Bachurin BA, Baboshko AY (2008) Ecological-geochemical characteristic of waste from potassium industry (in Russian: Jekologo-geohimicheskaja harakteristika othodov kalijnogo proizvodstva). Gornyj zhurnal 10:88–91Google Scholar
  6. Bachurin BA, Odintsova TA (2009) Wastes of ore-dressing manufacture as sources of emissions of organic pollutants (in Russian: Othody gorno-obogatitel’nogo proizvodstva kak istochniki jemissii organicheskih polljutantov). In: Gornyj informacionno-analiticheskij bjulleten, vol 7, pp 374–380Google Scholar
  7. Bachurin BA, Odintsova TA, Pervova ES (2013) Physical-chemical aspects of the formation of waste composition of ore-dressing facilities (in Russian: Fiziko-himicheskie aspekty formirovanija sostava othodov Gorno-obogatitel’nogo proizvodstva). Gornyj zhurnal 6:89–89Google Scholar
  8. Bogush AA, Galkova OG, Ishuk NV (2012) Geochemical barriers to elemental migration in sulfide-rich tailings: three case studies from Western Siberia. Mineral Mag 76(7):2693–2707CrossRefGoogle Scholar
  9. Bortnikov NS, Gurbanov AG, Bogatikov OA, Karamurzov BS, Dokuchaev AY, Leksin AB, Gezeev VM, Shevchenko AV (2013) Assessment of the impact of buried industrial waste from the Tyrnauzsky tungsten-molybdenum combine on the ecological state (soil-plant layer) of near-Elborus adjacent territories (Kabardino-Balkaria republic, Russia) (in Russian: Ocenka vozdejstvija zahoronennyh promyshlennyh othodov Tyrnyauzskogo vol’framo-molibdenovogo kombinata na jekologicheskuju obstanovku (pochvenno-rastitel’nyj sloj) prilegajushhih territorij Prijel’brus’ja (Kabardino-Balkarskaja respublika, Rossija)). Geojekologija, inzhenernaja geologija, gidrogeologija, geokriologija 5:405–416Google Scholar
  10. Bortnikova SB (2003) Technogenic lakes. Formation, development, and environmental impact (in Russian: Tehnogennye ozera. Formirovanie, razvitie i vlijanie na okruzhajushhuju sredu). SO RAN, NovosibirskGoogle Scholar
  11. Bykhovsky LZ, Sporykhina LV (2011) Technogenic wastes as a reserve for the mineral-raw base refill: state and problems of the exploration (in Russian: Tehnogennye othody kak rezerv popolnenija mineral’no-syr’evoj bazy: sostojanie i problemy osvoenija). Mineral’nye resursy Rossii. Jekonomika i upravlenie 4:15–20Google Scholar
  12. Callery S, Courtney R (2015) Assessing metal transfer to vegetation and grazers on reclaimed pyritic Zn and Pb tailings. Environ Sci Pollut Res 22:19764–19772CrossRefGoogle Scholar
  13. Chanturia VA, Makarov DV, Masloboev VA, Mazukhina SI, Nesterova AA, Vasilieva TN, Nesterov DP, Laschuk VV (2007) Geoecological argumentation for the processing of sulfide-containing waste of a mining complex (in Russian: Geojekologicheskoe obosnovanie pererabotki sul’fidsoderzhashhih othodov gornopromyshlennogo kompleksa). In: Makarov DV, Suvorova OV (eds). Geoecological problems of the processing of natural and technogenic raw: collection of research papers, Vector, ApatityGoogle Scholar
  14. Cherchintsev VD, Koshkina VS, Antipanova NA, Proshkina OB (2010) Estimation of Slag Dumps Influence on Ecosystems of Southern Ural. Jekologija i promyshlennost’ Rossii 2:52–55Google Scholar
  15. Chernintsev VD, Koshkina VS, Antipanova NA, Proshkina OB (2010) The impact of slag waste on the ecosystems of the Southern Ural (in Russia: Vlijanije shlakovykh otvalov na ecosistemy Yuzhnogo Urala). Ecologja I promyshlennoct Rossii 2:52–55Google Scholar
  16. Courtin-Nomade A, Waltzing T, Evrard C, Soubrand M, Lenain J-F, Ducloux E, Ghorbel S, Grosbois C, Bril H (2016) Arsenic and lead mobility: from tailing materials to the aqueous compartment. Appl Geochem 64:10–21CrossRefGoogle Scholar
  17. Criteria (2001) of the assignment of hazardous wastes to classes of hazard for environment. Approved by the order no. 511 of the Ministry of Natural Resources of the Russian Federation on the June, 15thGoogle Scholar
  18. Delitcyn LM, Ezhova NN, Vlasov AS, Sudareva SV (2012) Ash dumps of solid-fuel power stations as a menace of ecological safety (in Russian: Zolootvaly tverdotoplivnyh teplovyh jelektrostancij kak ugroza jekologicheskoj bezopasnosti). Jekologija promyshlennogo proizvodstva 4:15–25Google Scholar
  19. Directive 2006/21/EC (2006) Directive 2006/21/EC of the European Parliament and of the Council of 15 March 2006 on the management of waste from extractive industries and amending Directive 2004/35/EC. N L 102:15Google Scholar
  20. Egiebor NO, Oni B (2007) Acid rock drainage formation and treatment: a review. Asia Pac J Chem Eng 2:47–62CrossRefGoogle Scholar
  21. Elouear Z, Bouhamed F, Boujelben N, Bouzid J (2016) Assessment of toxic metals dispersed from improperly disposed tailing, Jebel Ressas mine, NE Tunisia. Environ Earth Sci 75:254CrossRefGoogle Scholar
  22. Ferreira da Silva E, Durães N, Reis P, Patinha C, Matos J, Costa MR (2015) An integrative assessment of environmental degradation of Caveira abandoned mine area (Southern Portugal). J Geochem Explor 159:33–47CrossRefGoogle Scholar
  23. Folguera L, Magallanes J, Ciceron D (2016) Analysis of the environmental liabilities generated by past activities in uranium mining exploitation in the Province of Co’rdoba, Argentina. Environ Earth Sci 75:407CrossRefGoogle Scholar
  24. Galperin AM, Ferster V, Kh-Yu S (2001) Technogenic massives and environmental protection (in Russian: Tehnogennye massivy i ohrana okruzhajushhej sredy): tutorial, 2nd edn. MGTU, MoscowGoogle Scholar
  25. Galperin AM, Kirichenko YV, Ermolov VA, Kutepov YI (2012a) Engineering-geological assistance for the safe exploration of mining natural-technogenic systems (in Russian: Inzhenerno-geologicheskoe obespechenie jekologicheski bezopasnogo osvoenija gornopromyshlennyh prirodno-tehnogennyh system). Geojekologija, inzhenernaja geologija, gidrogeologija, geokriologija 6:520–526Google Scholar
  26. Galperin AM, Kutepov YI, Kirichenko YV, Kiyanets AV, Kryuchkov AV, Krupoderov VS, Moseikin VV, Zharikov VP, Semenov VV, Klapperikh K, Tamashkovich N, Cheshlok K (2012b) Exploitation of technogenic massifs in mining facilities (in Russian: Osvoenie tehnogennyh massivov na gornyh predprijatijah). Gornaya kniga, Moscow, 336 ppGoogle Scholar
  27. GN 2.1.7.2041-06 (n.d.) Maximum permissible concentrations (MPC) of chemical elements in soilsGoogle Scholar
  28. Golik VI, Polukhin ON, Petin AN, Komaschenko VI (2013) Environmental problems of the exploration of Kursk Magnetic Anomaly (in Russian: Jekologicheskie problemy razrabotki rudnyh mestorozhdenij KMA). Gornyj zhurnal 4:91–94Google Scholar
  29. Gridin VG, Kalinin AR, Kobyakov AA, Korchak AV, Myaskov AV, Petrov IV, Popov SM, Protasov VF, Stoyanova IA, Umnov VA, Kharchenko VA (2012) Economy, organization, and management of natural and technogenic resources (in Russian: Jekonomika, organizacija, upravlenie prirodnymi i tehnogennymi resursami). Gornaya kniga, Moscow, 752 ppGoogle Scholar
  30. Hackett C, Steven C (2003). Environmental and natural resources economics (theory, policy, and the sustainable society). New YorkGoogle Scholar
  31. Koz B, Cevik U, Akbulut S (2012) Heavy metal analysis around Murgul (Artvin) copper mining area of Turkey using moss and soil. Ecol Indic 20:17–23CrossRefGoogle Scholar
  32. Krupskaya LT, Zvereva VP (2011) Assessment of the impact of waste from tin-ore raw processing on environmental objects (as an example of the Khrustalnensky mining combine) (in Russian: Ocenka vlijanija othodov pererabotki olovorudnogo syr’ja na ob’ekty okruzhajushhej sredy na primere Hrustal’nenskogo GOKa). Sibirskij jekologicheskij zhurnal 6:797–803Google Scholar
  33. Kubit OE, Pluhar CJ, De Graff JV (2015) A model for prioritizing sites and reclamation methods at abandoned mines. Environ Earth Sci 73:7915–7931CrossRefGoogle Scholar
  34. Laschuk VV, Melnik NA, Nesterov DP, Nesterova AA, Usacheva TT (2007) Complex geoecological characteristic of waste from apatite-nepheline ores waste of Khibinsk deposits (in Russian: Kompleksnaja geojekologicheskaja harakteristika othodov obogashhenija apatit-nefelinovyh rud Hibinskih mestorozhdenij). In: Makarov DV, Suvorova OV (eds) Geoecological problems of the processing of natural and technogenic raw: collection of research papers, Vector, ApatityGoogle Scholar
  35. Lazâr A-L, Baciu C, Roba C (2014) Impact of the past mining activity in Roşia Montanâ (Romania) on soil and vegetation. Environ Earth Sci 72:4653–4666CrossRefGoogle Scholar
  36. Lazareva EV, Bortnikova SB, Shuvaeva OV, Mazeina LP (2000) Peculiarities of initial secondary antimony compounds in oxidation zone of waste from cyanide processing (in Russian: Osobennosti ishodnyh vtorichnyh soedinenij sur’my v zone okislenija othodov cianidnogo peredela). In: Mineralogija tehnogeneza. IMin UrO RAN, MiassGoogle Scholar
  37. Leonenko AV, Derbentseva AM, Krupskaya AM, Krupskaya LT, Chumachechenko EA (2012) Assessment of the impact of a technogenic system on snow cover, soil and plant pollution by chemical elements from gold mining processes (as an example of Kerbinsky mine in Khabarovsk region) (in Russian: Ocenka vlijanija tehnogennoj sistemy na zagrjaznenija snezhnogo pokrova, pochv i rastitel’nosti himicheskimi jelementami v processe zolotodobychi (na primere Kerbinskogo priiska Habarovskogo kraja)). Jekologija promyshlennogo proizvodstva 3:12–15Google Scholar
  38. Leontyev LI, Dyubanov VG (2011) Technogenic waste products of ferrous and nonferrous metallurgy, and environmental issues. Jekologija i promyshlennost’ Rossii 4:32–36Google Scholar
  39. Lortzie K, Stylianou M, Dermatas D, Kostarelos K (2015) Long-term environmental impact at an abandoned gold-silver enrichment plant: a case study in Mitsero, Cyprus. Eng Geol 184:119–125CrossRefGoogle Scholar
  40. Lu C, Wu Y, Hu S, Raza MA, Fu Y (2016) Mobilization and transport of metal-rich colloidal particles from mine tailings into soil under transient chemical and physical conditions. Environ Sci Pollut Res 23:8021–8034CrossRefGoogle Scholar
  41. Makhinov AI, Makhinova AF, Shevtsov MN (2006) Impact of waste of the mining and processing facilities in Khabarovsk region on the environment (in Russian: Vlijanie othodov gorno-obogatitel’nyh predprijatij Habarovskogo kraja na okruzhajushhuju sredu). Gornyj zhurnal 4:83–86Google Scholar
  42. Martínez J, Hidalgo MC, Rey J, Garrido J, Kohfahl C, Benavente J, Rojas D (2016) A multidisciplinary characterization of a tailings pond in the Linares-La Carolina mining district. Spain J Geochem Explor 162:62–71CrossRefGoogle Scholar
  43. Masloboev VA, Maksimov VV, Maksimova VV, Makarov DV, Gorbacheva TT, Mazukhina SI, Nesterov DP (2012) Research of the interaction of apatite-nepheline ore refinement tailings with soil water (in Russian: Issledovanie vzaimodejstvija mineralov hvostov obogashhenija apatito-nefelinovyh rud s pochvennymi vodami). In: Proceedings of international meeting “Modern methods of technological mineralogy in processes of complex and deep processing of mineral ore”, Karelsky Scientific Center, PetrozavodskGoogle Scholar
  44. Meretukov MA, Rudakov VV, Zlobin MN (2011) Geotechnological research for gold extraction from mineral and technogenic raw (in Russian: Geotehnologicheskie issledovanija dlja izvlechenija zolota iz mineral’nogo i tehnogennogo syr’ja). Gornaya kniga, MoscowGoogle Scholar
  45. Mezhibor A, Rikhvanov L (2016) Biogeochemical characteristics of Polytrichum commune mosses within the Ursk tailing dump territory in Kemerovo Region. Bezopasnost´ v tekhnosfere 5(1):3–11.  https://doi.org/10.12737/19018 CrossRefGoogle Scholar
  46. Mikhailenko NN, Kharchenko OV (2010) Ecological-economical estimation of technogenic raw accumulations in Zabaikalsk region (in Russian: Jekologo-jekonomicheskaja ocenka skoplenij tehnogennogo syr’ja Zabajkal’skogo kraja). Gornyj zhurnal 5:63–65Google Scholar
  47. Mikhailov BK, Kiperman Yu A, Komarov MA (2012) Technogenic mining waste in the reproduction of mineral-raw base and improvement of environmental state (in Russian: Tehnogennye gorno-promyshlennye othody v vosproizvodstve mineral’no-syr’evoj bazy i uluchshenii jekologicheskoj obstanovki). Geojekologija 6:66–72Google Scholar
  48. Miroshnichenko EV, Bondarenko EI, Krupskaya LT, Chumachenko EA (2006) Ecological-economical assessment of the impact of mining waste on ecosystems of Chabarovsk region (in Russian: Jekologo-jekonomicheskaja ocenka vozdejstvija gornopromyshlennyh othodov na jekosistemy Habarovskogo kraja). Gornyj zhurnal 9:77–78Google Scholar
  49. Mohammadi Z, Modabberi S, Jafari MR, Ajayebi KS (2015) Comparison of different static methods for assessment of AMD generation potential in mining waste dumps in the Muteh Gold Mines, Iran. Environ Monit Assess 187:374CrossRefGoogle Scholar
  50. Mormil SI, Salnikova VL, Amosov LA (2002) Technogenic deposit of the Middle Ural and assessment of their impact on the environment (in Russian: Tehnogennye mestorozhdenija Srednego Urala i ocenka ih vozdejstvija na okruzhajushhuju sredu). NIA-Priroda, MoscowGoogle Scholar
  51. Mushunina AS, Azarova SV, Yazikov EG, Parygina IA (2016) Biotesting of modeled drilling mud as an indicator of environmental risk (in Russian: Biotestirovanie komponentov modelnogo burovogo rastvora, kak indicator opasnosti dlja okruzhajushhej sredy). IOP Conf Ser Earth Environ Sci 43(1), [012047]CrossRefGoogle Scholar
  52. Oleschenko АМ, Surzhikov DV, Kislitsyna VV, Korsakova TG (2012) Heath risk assessment for population from atmosphere pollution by industrial waste (in Russian: Ocenka riska dlja zdorov’ja naselenija ot zagrjaznenija atmosfery promyshlennymi otvalami). In: Ivanova FI (ed) Perspectives of the technological development of secondary resources treatment in Kuzbass. Ecological, economical, and social aspects: collection of research papers, NFI Kem GU, Novokuznetsk. Order no. 695 of Russian Fishery from 04/08/2009Google Scholar
  53. Pascaud G, Leveque T, Soubrand M, Boussen S, Joussein E, Dumat C (2014) Environmental and health risk assessment of Pb, Zn, As and Sb in soccer field soils and sediments from mine tailings: solid speciation and bioaccessibility. Environ Sci Pollut Res 21:4254–4264CrossRefGoogle Scholar
  54. Puzanov AV, Rozhdestvenskaya TA, Gorbacheva IV (2009) Heavy metals in components of technogenic lakes in the region of Altaisky minig and processing combine (in Russian: Tjazhelye metally v komponentah tehnogennyh ozjor rajona Altajskogo GOKa). Mir nauki kul’tury i obrazovanija 2(14):11–13Google Scholar
  55. Saet YE, Revich BA, Yanin EP (1990) Geochemistry of environment (in Russian: Geochimija okruzhajuschej sredy). Nedra, MoscowGoogle Scholar
  56. Saksonov MN, Balayan AE, Pozdnyakov AI, Treneva DG, Martynova GA (2011) Definition of hazard class of waste from mining and processing facilities by biotesting methods (in Russian: Opredelenie klassa opasnosti othodov gorno-obogatitel’nyh proizvodstv metodami biotestirovanija). Gornyj zhurnal 11:73–75Google Scholar
  57. Schreck E, Foucault Y, Geret F et al (2011) Influence of soil ageing on bioavailability and ecotoxicity of lead carried by process waste metallic ultrafine particles. Chemosphere 85:1555–1562CrossRefGoogle Scholar
  58. Schreck E, Bonnard R, Laplanche C et al (2012) DECA: a new model for assessing the foliar uptake of atmospheric lead by vegetation, using Lactuca sativa as an example. J Environ Manage 112:233–239CrossRefGoogle Scholar
  59. Sekisov GV, Zykov NV (2012) Development of mineral objects and a method of assessment (in Russian: Osvoenie mineral’nykh ob’ektov I metodologija otsenki). Gornaya kniga, MoscowGoogle Scholar
  60. Shadrunova IV, Zelinskaja EV, Volkova NA (2013) Estimation of technological properties of natural-technogenic water as a basis for the development of perspective technologies of their complex use (in Russian: Ocenka tehnologicheskih svojstv prirodno-tehnogennyh vod kak osnova dlja razrabotki perspektivnyh tehnologij ih kompleksnogo ispol’zovanija). In: Proceedings of International meeting “Innovation processes of complex and deep processing of mineral raw” (Plaksinskie chteniya – 2013), Tomsk Polytechnic University, TomskGoogle Scholar
  61. Shafigullina GT, Seravkin IB, Udachin VN (2008) Geochemical activity of damp mass of Uchalinsk deposit (in Russian: Geohimicheskaja aktivnost’ otval’noj massy Uchalinskogo mestorozhdenija). Razvedka i ohrana nedr 2:50–55Google Scholar
  62. Shulenina ZM (2003) Organizational-methodical and law mechanisms for the study and exploration of technogenic resources (in Russian: Organizacionno-metodicheskie i pravovye mehanizmy izuchenija i osvoenija tehnogennyh resursov). Jekologija promyshlennogo proizvodstva 2:3–11Google Scholar
  63. Shurpo AP (2015) The problems of waste management of mining enterprises in the Russian Federation and foreign experience. Int Sci Rev 2(3)Google Scholar
  64. Sidenko VN (2001) Migration of heavy metals and As in the zone of surpergenesis of sulfide waste of Berikulskiy gold-mining plant (in Russian: Migracija tjazhelyh metallov i mysh’jaka v zone gipergeneza sul’fidnyh othodov Berikul’skogo zolotodobyvajushhego zavoda). Dissertation, Novosibirsk, RussiaGoogle Scholar
  65. Smirnova OK, Pljusnin AM, Hazheeva ZI (2013) Modern mineral formation in banks of technogenous mining wastes. Otechestvennaya geologija 5:104–111Google Scholar
  66. Smyslov AA (1996) Geological atlas of Russia. Scale 1:10000000. St. PetersburgGoogle Scholar
  67. Smyslov AA, Mezhelovsky NV, Alekseev SV, Baskov EA (2002) Earth’s depth of Russia. Book 2. Ecology of geological environment. Mining Institute, St. Petersburg 662 ppGoogle Scholar
  68. Sobanska S, Uzu G, Moreau M et al (2010) Foliar lead uptake by lettuce exposed to atmospheric fallouts: Raman imaging study. AIP Conf Proc 1267:504–505CrossRefGoogle Scholar
  69. Sobrino-Figueroa AS, Becerra-Rueda OF, Magallanes-Ordóñez VR, Sánchez-González A, Marmolejo-Rodríguez AJ (2015) Toxicity in semiarid sediments influenced by tailings of an abandoned gold mine. Environ Monit Assess 187:4158CrossRefGoogle Scholar
  70. Taylor SR (1964) Abundance of chemical elements in the continental crust: a new table. Geochim Cosmochim Acta 28:1273–1285CrossRefGoogle Scholar
  71. Tselyuk DI (2009) Features of technogenic impact of ash dumps in the Middle Siberia on underground water (in Russian: Osobennosti tehnogennogo vozdejstvija zolootvalov Srednej Sibiri na podzemnye vody). Dissertation, Moscow, RussiaGoogle Scholar
  72. Udachin VN (2012) Ecogeochemistry of mining technogenesis of the Southern Ural (in Russian: Ecogeokhimija gornopromyshlennogo tekhnogeneza Juzhnogo Urala). Dissertation, Miass, RussiaGoogle Scholar
  73. Usmanova TV (2014) Technogenic mineral resources in the south of Central Siberia: reasons of the formation, classification and impact on the environment (In Russian: Tehnogennye mineral’nye resursy juga central’noj Sibiri: prichiny formirovanija, klassifikacija i vozdejstvie na komponenty prirodnoj sredy). Dissertation, Tomsk, RussiaGoogle Scholar
  74. Usmanova TV, Azarova SV (2002) Ecological constituent in the estimation of technogenic deposits (in Russian: Jekologicheskaja sostavljajushhaja v ocenke tehnogennyh mestorozhdenij). In: Abstracts of reports of republic scientific-technical conference “ISTIQLOL. Actual issues of modern mining-technological complexes and ways for solution”, Navoiy, UzbekistanGoogle Scholar
  75. Usmanova TV, Talovaskaya AV, Mongolina TA, Pavlov IP (2012) Estimation of the contribution of coal mines on the transformation of natural environment composition (as an example of the “Khakasskaya” mine) (in Russian: Ocenka vklada ugol’nyh shaht v transformaciju sostava prirodnyh sred (na primere shahty “Hakasskaja”)). Vestnik nauki Sibiri 4(5):4–16Google Scholar
  76. Uzu G, Sobanska S, Aliouane Y et al (2009) Study of lead phytoavailability for atmospheric industrial micronic and submicronic particles in relation with lead speciation. Environ Pollut 157:1178–1185CrossRefGoogle Scholar
  77. Uzu G, Sobanska S, Sarret G et al (2011) Characterization of lead recycling facility emissions at various workplaces: major insights for sanitary risks assessment. J Hazard Mater 186:1018–1027CrossRefGoogle Scholar
  78. Wanner P, Al-Sulaimani MYN, Waber N, Wanner C (2015) Assessing the environmental hazard of using seawater for ore processing at the Lasail mine site in the sultanate of Oman. Mine Water Environ 34:59–74CrossRefGoogle Scholar
  79. Yazikov EG, Azarova SV (2003) Ecological and geochemical characteristics of wastes of a mining enterprise, their toxicity and impact on soil. (in Russian: Ecologo-geokhimicheskaya harakteristika otkhodov gornodobyvajushhego predprijatija, ih toksichnost i vozdejstvie na pochvy). Gornyi Zhurnal Spec Issue 11:61–66Google Scholar
  80. Yazikov EG, Azarova SV, Khudyakov VM (2006) Geoecological problems of mining companies in thе Republic Khakassia (in Russian: Geojekologicheskie problemy gornodobyvajushhih predprijatij Respubliki Hakasija). Gornyj zhurnal Spec Issue 4:26–28Google Scholar
  81. Zvereva VP (2008) Environmental problems of tin industry in Russian Far East (in Russian: Jekologicheskie problemy olovorudnoj promyshlennosti Dal’nego Vostoka). Gornyj zhurnal 2:82–85Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Tomsk Polytechnic UniversityTomskRussia
  2. 2.Scientific and Educational Methodic CenterMoscowRussia

Personalised recommendations