Modelling the Release, Transport and Fate of Engineered Nanoparticles in the Aquatic Environment – A Review

  • Adriaan A. MarkusEmail author
  • John R. Parsons
  • Erwin W. M. Roex
  • Pim de Voogt
  • Remi W. P. M. Laane
Part of the Reviews of Environmental Contamination and Toxicology book series (RECT, volume 243)


Engineered nanoparticles, that is, particles of up to 100 nm in at least one dimension, are used in many consumer products. Their release into the environment as a consequence of their production and use has raised concern about the possible consequences. While they are made of ordinary substances, their size gives them properties that are not manifest in larger particles. It is precisely these properties that make them useful. For instance titanium dioxide nanoparticles are used in transparent sunscreens, because they are large enough to scatter ultraviolet light but too small to scatter visible light.

To investigate the occurrence of nanoparticles in the environment we require practical methods to detect their presence and to measure the concentrations as well as adequate modelling techniques. Modelling provides both a complement to the available detection and measurement methods and the means to understand and predict the release, transport and fate of nanoparticles. Many different modelling approaches have been developed, but it is not always clear for what questions regarding nanoparticles in the environment these approaches can be applied. No modelling technique can be used for every possible aspect of the release of nanoparticles into the environment. Hence it is important to understand which technique to apply in what situation. This article provides an overview of the techniques involved with their strengths and weaknesses. Two points need to be stressed here: the modelling of processes like dissolution and the surface activity of nanoparticles, possibly under influence of ultraviolet light, or chemical transformation has so far received relatively little attention. But also the uncertainties surrounding nanoparticles in general—the amount of nanoparticles used in consumer products, what constitutes the appropriate measure of concentration (mass or numbers) and what processes are relevant—should be explicitly considered as part of the modelling.


Nanoparticles Modelling techniques Emissions Transport Fate Aquatic environment 



This work is supported by NanoNextNL, a micro and nanotechnology programme of the Dutch Government with 130 partners.


  1. Areepitak T, Ren J (2011) Environ Sci Tech 45:5614. doi: 10.1021/es200586vCrossRefGoogle Scholar
  2. Arvidsson R (2012) Contributions to emission, exposure and risk assessment of nanomaterials. Ph.D. thesis, Chalmers University of Techonology, Gothenburg, SwedenGoogle Scholar
  3. Arvidsson R, Molander S, Sandén BA, Hassellöv M (2011) Hum Ecol Risk Assess 17:245. doi: 10.1080/10807039.2011.538639CrossRefGoogle Scholar
  4. Arvidsson R, Molander S, Sandén BA (2012) J Ind Ecol 16:343. doi: 10.1111/j.1530-9290/2011.00429.xCrossRefGoogle Scholar
  5. Atmuri AK, Henson MA, Bhatia SR (2013) Colloid Surface A Physicochem Eng Aspect 436:325. doi: 10.1016/j.colsurfa.2013.07.002CrossRefGoogle Scholar
  6. Bai C, Li Y (2012) J Contam Hydrol 136-137:43. doi: 10.1016/j.jconhyd.2012.04.008CrossRefGoogle Scholar
  7. Barton LE, Auffan M, Durenkamp M, McGrath S, Bottero JY, Wiesner MR (2015) Sci Total Environ 511:535. doi: 10.1016/j.scitotenv.2014.12.056CrossRefGoogle Scholar
  8. Baumann J, Köser J, Arndt D, Filser J (2014) Sci Total Environ 484:176. doi: 10.1016/j.scitotenv.2014.03.023CrossRefGoogle Scholar
  9. Beer C, Foldbjerg R, Hayashi Y, Sutherland DS, Autrup H (2012) Toxicol Lett 208:286. doi: 10.1016/j.toxlet.2011.11.002CrossRefGoogle Scholar
  10. Ben-Moshe T, Dror I, Berkowitz B (2010) Chemosphere 81:387. doi: 10.1016/j.chemosphere.2010.07.007CrossRefGoogle Scholar
  11. Benn TM, Westerhoff PPH (2008) Environ Sci Tech 42:4133. doi: 10.1021/es7032718CrossRefGoogle Scholar
  12. Berube D, Searson E, Morton T, Cummings C (2010) Nanotechnol Law Bus 7:152Google Scholar
  13. Blaser SA, Scheringer M, MacLeod M, Hungerbühler K (2008) Sci Total Environ 390:396. doi: 10.1016/j.scitotenv.2007.10.010CrossRefGoogle Scholar
  14. Boncagni NT, Otaegui JM, Wagner E, Curran T, Ren J, Fidalgo de Cortalezzi MM (2009) Environ Sci Tech 43:7699. doi: 10.1021/es900424nCrossRefGoogle Scholar
  15. Bour A, Mouchet F, Silvestre J, Gauthier L, Pinelli E (2015) J Hazard Mater 283:764. doi: 10.1016/j.jhazmat.2014.10.021CrossRefGoogle Scholar
  16. Boxall ABA, Chaudhry Q, Sinclair C, Jones A, Aitken R, Jefferson B, Watts C (2007) Current and future predicted environmental exposure to engineered nanoparticles. Tech. rep., University of York.
  17. Brunelli A, Pojana G, Callegaro S, Marcomini A (2013) J Nanopart Res 15:1. doi: 10.1007/s11051-013-1684-4CrossRefGoogle Scholar
  18. Brunetti G, Donner E, Laera G, Sekine R, Scheckel KG, Khaksar M, Vasilev K, De Mastro G, Lombi E (2015) Water Res 77:72. doi: 10.1016/j.watres.2015.03.003CrossRefGoogle Scholar
  19. Buha J, Mueller N, Nowack B, Ulrich A, Losert S, Wang J (2014) Environ Sci Tech 48:4765. doi: 10.1021/es4047582CrossRefGoogle Scholar
  20. Buser AM, MacLeod M, Scheringer M, Mackay D, Bonnell M, Russell MH, DePinto JV, Hungerbühler K (2012) Integr Environ Assess Manag 8(4):703. doi: 10.1002/ieam.1299CrossRefGoogle Scholar
  21. Comber SD, Smith R, Daldorph P, Gardner MJ, Constantino C, Ellor B (2013) Environ Sci Tech 47:9824. doi: 10.1021/es401793eCrossRefGoogle Scholar
  22. Cullen E, O’Carroll DM, Yanful EK, Sleep B (2010) Adv Water Resour 33:361. doi: 10.1016/j.advwatres.2009.12.001CrossRefGoogle Scholar
  23. Cundy AB, Hopkinson L, Whitby RLD (2008) Sci Total Environ 400:42. doi: 10.1016/j.scitotenv.2008.07.002CrossRefGoogle Scholar
  24. Dahirel V, Jardat M (2010) Curr Opin Colloid Interface Sci 15:2. doi: 10.1016/j.cocis.2009.05.006CrossRefGoogle Scholar
  25. Dale AL, Lowry GV, Casman EA (2013) Environ Sci Tech 47:12920. doi: 10.1021/es402341tCrossRefGoogle Scholar
  26. Dale A, Casman EA, Lowry GV, Lead JR, Viparelli E, Baalousha MA (2015a) Environ Sci Tech 49(5):2587. doi: 10.1021/es505076wCrossRefGoogle Scholar
  27. Dale AL, Lowry GV, Casman EA (2015b) Environ Sci Tech 7285–7293:49. doi: 10.1021/acs.est.5b01205CrossRefGoogle Scholar
  28. David CA, Galceran J, Rey-Castro C, Puy J, Companys E, Salvador J, Monné J, Wallace R, Vakourov A (2012) J Phys Chem C 116:11758. doi: 10.1021/jp301671bCrossRefGoogle Scholar
  29. Degueldre C, Aeberhard P, Kunze P, Bessho K (2009) Colloid Surface A Physicochem Eng Aspect 337:117. doi: 10.1016/j.colsurfa.2008.12.2007CrossRefGoogle Scholar
  30. Doiron K, Pelletier E, Lemarchand K (2012) Aquat Toxicol 124-125:22. doi: 10.1016/j.aquatox.2012.07.004CrossRefGoogle Scholar
  31. Dumont E, Johnson AC, Keller VD, Williams RJ (2015) Environ Pollut 196:341. doi: 10.1016/j.envpol.2014.10.022CrossRefGoogle Scholar
  32. Dutch National Government (2015) Pollutant release and transfer registration.
  33. Eduok S, Martin B, Villa R, Nocker A, Jefferson B, Coulon F (2013) Ecotoxicol Environ Saf 95:1. doi: 10.1016/j.ecoenv.2013.05.022CrossRefGoogle Scholar
  34. El Badawy AM, Hassan AA, Scheckel KG, Suidan MT, Tolaymat TM (2013) Environ Sci Tech 47:4039. doi: 10.1021/es304580rCrossRefGoogle Scholar
  35. Elimelich M, Gregor J, Jia X, Williams R (1998) Particle deposition and aggregation: measurements, modelling and simulation. Butterworth-Heinemann, WoburnGoogle Scholar
  36. European Commission (2011) Commission recommendation on the definition of nanomaterial.
  37. Fabrega J, Luoma SN, Tyler CR, Galloway TS, Lead JR (2011) Environ Int 37:1. doi: 10.1016/j.envint.2010.10.012CrossRefGoogle Scholar
  38. Fang J, Shan XQ, Wen B, Lin JM, Owens G (2009) Environ Pollut 157:1101. doi: 10.1016/j.envpol.2008.11.006CrossRefGoogle Scholar
  39. Farmena E, Mikkelsen HN, Evensen Ø, Einset J, Heier LS, Rosseland BO, Salbu B, Tollefsen KE, Oughton DH (2012) Aquat Toxicol 108:78. doi: 10.1016/j.aquatox.2011.07.007CrossRefGoogle Scholar
  40. Ferson S, Ginzburg L, Akçakaya R, Appl Biomath Rep (2001).
  41. Gao J, Youn S, Hovsepyan A, Llaneza VL, Wang Y, Britton G, Bonzongo J-CJ (2009) Environ Sci Tech 43:1. doi: 10.1021/es803315vCrossRefGoogle Scholar
  42. Goldberg E, Scheringer M, Bucheli TD, Hungerbühler K (2014) Environ Sci Tech 48:12732. doi: 10.1021/es502044kCrossRefGoogle Scholar
  43. Gottschalk F, Scholz R, Nowack B (2010a) Environ Model Software 25:320. doi: 10.1016/j.envsoft.2009.08.011CrossRefGoogle Scholar
  44. Gottschalk F, Sonderer T, Scholz R, Nowack B (2010b) Environ Toxicol Chem 29:1036. doi: 10.1002/etc.135CrossRefGoogle Scholar
  45. Gottschalk F, Sun T, Nowack B (2013) Environ Pollut 181:287. doi: 10.1016/j.envpol.2013.06.003CrossRefGoogle Scholar
  46. Grieger KD, Fjordbøge A, Hartmann NB, Eriksson E, Bjerg PL, Baun A (2010) J Contam Hydrol 118:165. doi: 10.1016/j.jconhyd.2010.07.011CrossRefGoogle Scholar
  47. Hammes J, Gallego-Urrea JA, Hassellöv M (2013) Water Res 47:5350. doi: 10.1016/j.watres.2013.06.015CrossRefGoogle Scholar
  48. Hansen SF, Heggelund LR, Besora PR, Mackevica A, Boldrin A, Baun A (2016) Environ Sci Nano 3:169. doi: 10.1039/C5EN00182JCrossRefGoogle Scholar
  49. He D, Bligh MW, Waite TD (2013) Environ Sci Tech 47(16):9146. doi: 10.1021/es400391aCrossRefGoogle Scholar
  50. Hendren CO, Lowry M, Grieger KD, Money ES, Johnston JM, Wiesner MR, Beaulieu SM (2013a) Environ Sci Tech 47:1190. doi: 10.1021/es302749uCrossRefGoogle Scholar
  51. Hendren CO, Badireddy AR, Casman E, Wiesner MR (2013b) Sci Total Environ 449:418. doi: 10.1016/j.scitotenv.2013.01.078CrossRefGoogle Scholar
  52. Hotze EM, Bottero J-Y, Wiesner MR (2010) Langmuir 26:11170. doi: 10.1021/la9046963CrossRefGoogle Scholar
  53. Hüffmeyer N, Klasmeier J, Matthies M (2009) Sci Total Environ 407:2296. doi: 10.1016/j.scitotenv.2008.11.055CrossRefGoogle Scholar
  54. Jacobs R, van der Voet H, ter Braak C (2015) J Nanopart Res 17:251. doi: 10.1007/s11051-015-2911-yCrossRefGoogle Scholar
  55. Jarvie HP, King SM (2010) Nano Today 5:248. doi: 10.1016/j.nantod.2010.06.001CrossRefGoogle Scholar
  56. Kaegi R, Voegelin A, Sinnet B, Zuleeg S, Hagendorfer H, Burkhardt M, Siegrist H (2011) Environ Sci Tech 45:3902. doi: 10.1021/es1041892CrossRefGoogle Scholar
  57. Kaptay G (2012) Int J Pharm 430:253CrossRefGoogle Scholar
  58. Kasel D, Bradford SA, Simunek J, Pütz T, Vereecken H, Klumpp E (2013) Environ Pollut 180:152. doi: 10.1016/j.envpol.2013.05.031CrossRefGoogle Scholar
  59. Kehrein N, Berlekamp J, Klasmeier J (2015) Environ Model Software 64:1. doi: 10.1016/j.envsoft.2014.10.018CrossRefGoogle Scholar
  60. Keller AA, Lazareva A (2014) Environ Sci Technol Lett 1:65. doi: 10.1021/ez400106tCrossRefGoogle Scholar
  61. Koehler A, Peyer F, Salzmann C, Saner D (2011) Environ Sci Tech 45:3487. doi: 10.1021/es1021763CrossRefGoogle Scholar
  62. Lattuada M, Wa H, Sefcik J, Morbidelli M (2006) J Phys Chem B 110:6574. doi: 10.1021/jp056538eCrossRefGoogle Scholar
  63. Levard C, Hotze EM, Lowry GV, Brown GEJ (2012) Environ Sci Tech 46:6900. doi: 10.1021/es2037405CrossRefGoogle Scholar
  64. Li K, Chen Y (2012) J Hazard Mater 209-210:264. doi: 10.1016/j.jhazmat.2012.01.013CrossRefGoogle Scholar
  65. Li ZL, Sahle-Demessie E, Aly Hassan A, Sorial GA (2011) Water Res 45:4409. doi: 10.1016/j.watres.2011.05.025CrossRefGoogle Scholar
  66. Liang Y, Bradford SA, Simunek J, Heggen M, Vereecken H, Klumpp E (2013) Environ Sci Tech 47(21):12229. doi: 10.1021/es402046uCrossRefGoogle Scholar
  67. Liu HH, Cohen Y (2014) Environ Sci Tech 48:3281. doi: 10.1021/es405132zCrossRefGoogle Scholar
  68. Liu J, Pennell KG, Hurt RH (2011a) Environ Sci Tech 45:7345. doi: 10.1021/es201539sCrossRefGoogle Scholar
  69. Liu HH, Surawanvijit S, Rallo R, Orkoulas G, Cohen Y (2011b) Environ Sci Tech 45:9284. doi: 10.1021/es202134pCrossRefGoogle Scholar
  70. Lorenz C, von Goetz N, Scheringer M, Wormuth M, Hungerbühler K (2011) Nanotoxicology 5:12. doi: 10.3109/17435390.2010.484554CrossRefGoogle Scholar
  71. Lowry GV, Espinasse BP, Badireddy AR, Richardson CJ, Reinsch BC, Bryant LD, Bone AJ, Deonarine A, Chae S, Therezien M, Colman BP, Hsu-Kim H, Bernhardt ES, Matson CW, Wiesner MR (2012) Environ Sci Tech 46:7027. doi: 10.1021/es204608dCrossRefGoogle Scholar
  72. Mackay D, Webster E, Cousins I, Cahill T, Foster K, Gouin T (2001) An introduction to multimedia models. CEMC Report 200102, Canadian Environmental Modelling Centre, Trent University, Peterborough Ontario, Canada, Canadian Environmental Modelling Centre, Trent University, Peterborough Ontario, K9J 7B8, Canada.
  73. Macpherson SA, Webber GB, Moreno-Atanasio R (2012) Adv Powder Tech 23:478. doi: 10.1016/j.apt.2012.04.008CrossRefGoogle Scholar
  74. Mahmoodi NM, Arami M, Gharanjig K, Nourmohammadian F, Bidokhti AY (2008) Desalination 230:183CrossRefGoogle Scholar
  75. Markus A, Parsons J, Roex E, Kenter G, Laane R (2013) Sci Total Environ 456–457:154. doi: 10.1016/j.scitotenv.2013.03.058CrossRefGoogle Scholar
  76. Markus A, Parsons J, Roex E, de Voogt P, Laane R (2015) Sci Total Environ 506-507:323. doi: 10.1016/j.scitotenv.2014.11.056CrossRefGoogle Scholar
  77. Markus A, Parsons J, Roex E, de Voogt P, Laane R (2016) Water Res 91:214CrossRefGoogle Scholar
  78. Meesters J, Koelmans AA, Quik JT, Hendriks J, van de Meent D (2014) Environ Sci Tech 48:5726. doi: 10.1021/es500548hCrossRefGoogle Scholar
  79. Mihranyan A, Strømme M (2007) Surf Sci 601:315. doi: 10.1016/j.susc.2006.09.037CrossRefGoogle Scholar
  80. Mohapatra DP, Brar SK, Daghrir R, Tyagi RD, Picard P, Surampalli RY, Drogui P (2014a) Sci Total Environ 485-486:263. doi: 10.1016/j.scitotenv.2014.03.089CrossRefGoogle Scholar
  81. Mohapatra D, Brar S, Daghrir R, Tyagi R, Picard P, Surampalli R (2014b) Sci Total Environ 485–486(263). doi: 10.1016/j.scitotenv.2014.03.089CrossRefGoogle Scholar
  82. Müller NC, Buha J, Wang J, Ulrich A, Nowack B (2013) Evnviron Sci Process Impacts 15:251. doi: 10.1039/c2em30761hCrossRefGoogle Scholar
  83. NanoRem (2015) Nanotechnology for contaminated land remediation.
  84. Peng Z, Doroodchi E, Evans G (2010) Powder Technol 204:91. doi: 10.1016/j.powtec.2010.07.023CrossRefGoogle Scholar
  85. Peralta-Videa JR, Zhao L, Lopez-Moreno ML, de la Rosa G, Hong J, Gardea-Torresdey JL (2011) J Hazard Mater 186:1. doi: 10.1016/j.jhazmat.2010.11.020CrossRefGoogle Scholar
  86. Petosa AR, Jaisi DP, Quevedo IR, Elimelech M, Tufenkji N (2010) Environ Sci Tech 44:6632. doi: 10.1021/es100598hCrossRefGoogle Scholar
  87. Phenrat T, Saleh N, Sirk K, Tilton RD, Lowry GV (2007) Environ Sci Tech 41:284CrossRefGoogle Scholar
  88. Piccinno F, Gottschalk F, Seeger S, Nowack B (2012) J Nanopart Res 14:1109CrossRefGoogle Scholar
  89. Praetorius A, Scheringer M, Hungerbühler K (2012) Environ Sci Tech 46:6705. doi: 10.1021/es204530nCrossRefGoogle Scholar
  90. Praetorius A, Tufenkji N, Goss KU, Scheringer M, von der Kammer F, Elimelich M (2014) Environ Sci Nano 1:317. doi: 10.1039/c4en00043aCrossRefGoogle Scholar
  91. Quik JT, Vonk JA, Foss Hansen S, Baun A, van de Meent D (2011) Environ Int 37:1068. doi: 10.1016/j.envint.2011.01.015CrossRefGoogle Scholar
  92. Quik J, Velzeboer I, Wouterse M, Koelmans A, van de Meent D (2014) Water Res 48:269. doi: 10.1016/j.watres.2013.09.036CrossRefGoogle Scholar
  93. Quik JT, de Klein JJ, Koelmans AA (2015) Water Res 80:200. doi: 10.1016/j.watres.2015.05.025CrossRefGoogle Scholar
  94. Robichaud CO, Uyar AE, Darby MR, Zucker LG, Wiesner MR (2009) Environ Sci Tech 43:4227. doi: 10.1021/es8032549CrossRefGoogle Scholar
  95. Roes L, Patel MK, Worrell E, Ludwig C (2012) Sci Total Environ 417-418:76. doi: 10.1016/j.scitotenv.2011.12.030CrossRefGoogle Scholar
  96. Sani-Kast N, Scheringer M, Slomberg D, Labille J, Praetorius A, Ollivier P, Hungerbühler K (2015) Sci Total Environ 49:7285. doi: 10.1016/j.scitotenv.2014.12.025CrossRefGoogle Scholar
  97. Satoh A, Taneko E (2009) J Colloid Interface Sci 338:236. doi: 10.1016/j.jcis.2009.06.030CrossRefGoogle Scholar
  98. Schaumann GE, Philippe A, Bundschuh M, Metreveli G, Klitzke S, Rakcheev D, Grün A, Kumahor SK, Kühn M, Baumann T, Lang F, Manz W, Schultz R, Vogel HJ (2015) Sci Total Environ 535:3. doi: 10.1016/j.scitotenv.2014.10.035CrossRefGoogle Scholar
  99. Sun TY, Gottschalk F, Hungerbühler K, Nowack B (2014) Environ Pollut 185:69. doi: 10.1016/j.envpol.2013.10.004CrossRefGoogle Scholar
  100. Tufenkji N, Elimelech M (2004) Environ Sci Tech 38:529. doi: 10.1021/es034049r. URL Scholar
  101. Wagner S, Gondikas A, Neubauer E, Hofmann T, von der Kammer F (2014) Angew Chem Int Ed 53:12398. doi: 10.1002/anie.201405050CrossRefGoogle Scholar
  102. Westerhoff P, Nowack B (2013) Acc Chem Res 46:844. doi: 10.1021/ar300030nCrossRefGoogle Scholar
  103. Wikipedia (2015) DLVO Theory.
  104. Yang Y, Wang Y, Hristovski K, Westerhoff P (2015) Chemosphere 125:115. doi: 10.1016/j.chemosphere.2014.12.003CrossRefGoogle Scholar
  105. Zhang H, Chen B, Banfield JF (2010) J Phys Chem C 114:14876. doi: 10.1021/jp1060842CrossRefGoogle Scholar
  106. Zhang W, Yao Y, Sullivan N, Chen Y (2011) Environ Sci Tech 45:4422. doi: 10.1021/es104205a. URL Scholar
  107. Zhou D, Keller AA (2010) Water Res 44:2948. doi: 10.1016/j.watres.2010.02.025CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Adriaan A. Markus
    • 1
    • 2
    Email author
  • John R. Parsons
    • 2
  • Erwin W. M. Roex
    • 1
  • Pim de Voogt
    • 3
    • 4
  • Remi W. P. M. Laane
  1. 1.DeltaresDelftThe Netherlands
  2. 2.Earth Surface Science, IBEDUniversity of AmsterdamAmsterdamThe Netherlands
  3. 3.Aquatic Environmental Ecology, IBEDUniversity of AmsterdamAmsterdamThe Netherlands
  4. 4.KWR Watercycle Research InstituteNieuwegeinThe Netherlands

Personalised recommendations