Impact of Veterinary Pharmaceuticals on the Agricultural Environment: A Re-inspection

  • Paulina Łukaszewicz
  • Joanna Maszkowska
  • Ewa Mulkiewicz
  • Jolanta Kumirska
  • Piotr Stepnowski
  • Magda CabanEmail author
Part of the Reviews of Environmental Contamination and Toxicology book series (RECT, volume 243)


The use of veterinary pharmaceuticals (VPs) is a result of growing animal production. Manure, a great crop fertilizer, contains a significant amount of VPs. The investigation of VPs in manure is prevalent, because of the potential risk for environmental organisms, as well as human health. A re-evaluation of the impact of veterinary pharmaceuticals on the agricultural environment is needed, even though several publications appear every year. The aim of this review was to collate the data from fields investigated for the presence of VPs as an inevitable component of manure. Data on VP concentrations in manure, soils, groundwater and plants were collected from the literature. All of this was connected with biotic and abiotic degradation, leaching and plant uptake. The data showed that the sorption of VPs into soil particles is a process which decreases the negative impact of VPs on the microbial community, the pollution of groundwater, and plant uptake. What was evident was that most of the data came from experiments conducted under conditions different from those in the environment, resulting in an overestimation of data (especially in the case of leaching). The general conclusion is that the application of manure on crop fields leads to a negligible risk for plants, bacteria, and finally humans, but in future every group of compounds needs to be investigated separately, because of the high divergence of properties.


Veterinary pharmaceuticals Pharmaceutical residues Plant toxicity Bacterial resistance Agricultural environment Pharmaceuticals in manure 



Financial support was provided by the National Science Center (Poland) under decision number UMO-2014/13/N/ST4/04127, by the National Center for Research and Development (NCBR) (Poland) under grant TANGO1/268806/NCBR/2015 and by the Polish Ministry of Research and Higher Education under grant DS 530–8616-D593–16 and DS 530–8615-D592–15.


  1. Allen HK, Donato J, Wang HH, Cloud-Hansen KA, Davies J, Handelsman J (2010) Call of the wild: antibiotic resistance genes in natural environments. Nat Rev Microbiol Rev 8:251–259. doi: 10.1038/nrmicro2312 CrossRefGoogle Scholar
  2. Allison SD, Martiny JBH (2008) Resistance, resilience, and redundancy in microbial communities. Proc Natl Acad Sci U S A 105:11512–11519. doi: 10.1073/pnas.0801925105 CrossRefGoogle Scholar
  3. Anderson CR, Rupp HS, Wu WH (2005) Complexities in tetracycline analysis—chemistry, matrix extraction, cleanup, and liquid chromatography. J Chromatogr A 1075:23–32. doi: 10.1016/j.chroma.2005.04.013 CrossRefGoogle Scholar
  4. Andreu V, Vazquez-Roig P, Blasco C, Picó Y (2009) Determination of tetracycline residues in soil by pressurized liquid extraction and liquid chromatography tandem mass spectrometry. Anal Bioanal Chem 394:1329–1339. doi: 10.1007/s00216-009-2635-x CrossRefGoogle Scholar
  5. Angenent LT, Mau M, George U, Zahn JA, Raskin L (2008) Effect of the presence of the antimicrobial tylosin in swine waste on anaerobic treatment. Water Res 42:2377–2384. doi: 10.1016/j.watres.2008.01.005 CrossRefGoogle Scholar
  6. Arikan OA, Sikora LJ, Mulbry W, Khan SU, Rice C, Foster GD (2006) The fate and effect of oxytetracycline during the anaerobic digestion of manure from therapeutically treated calves. Process Biochem 41:1637–1643. doi: 10.1016/j.procbio.2006.03.010 CrossRefGoogle Scholar
  7. Arikan OA, Sikora LJ, Mulbry W, Khan SU, Foster GD (2007) Composting rapidly reduces levels of extractable oxytetracycline in manure from therapeutically treated beef calves. Bioresour Technol 98:169–176. doi: 10.1016/j.biortech.2005.10.041 CrossRefGoogle Scholar
  8. Aryal N, Reinhold DM (2011) Phytoaccumulation of antimicrobials from biosolids: impacts on environmental fate and relevance to human exposure. Water Res 45:5545–5552. doi: 10.1016/j.watres.2011.08.027 CrossRefGoogle Scholar
  9. Aust MOO, Godlinski F, Travis GR, Hao X, McAllister TA, Leinweber P, Thiele-Bruhn S (2008) Distribution of sulfamethazine, chlortetracycline and tylosin in manure and soil of Canadian feedlots after subtherapeutic use in cattle. Environ Pollut 156:1243–1251. doi: 10.1016/j.envpol.2008.03.011 CrossRefGoogle Scholar
  10. Babić S, Periša M, Škorić I (2013) Photolytic degradation of norfloxacin, enrofloxacin and ciprofloxacin in various aqueous media. Chemosphere 91:1635–1642. doi: 10.1016/j.chemosphere.2012.12.072 CrossRefGoogle Scholar
  11. Baran W, Sochacka J, Wardas W (2006) Toxicity and biodegradability of sulfonamides and products of their photocatalytic degradation in aqueous solutions. Chemosphere 65:1295–1299. doi: 10.1016/j.chemosphere.2006.04.040 CrossRefGoogle Scholar
  12. Barnes KK, Kolpin DW, Furlong ET, Zaugg SD, Meyer MT, Barber LB (2008) A national reconnaissance of pharmaceuticals and other organic wastewater contaminants in the United States—(I) groundwater. Sci Total Environ 402:192–200. doi: 10.1016/j.scitotenv.2008.04.028 CrossRefGoogle Scholar
  13. Barra Caracciolo A, Topp E, Grenni P (2015) Pharmaceuticals in the environment: biodegradation and effects on natural microbial communities. A review. J Pharm Biomed Anal 106:25–36. doi: 10.1016/j.jpba.2014.11.040 CrossRefGoogle Scholar
  14. Bartelt-Hunt S, Snow DD, Damon-Powell T, Miesbach D (2011) Occurrence of steroid hormones and antibiotics in shallow groundwater impacted by livestock waste control facilities. J Contam Hydrol 123:94–103. doi: 10.1016/j.jconhyd.2010.12.010 CrossRefGoogle Scholar
  15. Bartha B, Huber C, Harpaintner R, Schröder P (2010) Effects of acetaminophen in Brassica juncea L. Czern.: investigation of uptake, translocation, detoxification, and the induced defense pathways. Environ Sci Pollut Res 17:1553–1562. doi: 10.1007/s11356-010-0342-y CrossRefGoogle Scholar
  16. Bártíková H, Podlipná R, Skálová L (2016) Veterinary drugs in the environment and their toxicity to plants. Chemosphere 144:2290–2301. doi: 10.1016/j.chemosphere.2015.10.137 CrossRefGoogle Scholar
  17. Batt AL, Snow DD, Aga DS (2006) Occurrence of sulfonamide antimicrobials in private water wells in Washington County, Idaho, USA. Chemosphere 64:1963–1971. doi: 10.1016/j.chemosphere.2006.01.029 CrossRefGoogle Scholar
  18. Baynes RE, Dedonder K, Kissell L, Mzyk D, Marmulak T, Smith G, Tell L, Gehring R, Davis J, Riviere JE (2016) Health concerns and management of select veterinary drug residues. Food Chem Toxicol 88:112–122. doi: 10.1016/j.fct.2015.12.020 CrossRefGoogle Scholar
  19. Beausse J (2004) Selected drugs in solid matrices: a review of environmental determination, occurrence and properties of principal substances. Trends Anal Chem 23:753–761. doi: 10.1016/j.trac.2004.08.005 CrossRefGoogle Scholar
  20. Berg J, Thorsen MK, Holm PE, Jensen J, Nybroe O, Brandt KK (2010) Cu exposure under field conditions coselects for antibiotic resistance as determined by a novel cultivation-independent bacterial community tolerance assay. Environ Sci Technol 44:8724–8728. doi: 10.1021/es101798r CrossRefGoogle Scholar
  21. Berglund B, Khan GA, Weisner SEB, Ehde PM, Fick J, Lindgren P-E (2014) Efficient removal of antibiotics in surface-flow constructed wetlands, with no observed impact on antibiotic resistance genes. Sci Total Environ 476–477:29–37. doi: 10.1016/j.scitotenv.2013.12.128 CrossRefGoogle Scholar
  22. Białk-Bielińska A, Kumirska J, Palavinskas R, Stepnowski P (2009) Optimization of multiple reaction monitoring mode for the trace analysis of veterinary sulfonamides by LC-MS/MS. Talanta 80:947–953. doi: 10.1016/j.talanta.2009.08.023 CrossRefGoogle Scholar
  23. Białk-Bielińska A, Stolte S, Arning J, Uebers U, Böschen A, Stepnowski P, Matzke M (2011) Ecotoxicity evaluation of selected sulfonamides. Chemosphere 85:928–933. doi: 10.1016/j.chemosphere.2011.06.058 CrossRefGoogle Scholar
  24. Białk-Bielińska A, Maszkowska J, Mrozik W, Bielawska A, Kołodziejska M, Palavinskas R, Stepnowski P, Kumirska J (2012) Sulfadimethoxine and sulfaguanidine: their sorption potential on natural soils. Chemosphere 86:1059–1065. doi: 10.1016/j.chemosphere.2011.11.058 CrossRefGoogle Scholar
  25. Białk-Bielińska A, Maszkowska J, Puckowski A, Stepnowski P (2014) Exposure and hazard identification of sulphonamides in the terrestrial environment. In: Environmental risk assessment in soil contamination ISBN 978-953-51-1235-8 InTech. Rijeka CroatiaGoogle Scholar
  26. Białk-Bielińska A, Kumirska J, Borecka M, Caban M, Paszkiewicz M, Pazdro K, Stepnowski P (2016) Selected analytical challenges in the determination of pharmaceuticals in drinking/marine waters and soil/sediment samples. J Pharm Biomed Anal. doi: 10.1016/j.jpba.2016.01.016 CrossRefGoogle Scholar
  27. Binh CTT, Heuer H, Kaupenjohann M, Smalla K (2008) Piggery manure used for soil fertilization is a reservoir for transferable antibiotic resistance plasmids. FEMS Microbiol Ecol 66:25–37. doi: 10.1111/j.1574-6941.2008.00526.x CrossRefGoogle Scholar
  28. Bissett A, Burke C, Cook PLM, Bowman JP (2007) Bacterial community shifts in organically perturbed sediments. Environ Microbiol 9:46–60. doi: 10.1111/j.1462-2920.2006.01110.x CrossRefGoogle Scholar
  29. Blackwell PA, Kay P, Boxall ABA (2007) The dissipation and transport of veterinary antibiotics in a sandy loam soil. Chemosphere 67:292–299. doi: 10.1016/j.chemosphere.2006.09.095 CrossRefGoogle Scholar
  30. Blackwell PA, Kay P, Ashauer R, Boxall ABA (2009) Effects of agricultural conditions on the leaching behaviour of veterinary antibiotics in soils. Chemosphere 75:13–19. doi: 10.1016/j.chemosphere.2008.11.070 CrossRefGoogle Scholar
  31. Boleas S, Alonso C, Pro J, Fernández C, Carbonell G, Tarazona JV (2005) Toxicity of the antimicrobial oxytetracycline to soil organisms in a multi-species-soil system (MS·3) and influence of manure co-addition. J Hazard Mater 122:233–241. doi: 10.1016/j.jhazmat.2005.03.003 CrossRefGoogle Scholar
  32. Boonsaner M, Hawker DW (2010) Accumulation of oxytetracycline and norfloxacin from saline soil by soybeans. Sci Total Environ 408:1731–1737. doi: 10.1016/j.scitotenv.2009.12.032 CrossRefGoogle Scholar
  33. Boonsaner M, Hawker DW (2012) Investigation of the mechanism of uptake and accumulation of zwitterionic tetracyclines by rice (Oryza sativa L.). Ecotoxicol Environ Saf 78:142–147. doi: 10.1016/j.ecoenv.2011.11.023 CrossRefGoogle Scholar
  34. Borgman O, Chefetz B (2013) Combined effects of biosolids application and irrigation with reclaimed wastewater on transport of pharmaceutical compounds in arable soils. Water Res 47:3431–3443. doi: 10.1016/j.watres.2013.03.045 CrossRefGoogle Scholar
  35. Botsoglou NA, Fletouirs DJ (2001) Drug residues in food. Pharmacology, food safety and analysis. Marcel Dekker, Inc., New YorkGoogle Scholar
  36. Boxall ABA, Kolpin DW, Halling-Sorensen B, Tolls J (2003) Are veterinary medicines causing environmental risk? Environ Sci Technol 37:286A–294A. doi: 10.1021/es032519b CrossRefGoogle Scholar
  37. Boxall ABA, Fogg LA, Blackwell PA, Kay P, Pemberton EJ, Croxford A (2004) Veterinary medicines in the environment. Rev Environ Contam Toxicol 180:1–91. doi: 10.1007/0-387-21729-0_1 CrossRefGoogle Scholar
  38. Boxall ABA, Fogg L, Baird D, Telfer T, Lewis C, Gravell A, Boucard T (2006a) Targeted monitoring study for veterinary medicines in the environment. Environment Agency, BristolGoogle Scholar
  39. Boxall ABA, Johnson P, Smith EJ, Sinclair CJ, Stutt E, Levy LS (2006b) Uptake of veterinary medicines from soils into plants. J Agric Food Chem 54:2288–2297. doi: 10.1021/jf053041t CrossRefGoogle Scholar
  40. Boxall, ABA, Tiede, K, Bevan, R, Tam, C, Levy, S, (2006) Desk-based study of current knowledge on veterinary medicines in drinking water and estimation of potential levels. The Food and Environment Research Agency, Sand HuttonGoogle Scholar
  41. Brambilla G, Testa C (2014) Food safety/food security aspects related to the environmental release of pharmaceuticals. Chemosphere 115:81–87. doi: 10.1016/j.chemosphere.2014.01.024 CrossRefGoogle Scholar
  42. Brandt KK, Sjøholm OR, Krogh KA, Halling-Sørensen B, Nybroe O (2009) Increased pollution-induced bacterial community tolerance to sulfadiazine in soil hotspots amended with artificial root exudates. Environ Sci Technol 43:2963–2968. doi: 10.1021/es803546y CrossRefGoogle Scholar
  43. Buchberger W (2011) Current approaches to trace analysis of pharmaceuticals and personal care products in the environment. J Chromatogr A 1218:603–618. doi: 10.1016/j.chroma.2010.10.081 CrossRefGoogle Scholar
  44. Bundt M, Widmer F, Pesaro M, Zeyer J, Blaser P (2001) Preferential flow paths: biological “hot spots” in soils. Soil Biol Biochem 33:729–738. doi: 10.1016/S0038-0717(00)00218-2 CrossRefGoogle Scholar
  45. Byrne-Bailey KG, Gaze WH, Kay P, Boxall ABA, Hawkey PM, Wellington EMH (2009) Prevalence of sulfonamide resistance genes in bacterial isolates from manured agricultural soils and pig slurry in the United Kingdom. Antimicrob Agents Chemother 53:696–702. doi: 10.1128/AAC.00652-07 CrossRefGoogle Scholar
  46. Calderón-Preciado D, Jimenez-Cartagena C, Matamoros V, Bayona JM (2011) Screening of 47 organic microcontaminants in agricultural irrigation waters and their soil loading. Water Res 45:221–231. doi: 10.1016/j.watres.2010.07.050 CrossRefGoogle Scholar
  47. Calderón-Preciado D, Renault Q, Matamoros V, Cañameras N, Bayona JM (2012) Uptake of organic emergent contaminants in spath and lettuce: an in vitro experiment. J Agric Food Chem 60:2000–2007. doi: 10.1021/jf2046224 CrossRefGoogle Scholar
  48. Campagnolo ER, Johnson KR, Karpati A, Rubin CS, Kolpin DW, Meyer MT, Esteban JE, Currier RW, Smith K, Thu KM, McGeehin M (2002) Antimicrobial residues in animal waste and water resources proximal to large-scale swine and poultry feeding operations. Sci Total Environ 299:89–95. doi: 10.1016/S0048-9697(02)00233-4 CrossRefGoogle Scholar
  49. Campo J (2015) Advanced mass spectrometry for food safety and quality—emerging contaminants, comprehensive analytical chemistry. Elsevier, Amsterdam. doi: 10.1016/B978-0-444-63340-8.00010-8 CrossRefGoogle Scholar
  50. Carbonell G, Pro J, Gomez N, Babin MM, Fernandez C, Alonso E, Tarazona JV (2009) Sewage sludge applied to agricultural soil: ecotoxicological effects on representative soil organisms. Ecotoxicol Environ Saf 72:1309–1319. doi: 10.1016/j.ecoenv.2009.01.007 CrossRefGoogle Scholar
  51. Carlson JC, Mabury SA (2006) Dissipation kinetics and mobility of chlortetracycline, tylosin, and monensin in an agricultural soil in Northumberland County, Ontario, Canada. Environ Toxicol Chem 25:1–10. doi: 10.1897/04-657R.1 CrossRefGoogle Scholar
  52. Carter LJ, Harris E, Williams M, Ryan JJ, Kookana RS, Boxall ABA (2014) Fate and uptake of pharmaceuticals in soil—plant systems. J Agric Food Chem 62:816–825. doi: 10.1021/jf404282y CrossRefGoogle Scholar
  53. Carter LJ, Williams M, Böttcher C, Kookana RS (2015) Uptake of pharmaceuticals influences plant development and affects nutrient and hormone homeostases. Environ Sci Technol 49:12509–12518. doi: 10.1021/acs.est.5b03468 CrossRefGoogle Scholar
  54. Carvalho PN, Basto MCP, Almeida CMR, Brix H (2014) A review of plant-pharmaceutical interactions: from uptake and effects in crop plants to phytoremediation in constructed wetlands. Environ Sci Pollut Res 21(20):11729–11763. doi: 10.1007/s11356-014-2550-3 CrossRefGoogle Scholar
  55. Chee-Sanford JC, Mackie RI, Koike S, Krapac IG, Lin YF, Yannarell AC, Maxwell S, Aminov RI (2009) Fate and transport of antibiotic residues and antibiotic resistance genes following land application of manure waste. J Environ Qual 38:1086–1108. doi: 10.2134/jeq2008.0128 CrossRefGoogle Scholar
  56. Chen Y, Hong L, Zongping W, Huijie L, Tao T, Zuo Y (2012) Photodegradation of selected β-blockers in aqueous fulvic acid solutions: kinetics, mechanism and product analysis. Water Res 46:2965–2872. doi: 10.1016/j.watres.2012.03.025 CrossRefGoogle Scholar
  57. Chen Y, Liang Q, Zhou D, Wang Z, Tao T, Zuo Y (2013) Photodegradation kinetics, products and mechanism of timolol under simulated sunlight. J Hazardous Mater 252–253:220–226. doi: 10.1016/j.jhazmat.2013.02.035 CrossRefGoogle Scholar
  58. Chen C, Li J, Chen P, Ding R, Zhang P, Li X (2014) Occurrence of antibiotics and antibiotic resistances in soils from wastewater irrigation areas in Beijing and Tianjin, China. Environ Pollut 193:94–101. doi: 10.1016/j.envpol.2014.06.005 CrossRefGoogle Scholar
  59. Chen J, Xu H, Sun Y, Huang L, Zhang P, Zou C, Yu B, Zhu G, Zhao C (2016) Interspecific differences in growth response and tolerance to the antibiotic sulfadiazine in ten clonal wetland plants in South China. Sci Total Environ 543:197–205. doi: 10.1016/j.scitotenv.2015.11.015 CrossRefGoogle Scholar
  60. Chenxi W, Spongberg AL, Witter JD (2008) Determination of the persistence of pharmaceuticals in biosolids using liquid-chromatography tandem mass spectrometry. Chemosphere 73:511–518. doi: 10.1016/j.chemosphere.2008.06.026 CrossRefGoogle Scholar
  61. Christian T, Schneider RJ, Färber HA, Skutlarek D, Meyer MT, Goldbach HE (2003) Determination of antibiotic residues in manure, soil, and surface waters. Acta Hydrochim Hydrobiol 31:36–44. doi: 10.1002/aheh.200390014 CrossRefGoogle Scholar
  62. Chuang YH, Zhang Y, Zhang W, Boyd SA, Li H (2015) Comparison of accelerated solvent extraction and quick, easy, cheap, effective, rugged and safe method for extraction and determination of pharmaceuticals in vegetables. J Chromatogr A 1404:1–9. doi: 10.1016/j.chroma.2015.05.022 CrossRefGoogle Scholar
  63. Clarke RM, Cummins E (2015) Evaluation of “classic” and emerging contaminants resulting from the application of biosolids to agricultural lands: a review. Hum Ecol Risk Assess 21:492–513. doi: 10.1080/10807039.2014.930295 CrossRefGoogle Scholar
  64. Clervil E, Usman M, Emmanuel E, Chatain V, Hanna K (2013) Sorption of nalidixic acid onto sediments under batch and dynamic flow conditions. Chem Geol 335:63–74. doi: 10.1016/j.chemgeo.2012.10.041 CrossRefGoogle Scholar
  65. Colinas C, Ingham E, Molina R (1994) Population responses of target and non-target forest soil organisms to selected biocides. Soil Biol Biochem 26:41–47. doi: 10.1016/0038-0717(94)90193-7 CrossRefGoogle Scholar
  66. Conkle JL, Lattao C, White JR, Cook RL (2010) Competitive sorption and desorption behavior for three fluoroquinolone antibiotics in a wastewater treatment wetland soil. Chemosphere 80:1353–1359. doi: 10.1016/j.chemosphere.2010.06.012 CrossRefGoogle Scholar
  67. Cortés JM, Larsson E, Jönsson JÅ (2013) Study of the uptake of non-steroid anti-inflammatory drugs in wheat and soybean after application of sewage sludge as a fertilizer. Sci Total Environ 449:385–389. doi: 10.1016/j.scitotenv.2013.01.061 CrossRefGoogle Scholar
  68. Cundliffe E. (1989) How antibiotic-producing organisms avoid suicide. Annual Review of Microbiology 43: 207-233. doi:  10.1146/annurev.mi.43.100189.001231 CrossRefGoogle Scholar
  69. Daghrir R, Drogui P (2013) Tetracycline antibiotics in the environment: a review. Environ Chem Lett 11:209–227. doi: 10.1007/s10311-013-0404-8 CrossRefGoogle Scholar
  70. Davis JG, Truman CC, Kim SC, Ascough JC, Carlson K (2006) Antibiotic transport via runoff and soil loss. J Environ Qual 35:2250–2260. doi: 10.2134/jeq2005.0348 CrossRefGoogle Scholar
  71. Delay M, Lager T, Schulz HD, Frimmel FH (2007) Comparison of leaching tests to determine and quantify the release of inorganic contaminants in demolition waste. Waste Manag 27:248–255. doi: 10.1016/j.wasman.2006.01.013 CrossRefGoogle Scholar
  72. Demoling LA, Bååth E (2008) No long-term persistence of bacterial pollution-induced community tolerance in tylosin-polluted soil. Environ Sci Technol 42:6917–6921. doi: 10.1021/es8004706 CrossRefGoogle Scholar
  73. Demoling LA, Bååth E, Greve G, Wouterse M, Schmitt H (2009) Effects of sulfamethoxazole on soil microbial communities after adding substrate. Soil Biol Biochem 41:840–848. doi: 10.1016/j.soilbio.2009.02.001 CrossRefGoogle Scholar
  74. Devillers J (2009) Ecotoxicology modeling. Springer, Berlin. doi: 10.1007/978-1-4419-0197-2 CrossRefGoogle Scholar
  75. Dghrir A, Drogui P (2013) Tetracycline antibiotics in the environment: a review. Environ Chem Lett 11:209–227. doi: 10.1007/s10311-013-0404-8 CrossRefGoogle Scholar
  76. Di Guardo A, Finizio A (2016) A moni-modelling approach to manage groundwater risk to pesticide leaching at regional scale. Sci Total Environ 545–546:200–209. doi: 10.1016/j.scitotenv.2015.12.056 CrossRefGoogle Scholar
  77. Díaz-Cruz M (2007) Recent advances in LC-MS residue analysis of veterinary medicines in the terrestrial environment. Trends Anal Chem 26:637–646. doi: 10.1016/j.trac.2007.04.004 CrossRefGoogle Scholar
  78. Diaz-Cruz MS, Garca-Galan MJ, Barceló D (2008) Highly sensitive simultaneous determination of sulfonamide antibiotics and one metabolite in environmental waters by liquid chromatography-quadrupole linear ion trap-mass spectrometry. J Chromatogr A 1193:50–59. doi: 10.1016/j.chroma.2008.03.029 CrossRefGoogle Scholar
  79. Dı́az-Cruz MS, López de Alda MJ, Barceló D (2003) Environmental behavior and analysis of veterinary and human drugs in soils, sediments and sludge. Trends Anal Chem 22:340–351. doi: 10.1016/S0165-9936(03)00603-4 CrossRefGoogle Scholar
  80. Dibner JJ, Richards JD (2005) Antibiotic growth promoters in agriculture: history and mode of action. Poult Sci 84:634–643. doi: 10.1093/ps/84.4.634 CrossRefGoogle Scholar
  81. Ding C, He J (2010) Effect of antibiotics in the environment on microbial populations. Appl Microbiol Biotechnol 87:925–941. doi: 10.1007/s00253-010-2649-5 CrossRefGoogle Scholar
  82. Ding Y, Zhang W, Gu C, Xagoraraki I, Li H (2011) Determination of pharmaceuticals in biosolids using accelerated solvent extraction and liquid chromatography/tandem mass spectrometry. J Chromatogr A 1218:10–16. doi: 10.1016/j.chroma.2010.10.112 CrossRefGoogle Scholar
  83. Dodgen LK, Li J, Wu X, Lu Z, Gan JJ (2014) Transformation and removal pathways of four common PPCP/EDCs in soil. Environ Pollut 193:29–36. doi: 10.1016/j.envpol.2014.06.002 CrossRefGoogle Scholar
  84. Dodgen LK, Ueda A, Wu X, Parker DR, Gan J (2015) Effect of transpiration on plant accumulation and translocation of PPCP/EDCs. Environ Pollut 198:144–153. doi: 10.1016/j.envpol.2015.01.002 CrossRefGoogle Scholar
  85. Dolliver H, Gupta S, Noll S (2008) Antibiotic degradation during manure composting. J Environ Qual 37:1245–1253. doi: 10.2134/jeq2007.0399 CrossRefGoogle Scholar
  86. Dorival-García N, Labajo-Recio C, Zafra-Gómez A, Juárez-Jiménez B, Vílchez JL (2015) Improved sample treatment for the determination of 17 strong sorbed quinolone antibiotics from compost by ultra high performance liquid chromatography tandem mass spectrometry. Talanta 138:247–257. doi: 10.1016/j.talanta.2015.03.011 CrossRefGoogle Scholar
  87. Dzierżawski A (2012) Potrzeba racjonalnego stosowania antybiotyków w praktyce weterynaryjnej. Życie Weter 87:316–321Google Scholar
  88. Eggen T, Asp TN, Grave K, Hormazabal V (2011) Uptake and translocation of metformin, ciprofloxacin and narasin in forage- and crop plants. Chemosphere 85:26–33. doi: 10.1016/j.chemosphere.2011.06.041 CrossRefGoogle Scholar
  89. Environmental Protection Agency (2010) A guide to understanding biosolids issues. Santa Rosa, CAGoogle Scholar
  90. Environmental Risk Assessment for Veterinary Medicinal Products Other than GMO-containing and Immunological Products. EMEA/CVMP/055/96-final, LondonGoogle Scholar
  91. Estévez E, Cabrera MC, Molina-Díaz A, Robles-Molina J, Palacios-Díaz Mdel P (2012) Screening of emerging contaminants and priority substances (2008/105/EC) in reclaimed water for irrigation and groundwater in a volcanic aquifer (Gran Canaria, Canary Islands, Spain). Sci Total Environ 433:538–546. doi: 10.1016/j.scitotenv.2012.06.031 CrossRefGoogle Scholar
  92. European Commission (2002) Disposal and recycling routes for sewage sludge, economic analysis. LuxembourgGoogle Scholar
  93. European Commission (2004) Draft discussion document for the ad hoc meeting on biowaste and sludges. GenevaGoogle Scholar
  94. European Medicines Agency (2004) Environmental impact assessment for veterinary medicinal products. Phase II guidance. LondonGoogle Scholar
  95. European Medicines Agency (2008) Reflection paper on the implementation of directive 2001/82/EC, as amended, in respect to the assessment of environmental risks of veterinary medicinal products 1–15. LondonGoogle Scholar
  96. European Medicines Agency (2009) Revised guidiline on environmental impact assessment for veterinary medicinal products, report EMEA/CVMP/ERA/418282/2005 Rev. 1 Corr. LondonGoogle Scholar
  97. Fahrenfeld N, Knowlton K, Krometis LA, Hession WC, Xia K, Lipscomb E, Libuit K, Green BL, Pruden A (2014) Effect of manure application on abundance of antibiotic resistance genes and their attenuation rates in soil: Field-scale mass balance approach. Environ Sci Technol 48:2643–2650. doi: 10.1021/es404988k CrossRefGoogle Scholar
  98. Fang H, Han Y, Yin Y, Pan X, Yu Y (2014) Variations in dissipation rate, microbial function and antibiotic resistance due to repeated introductions of manure containing sulfadiazine and chlortetracycline to soil. Chemosphere 96:51–56. doi: 10.1016/j.chemosphere.2013.07.016 CrossRefGoogle Scholar
  99. Fatta-Kassinos D, Kalavrouziotis IK, Koukoulakis PH, Vasquez MI (2011) The risks associated with wastewater reuse and xenobiotics in the agroecological environment. Sci Total Environ 409:3555–3563. doi: 10.1016/j.scitotenv.2010.03.036 CrossRefGoogle Scholar
  100. Fernandes JP, Almeida CMR, Pereira AC, Ribeiro IL, Reis I, Carvalho P, Basto MCP, Mucha AP (2015) Bioresource technology microbial community dynamics associated with veterinary antibiotics removal in constructed wetlands microcosms. Bioresour Technol 182:26–33. doi: 10.1016/j.biortech.2015.01.096 CrossRefGoogle Scholar
  101. Forsberg KJ, Reyes A, Wang B, Selleck EM, Sommer MOA, Dantas G (2012) The shared antibiotic resistome of soil bacteria and human pathogens. Science 337:1107–1111. doi: 10.1126/science.1220761 CrossRefGoogle Scholar
  102. Fritz J, Zuo Y (2007) Simultaneous determination of tetracycline, oxytetracycline, and 4-epitetracycline in milk by high-performance liquid chromatography. Food Chem 105:1297–1301. doi: 10.1016/j.foodchem.2007.03.047 CrossRefGoogle Scholar
  103. Furtula V, Stephenson GL, Olaveson KM, Chambers PA (2012) Effects of the veterinary pharmaceutical salinomycin and its formulation on the plant Brassica rapa. Arch Environ Contam Toxicol 63:513–522. doi: 10.1007/s00244-012-9807-y CrossRefGoogle Scholar
  104. García-Galán MJ, Díaz-Cruz MS, Barceló D (2008) Identification and determination of metabolites and degradation products of sulfonamide antibiotics. Trends Anal Chem 27:1008–1022. doi: 10.1016/j.trac.2008.10.001 CrossRefGoogle Scholar
  105. García-Galán MJ, Díaz-Cruz MS, Barceló D (2009) Combining chemical analysis and ecotoxicity to determine environmental exposure and to assess risk from sulfonamides. Trends Anal Chem 28:804–819. doi: 10.1016/j.trac.2009.04.006 CrossRefGoogle Scholar
  106. García-Galán MJ, Garrido T, Fraile J, Ginebreda A, Díaz-Cruz MS, Barceló D (2010) Simultaneous occurrence of nitrates and sulfonamide antibiotics in two ground water bodies of Catalonia (Spain). J Hydrol 383:93–101. doi: 10.1016/j.jhydrol.2009.06.042 CrossRefGoogle Scholar
  107. García-Santiago X, Franco-Uría A, Omil F, Lema JM (2016) Risk assessment of persistent pharmaceuticals in biosolids: dealing with uncertainty. J Hazard Mater 302:72–81. doi: 10.1016/j.jhazmat.2015.09.035 CrossRefGoogle Scholar
  108. Gerke HH (2006) Preferential flow descriptions for structured soils. J Plant Nutr Soil Sci 169:382–400. doi: 10.1002/jpln.200521955 CrossRefGoogle Scholar
  109. Ghosh S, LaPara TM (2007) The effects of subtherapeutic antibiotic use in farm animals on the proliferation and persistence of antibiotic resistance among soil bacteria. ISME J 1:191–203. doi: 10.1038/ismej.2007.31 CrossRefGoogle Scholar
  110. Gillings MR, Stokes HW (2012) Are humans increasing bacterial evolvability? Trends Ecol Evol 27:346–352. doi: 10.1016/j.tree.2012.02.006 CrossRefGoogle Scholar
  111. Girardi C, Greve J, Lamshöft M, Fetzer I, Miltner A, Schäffer A, Kästner M (2011) Biodegradation of ciprofloxacin in water and soil and its effects on the microbial communities. J Hazard Mater 198:22–30. doi: 10.1016/j.jhazmat.2011.10.004 CrossRefGoogle Scholar
  112. Glasener KM (2002) Why is soil important? Soil Sci Soc Am Sci.
  113. Golet, E.M., Strehler, A., Alder A.C., Giger, W., (2002) Determination of Fluoroquinolone Antibacterial Agents in Sewage Sludge and Sludge-Treated Soil Using Accelerated Solvent Extraction Followed by Solid-Phase Extraction, Anal. Chem. 74, 5455–5462,  10.1021/ac025762m CrossRefGoogle Scholar
  114. Götz A, Smalla K (1997) Manure enhances plasmid mobilization and survival of Pseudomonas putida introduced into field soil. Appl Environ Microbiol 63:1980–1986 PMCID: PMC1389163Google Scholar
  115. Grassi M, Rizzo L, Farina A (2013) Endocrine disruptors compounds, pharmaceuticals and personal care products in urban wastewater: implications for agricultural reuse and their removal by adsorption process. Environ Sci Pollut Res 20:3616–3628. doi: 10.1007/s11356-013-1636-7 CrossRefGoogle Scholar
  116. Grathwohl P, Susset B (2009) Comparison of percolation to batch and sequential leaching tests: theory and data. Waste Manag 29:2681–2688. doi: 10.1016/j.wasman.2009.05.016 CrossRefGoogle Scholar
  117. Grathwohl P, van der Sloot HA (2007) Groundwater risk assessment at contaminated sites (GRACOS): test methods and modeling approaches. In: Quevauviller P (ed) Groundwater science and policy. RSC, CambridgeGoogle Scholar
  118. Grave K, Torren-Edo J, Muller A, Greko C, Moulin G, Mackay D, Fuchs K, Laurier L, Iliev D, Pokludová L, Genakritis M, Jacobsen E, Kurvits K, Kivilahti-Mäntylä K, Wallmann J, Kovács J, Lenharðsson JM, Beechinor JG, Perrella A, Mičule G, Zymantaite U, Meijering A, Prokopiak D, Ponte MH, Svetlin A, Hederová J, Madero CM, Girma K, Eckford S (2014) Variations in the sales and sales patterns of veterinary antimicrobial agents in 25 European countries. J Antimicrob Chemother. dku106. doi: 10.1093/jac/dku106CrossRefGoogle Scholar
  119. Haller MY, Müller SR, McArdell CS, Alder AC, Suter MJF (2002) Quantification of veterinary antibiotics (sulfonamides and trimethoprim) in animal manure by liquid chromatography-mass spectrometry. J Chromatogr A 952:111–120. doi: 10.1016/S0021-9673(02)00083-3 CrossRefGoogle Scholar
  120. Halling-Sørensen B (2001) Inhibition of aerobic growth and nitrification of bacteria in sewage sludge by antibacterial agents. Arch Environ Contam Toxicol 40:451–460. doi: 10.1007/s002440010197 CrossRefGoogle Scholar
  121. Halling-Sørensen B, Lykkeberg A, Ingerslev F, Blackwell P, Tjørnelund J (2003a) Characterisation of the abiotic degradation pathways of oxytetracyclines in soil interstitial water using LC-MS-MS. Chemosphere 50:1331–1342. doi: 10.1016/S0045-6535(02)00766-X CrossRefGoogle Scholar
  122. Halling-Sørensen B, Sengeløv G, Ingerslev F, Jensen LB (2003b) Reduced antimicrobial potencies of oxytetracycline, tylosin, sulfadiazin, streptomycin, ciprofloxacin, and olaquindox due to environmental processes. Arch Environ Contam Toxicol 44:7–16. doi: 10.1007/s00244-002-1234-z CrossRefGoogle Scholar
  123. Halling-Sørensen B, Jacobsen A-M, Jensen J, Sengeløv G, Vaclavik E, Ingerslev F (2005) Dissipation and effects of chlortetracycline and tylosin in two agricultural soils: a field-scale study in southern Denmark. Environ Toxicol Chem 24:802–810. doi: 10.1897/03-576.1 CrossRefGoogle Scholar
  124. Hammesfahr U, Heuer H, Manzke B, Smalla K, Thiele-Bruhn S (2008) Impact of the antibiotic sulfadiazine and pig manure on the microbial community structure in agricultural soils. Soil Biol Biochem 40:1583–1591. doi: 10.1016/j.soilbio.2008.01.010 CrossRefGoogle Scholar
  125. Hammesfahr U, Kotzerke A, Lamshöft M, Wilke B-M, Kandeler E, Thiele-Bruhn S (2011) Effects of sulfadiazine-contaminated fresh and stored manure on a soil microbial community. Eur J Soil Biol 47:61–68. doi: 10.1016/j.ejsobi.2010.10.004 CrossRefGoogle Scholar
  126. Hamscher G, Sczesny S, Höper H, Nau H (2002) Determination of persistent tetracycline residues in soil fertilized with liquid manure by high-performance liquid chromatography with electrospray ionization tandem mass spectrometry. Anal Chem 74:1509–1518. doi: 10.1021/ac015588m CrossRefGoogle Scholar
  127. Hawker DW, Cropp R, Boonsaner M (2013) Uptake of zwitterionic antibiotics by rice (Oryza sativa L.) in contaminated soil. J Hazard Mater 263:458–466. doi: 10.1016/j.jhazmat.2013.09.066 CrossRefGoogle Scholar
  128. He X, Wang Z, Nie X, Yang Y, Pan D, Leung AOW, Cheng Z, Yang Y, Li K, Chen K (2012) Residues of fluoroquinolones in marine aquaculture environment of the Pearl River Delta, South China. Environ Geochem Health 34:323–335. doi: 10.1007/s10653-011-9420-4 CrossRefGoogle Scholar
  129. Herklotz PA, Gurung P, Vanden Heuvel B, Kinney CA (2010) Uptake of human pharmaceuticals by plants grown under hydroponic conditions. Chemosphere 78:1416–1421. doi: 10.1016/j.chemosphere.2009.12.048 CrossRefGoogle Scholar
  130. Heuer H, Smalla K (2012) Plasmids foster diversification and adaptation of bacterial populations in soil. FEMS Microbiol Rev 36:1083–1104. doi: 10.1111/j.1574-6976.2012.00337.x CrossRefGoogle Scholar
  131. Heuer H, Focks A, Lamshöft M, Smalla K, Matthies M, Spiteller M (2008) Fate of sulfadiazine administered to pigs and its quantitative effect on the dynamics of bacterial resistance genes in manure and manured soil. Soil Biol Biochem 40:1892–1900. doi: 10.1016/j.soilbio.2008.03.014 CrossRefGoogle Scholar
  132. Heuer H, Schmitt H, Smalla K (2011) Antibiotic resistance gene spread due to manure application on agricultural fields. Curr Opin Microbiol 14:236–243. doi: 10.1016/j.mib.2011.04.009 CrossRefGoogle Scholar
  133. Hiba A, Carine A, Haifa AR, Ryszard L, Farouk J (2016) Monitoring of twenty-two sulfonamides in edible tissues: investigation of new metabolites and their potential toxicity. Food Chem 192:212–227. doi: 10.1016/j.foodchem.2015.06.093 CrossRefGoogle Scholar
  134. Ho YB, Zakaria MP, Latif PA, Saari N (2012) Simultaneous determination of veterinary antibiotics and hormone in broiler manure, soil and manure compost by liquid chromatography-tandem mass spectrometry. J Chromatogr A 1262:160–168. doi: 10.1016/j.chroma.2012.09.024 CrossRefGoogle Scholar
  135. Ho YB, Zakaria MP, Latif PA, Saari N (2013) Degradation of veterinary antibiotics and hormone during broiler manure composting. Bioresour Technol 131:476–484. doi: 10.1016/j.biortech.2012.12.194 CrossRefGoogle Scholar
  136. Hoagland RE (1996) Herbicidal properties of the antibiotic monensin. J Sci Food Agric 70:373–379. doi:10.1002/(SICI)1097-0010(199603)70:3<373::AID-JSFA516>3.0.CO;2-PCrossRefGoogle Scholar
  137. Hoagland RE, Zablotowicz RM, Hall JC (2000) Pesticide metabolism in plants and microorganisms: an overview. Pestic Biotransformation Plants Microorg 777:2–27. doi: 10.1021/bk-2001-0777.ch001 CrossRefGoogle Scholar
  138. Holling CS, Bailey JL, Vanden Heuvel B, Kinney CA (2012) Uptake of human pharmaceuticals and personal care products by cabbage (Brassica campestris) from fortified and biosolids-amended soils. J Environ Monit 14:3029. doi: 10.1039/c2em30456b CrossRefGoogle Scholar
  139. Homem V, Santos L (2011) Degradation and removal methods of antibiotics from aqueous matrices—a review. J Environ Manage 92:2304–2347. doi: 10.1016/j.jenvman.2011.05.023 CrossRefGoogle Scholar
  140. Hong PY, Yannarell AC, Dai Q, Ekizoglu M, Mackie RI (2013) Monitoring the perturbation of soil and groundwater microbial communities due to pig production activities. Appl Environ Microbiol 79:2620–2629. doi: 10.1128/AEM.03760-12 CrossRefGoogle Scholar
  141. Horvat AJM, Babić S, Pavlović DM, Ašperger D, Pelko S, Kaštelan-Macan M, Petrović M, Mance AD (2012) Analysis, occurrence and fate of anthelmintics and their transformation products in the environment. TrAC Trends Anal. Chem. 31:61–84. doi: 10.1016/j.trac.2011.06.023 CrossRefGoogle Scholar
  142. Hu X, Luo Y, Zhou Q (2010a) Simultaneous analysis of selected typical antibiotics in manure by microwave-assisted extraction and LC–MS n. Chromatographia 71:217–223. doi: 10.1365/s10337-009-1438-8 CrossRefGoogle Scholar
  143. Hu X, Zhou Q, Luo Y (2010b) Occurrence and source analysis of typical veterinary antibiotics in manure, soil, vegetables and groundwater from organic vegetable bases, northern China. Environ Pollut 158:2992–2998. doi: 10.1016/j.envpol.2010.05.023 CrossRefGoogle Scholar
  144. Hu W, Ma L, Guo C, Sha J, Zhu X (2012) Simultaneous extraction and determination of fluoroquinolones, tetracyclines and sulfonamides antibiotics in soils using optimised solid phase extraction chromatography-tandem mass spectrometry. Int J Environ Anal Chem 37–41. doi:  10.1080/03067319.2010.520122 CrossRefGoogle Scholar
  145. Huang X, Liu C, Li K, Liu F, Liao D, Liu L, Zhu G, Liao J (2013) Occurrence and distribution of veterinary antibiotics and tetracycline resistance genes in farmland soils around swine feedlots in Fujian Province, China. Environ Sci Pollut Res 20:9066–9074. doi: 10.1007/s11356-013-1905-5 CrossRefGoogle Scholar
  146. Huber C, Bartha B, Schroder P (2012) Metabolism of diclofenac in plants—hydroxylation is followed by glucose conjugation. J Hazard Mater 243:250–256. doi: 10.1016/j.jhazmat.2012.10.023 CrossRefGoogle Scholar
  147. Hund-Rinke K, Simon M, Lukow T (2004) Effects of tetracycline on the soil microflora: function, diversity, resistance. J Soil Sediment 4:11–16. doi: 10.1007/BF02990823 CrossRefGoogle Scholar
  148. Huysman F, Van Renterghem B, Verstraete W (1993) Antibiotic resistant sulphite-reducing clostridia in soil and groundwater as indicator of manuring practices. Water Air Soil Pollut 69:243–255. doi: 10.1007/BF00478161 CrossRefGoogle Scholar
  149. Ingerslev F, Halling-Sørensen B (2001) Biodegradability of metronidazole, olaquindox, and tylosin and formation of tylosin degradation products in aerobic soil—manure slurries. Ecotoxicol Environ Saf 48:311–320. doi: 10.1006/eesa.2000.2026 CrossRefGoogle Scholar
  150. Ingerslev F, Toräng L, Loke ML, Halling-Sorensen B, Nyholm N (2001) Primary biodegradation of veterinary antibiotics in aerobic and anaerobic surface water simulation systems. Chemosphere 44:865–872. doi: 10.1016/S0045-6535(00)00479-3 CrossRefGoogle Scholar
  151. Inoue J, Chamberlain K, Bromilow RH (1998) Physicochemical factors affecting the uptake by roots and translocation to shoots of amine bases in Barley. Pestic Sci 54:8–21. doi:10.1002/(SICI)1096-9063(199809)54:1<8::AID-PS793>3.0.CO;2-ECrossRefGoogle Scholar
  152. Institute of Medicine (1989) Human health risks with the subtherapeutic use of penicillin or tetracyclines in animal feed. National Academy Press, Washington, DCGoogle Scholar
  153. Jacobsen AM, Halling-Sørensen B, Ingerslev F, Hansen SH (2004) Simultaneous extraction of tetracycline, macrolide and sulfonamide antibiotics from agricultural soils using pressurised liquid extraction, followed by solid-phase extraction and liquid chromatography-tandem mass spectrometry. J Chromatogr A 1038:157–170. doi: 10.1016/j.chroma.2004.03.034 CrossRefGoogle Scholar
  154. Jechalke S, Heuer H, Siemens J, Amelung W, Smalla K (2014) Fate and effects of veterinary antibiotics in soil. Trends Microbiol 22:536–545. doi: 10.1016/j.tim.2014.05.005 CrossRefGoogle Scholar
  155. Jia A, Xiao Y, Hu J, Asami M, Kunikane S (2009) Simultaneous determination of tetracyclines and their degradation products in environmental waters by liquid chromatography-electrospray tandem mass spectrometry. J Chromatogr A 1216:4655–4662. doi: 10.1016/j.chroma.2009.03.073 CrossRefGoogle Scholar
  156. Jiaa S, Hea X, Bub Y, Shia P, Miaoa Y, Zhoub H, Shanb Z, Zhang XX (2014) Environmental fate of tetracycline resistance genes originating from swine feedlots in river water. J Environ Sci Health B 49:624–631. doi: 10.1080/03601234.2014.911594 CrossRefGoogle Scholar
  157. Jjemba PK (2002) The potential impact of veterinary and human therapeutic agents in manure and biosolids on plants grown on arable land: a review. Agric Ecosyst Environ 93:267–278. doi: 10.1016/S0167-8809(01)00350-4 CrossRefGoogle Scholar
  158. Johnsen PJ, Townsend JP, Bøhn T, Simonsen GS, Sundsfjord A, Nielsen KM (2009) Factors affecting the reversal of antimicrobial-drug resistance. Lancet Infect Dis 9(6):357–364. doi: 10.1016/S1473-3099(09)70105-7 CrossRefGoogle Scholar
  159. Jones-Lepp TL, Sanchez CA, Moy T, Kazemi R (2010) Method development and application to determine potential plant uptake of antibiotics and other drugs in irrigated crop production systems. J Agric Food Chem 58:11568–11573. doi: 10.1021/jf1028152 CrossRefGoogle Scholar
  160. Joy SR, Li X, Snow DD, Gilley JE, Woodbury B, Bartelt-Hunt SL (2014) Fate of antimicrobials and antimicrobial resistance genes in simulated swine manure storage. Sci Total Environ 481:69–74. doi: 10.1016/j.scitotenv.2014.02.027 CrossRefGoogle Scholar
  161. K’oreje KO, Vergeynst L, Ombaka D, De Wispelaere P, Okoth M (2016) Occurrence patterns of pharmaceutical residues in wastewater, surface water and groundwater of Nairobi and Kisumu city, Kenya. Chemosphere 149:238–244. doi: 10.1016/j.chemosphere.2016.01.095 CrossRefGoogle Scholar
  162. Kang DH, Gupta S, Rosen C, Fritz V, Singh A, Chander Y, Murray H, Rohwer C (2013) Antibiotic uptake by vegetable crops from manure-applied soils. J Agric Food Chem 61:9992–10001. doi: 10.1021/jf404045m CrossRefGoogle Scholar
  163. Karci A, Balcioğlu IA (2009) Investigation of the tetracycline, sulfonamide, and fluoroquinolone antimicrobial compounds in animal manure and agricultural soils in Turkey. Sci Total Environ 407:4652–4664. doi: 10.1016/j.scitotenv.2009.04.047 CrossRefGoogle Scholar
  164. Kay P, Blackwell PA, Boxall ABA (2004) Fate of veterinary antibiotics in a macroporous tile drained clay soil. Environ Toxicol Chem 23, 1136–1144. doi:  10.1897/03-374 CrossRefGoogle Scholar
  165. Kay P, Blackwell PA, Boxall ABA (2005a) Column studies to investigate the fate of veterinary antibiotics in clay soils following slurry application to agricultural land. Chemosphere 60:497–507. doi: 10.1016/j.chemosphere.2005.01.028 CrossRefGoogle Scholar
  166. Kay P, Blackwell PA, Boxall ABA (2005b) A lysimeter experiment to investigate the leaching of veterinary antibiotics through a clay soil and comparison with field data. Environ Pollut 134:333–341. doi: 10.1016/j.envpol.2004.07.021 CrossRefGoogle Scholar
  167. Kelessidis A, Stasinakis AS (2012) Comparative study of the methods used for treatment and final disposal of sewage sludge in European countries. Waste Manag 32:1186–1195. doi: 10.1016/j.wasman.2012.01.012 CrossRefGoogle Scholar
  168. Kemper N (2008) Veterinary antibiotics in the aquatic and terrestrial environment. Ecol Indic 8:1–13. doi: 10.1016/j.ecolind.2007.06.002 CrossRefGoogle Scholar
  169. Kemper N, Faber H, Skutlarek D, Krieter J (2008) Analysis of antibiotic residues in liquid manure and leachate of dairy farms in Northern Germany. Agric Water Manag 95:1288–1292. doi: 10.1016/j.agwat.2008.05.008 CrossRefGoogle Scholar
  170. Kim SC, Yang JE, Ok YS, Carlson K (2010) Dissolved and colloidal fraction transport of antibiotics in soil under biotic and abiotic conditions. Water Qual Res J Canada 45:275–285CrossRefGoogle Scholar
  171. Knapp CW, Dolfing J, Ehlert PAI, Graham DW (2010) Evidence of increasing antibiotic resistance gene abundances in archived soils since 1940. Environ Sci Technol 44:580–587. doi: 10.1021/es901221x CrossRefGoogle Scholar
  172. Kołodziejska M, Maszkowska J, Białk-Bielińska A, Steudte S, Kumirska J, Stepnowski P, Stolte S (2013) Aquatic toxicity of four veterinary drugs commonly applied in fish farming and animal husbandry. Chemosphere 92:1253–1259. doi: 10.1016/j.chemosphere.2013.04.057 CrossRefGoogle Scholar
  173. Kolz AC, Moorman TB, Ong SK, Scoggin KD, Douglass EA (2005) Degradation and metabolite production of tylosin in anaerobic and aerobic swine-manure lagoons. Water Environ Res 77:49–56. doi: 10.2175/106143005X41618 CrossRefGoogle Scholar
  174. Kong WD, Zhu YG, Liang YC, Zhang J, Smith FA, Yang M (2007) Uptake of oxytetracycline and its phytotoxicity to alfalfa (Medicago sativa L.). Environ Pollut 147:187–193. doi: 10.1016/j.envpol.2006.08.016 CrossRefGoogle Scholar
  175. Kools SAE, Moltmann JF, Knacker T (2008) Estimating the use of veterinary medicines in the European union. Regul Toxicol Pharmacol 50:59–65. doi: 10.1016/j.yrtph.2007.06.003 CrossRefGoogle Scholar
  176. Kotzerke A, Sharma S, Schauss K, Heuer H, Thiele-Bruhn S, Smalla K, Wilke BM, Schloter M (2008) Alterations in soil microbial activity and N-transformation processes due to sulfadiazine loads in pig-manure. Environ Pollut 153:315–322. doi: 10.1016/j.envpol.2007.08.020 CrossRefGoogle Scholar
  177. Kuchta SL, Cessna AJ (2009) Lincomycin and spectinomycin concentrations in liquid swine manure and their persistence during simulated manure storage. Arch Environ Contam Toxicol 57:1–10. doi: 10.1007/s00244-008-9229-z CrossRefGoogle Scholar
  178. Kumar K, Gupta SC, Baidoo SK, Chander Y, Rosen CJ (2005) Antibiotic uptake by plants from soil fertilized with animal manure. J Environ Qual 34:2082–2085. doi: 10.2134/jeq2005.0026 CrossRefGoogle Scholar
  179. Kummerer K (2003) Significance of antibiotics in the environment. J Antimicrob Chemother 52:5–7. doi: 10.1093/jac/dkg293 CrossRefGoogle Scholar
  180. Kurwadkar ST, Adams CD, Meyer MT, Kolpin DW (2007) Effects of sorbate speciation on sorption of selected sulfonamides in three loamy soils. J Agric Food Chem 55:1370–1376. doi: 10.1021/jf060612o CrossRefGoogle Scholar
  181. Kurwadkar ST, Adams CD, Meyer MT, Kolpin DW (2011) Comparative mobility of sulfonamides and bromide tracer in three soils. J Environ Manage 92:1874–1881. doi: 10.1016/j.jenvman.2011.03.018 CrossRefGoogle Scholar
  182. Kuster M, José López de Alda M, Barceló D (2004) Analysis and distribution of estrogens and progestogens in sewage sludge, soils and sediments. TrAC Trends Anal. Chem. 23:790–798. doi: 10.1016/j.trac.2004.08.007 CrossRefGoogle Scholar
  183. Küster A, Bachmann J, Brandt U, Ebert I, Hickmann S, Klein-Goedicke J, Maack G, Schmitz S, Thumm E, Rechenberg B (2009) Regulatory demands on data quality for the environmental risk assessment of pharmaceuticals. Regul Toxicol Pharmacol 55:276–280. doi: 10.1016/j.yrtph.2009.07.005 CrossRefGoogle Scholar
  184. Kwon SI, Owens G, Ok YS, Lee DB, Jeon W-T, Kim JG, Kim K-R (2011) Applicability of the Charm II system for monitoring antibiotic residues in manure-based composts. Waste Manag 31:39–44. doi: 10.1016/j.wasman.2010.08.018 CrossRefGoogle Scholar
  185. Lapworth DJ, Baran N, Stuart ME, Ward RS (2012) Emerging organic contaminants in groundwater: a review of sources, fate and occurrence. Environ Pollut 163:287–303. doi: 10.1016/j.envpol.2011.12.034 CrossRefGoogle Scholar
  186. Le-Minh N, Khan SJ, Drewes JE, Stuetz RM (2010) Fate of antibiotics during municipal water recycling treatment processes. Water Res 44:4295–4323. doi: 10.1016/j.watres.2010.06.020 CrossRefGoogle Scholar
  187. Li WC (2014) Occurrence, sources, and fate of pharmaceuticals in aquatic environment and soil. Environ Pollut 187:193–201. doi: 10.1016/j.envpol.2014.01.015 CrossRefGoogle Scholar
  188. Li YW, Wu XL, Mo CH, Tai YP, Huang XP, Xiang L (2011) Investigation of sulfonamide, tetracycline, and quinolone antibiotics in vegetable farmland soil in the Pearl River Delta area, southern China. J Agric Food Chem 59:7268–7276. doi: 10.1021/jf1047578 CrossRefGoogle Scholar
  189. Liguoro M, Cibin V, Capolongo F, Halling-Sørensen B, Montesissa C (2003) Use of oxytetracycline and tylosin in intensive calf farming: evaluation of transfer to manure and soil Marco. Chemosphere 68:671–676. doi: 10.1016/j.chemosphere.2007.02.009 CrossRefGoogle Scholar
  190. Lillenberg M, Yurchenko S, Kipper K, Herodes K, Pihl V, Sepp K, Lõhmus R, Nei L (2009) Simultaneous determination of fluoroquinolones, sulfonamides and tetracyclines in sewage sludge by pressurized liquid extraction and liquid chromatography electrospray ionization-mass spectrometry. J Chromatogr A 1216:5949–5954. doi: 10.1016/j.chroma.2009.06.029 CrossRefGoogle Scholar
  191. Lillicrap A, Macken A, Thomas KV (2015) Recommendations for the inclusion of targeted testing to improve the regulatory environmental risk assessment of veterinary medicines used in aquaculture. Environ Int 85:1–4. doi: 10.1016/j.envint.2015.07.019 CrossRefGoogle Scholar
  192. Lindsey ME, Meyer M, Thurman EM (2001) Analysis of trace levels of sulfonamide and tetracycline antimicrobials in groundwater and surface water using solid-phase extraction and liquid chromatography/mass spectrometry. Anal Chem 73:4640–4646. doi: 10.1021/ac010514w CrossRefGoogle Scholar
  193. Liu F, Ying GG, Tao R, Zhao JL, Yang JF, Zhao LF (2009) Effects of six selected antibiotics on plant growth and soil microbial and enzymatic activities. Environ Pollut 157:1636–1642. doi: 10.1016/j.envpol.2008.12.021 CrossRefGoogle Scholar
  194. Liu L, Liu YH, Liu CX, Wang Z, Dong J, Zhu GF, Huang X (2013a) Potential effect and accumulation of veterinary antibiotics in Phragmites australis under hydroponic conditions. Ecol Eng 53:138–143. doi: 10.1016/j.ecoleng.2012.12.033 CrossRefGoogle Scholar
  195. Liu D, Lung W-S, Colosi LM (2013b) Effects of sorption kinetics on the fate and transport of pharmaceuticals in estuaries. Chemosphere 92:1001–1009. doi: 10.1016/j.chemosphere.2013.03.029 CrossRefGoogle Scholar
  196. Liu FJ, Li SX, Zheng FY, Huang XG, Zuo YG, Tu TX, Wu XQ (2014) Risk assessment of nitrate and oxytetracycline addition on coastal ecosystem functions. Aquat Toxicol 146:76–81. doi: 10.1016/j.aquatox.2013 CrossRefGoogle Scholar
  197. Loke ML, Ingerslev F, Halling-Sørensen B, Tjørnelund J (2000) Stability of Tylosin A in manure containing test systems determined by high performance liquid chromatography. Chemosphere 40:759–765. doi: 10.1016/S0045-6535(99)00450-6 CrossRefGoogle Scholar
  198. Lopez Meza S, Garrabrants AC, Van der Sloot H, Kosson DS (2008) Comparison of the release of constituents from granular materials under batch and column testing. Waste Manag 28:1853–1867. doi: 10.1016/j.wasman.2007.11.009 CrossRefGoogle Scholar
  199. López-Serna R, Jurado A, Vázquez-Suñé E, Carrera J, Petrović M, Barceló D (2013) Occurrence of 95 pharmaceuticals and transformation products in urban groundwaters underlying the metropolis of Barcelona. Spain Environ Pollut 174:305–315. doi: 10.1016/j.envpol.2012.11.022 CrossRefGoogle Scholar
  200. MacHerius A, Eggen T, Lorenz W, Moeder M, Ondruschka J, Reemtsma T (2012) Metabolization of the bacteriostatic agent triclosan in edible plants and its consequences for plant uptake assessment. Environ Sci Technol 46:10797–10804. doi: 10.1021/es3028378 CrossRefGoogle Scholar
  201. Maia AS, Ribeiro AR, Amorim CL, Barreiro JC, Cass QB, Castro PML, Tiritan ME (2014) Degradation of fluoroquinolone antibiotics and identification of metabolites/transformation products by liquid chromatography-tandem mass spectrometry. J Chromatogr A 1333:87–98. doi: 10.1016/j.chroma.2014.01.069 CrossRefGoogle Scholar
  202. Marsoni M, De Mattia F, Labra M, Bruno A, Bracale M, Vannini C (2014) Uptake and effects of a mixture of widely used therapeutic drugs in Eruca sativa L. and Zea mays L. plants. Ecotoxicol Environ Saf 108:52–57. doi: 10.1016/j.ecoenv.2014.05.029 CrossRefGoogle Scholar
  203. Martínez JL (2008) Antibiotics and antibiotic resistance genes in natural environments. Science 321:365–367. doi: 10.1126/science.1159483 CrossRefGoogle Scholar
  204. Martínez-Carballo E, González-Barreiro C, Scharf S, Gans O (2007) Environmental monitoring study of selected veterinary antibiotics in animal manure and soils in Austria. Environ Pollut 148:570–579. doi: 10.1016/j.envpol.2006.11.035 CrossRefGoogle Scholar
  205. Masse DI, Saady NMC, Gilbert Y (2014) Potential of biological processes to eliminate antibiotics in livestock manure: an overview. Animals 4:146–163. doi: 10.3390/ani4020146 CrossRefGoogle Scholar
  206. Maszkowska J, Kołodziejska M, Białk-Bielińska A, Mrozik W, Kumirska J, Stepnowski P, Palavinskas R, Krüger O, Kalbe U (2013) Column and batch tests of sulfonamide leaching from different types of soil. J Hazard Mater 260:468–474. doi: 10.1016/j.jhazmat.2013.05.053 CrossRefGoogle Scholar
  207. Maszkowska J, Wagil M, Mioduszewska K, Kumirska J, Stepnowski P, Białk-Bielińska A (2014) Thermodynamic studies for adsorption of ionizable pharmaceuticals onto soil. Chemosphere 111:568–574. doi: 10.1016/j.chemosphere.2014.05.005 CrossRefGoogle Scholar
  208. Matamoros V, Nguyen LX, Arias CA, Salvado V, Brix H (2012) Evaluation of aquatic plants for removing polar microcontaminants: a microcosm experiment. Chemosphere 88:1257–1264. doi: 10.1016/j.chemosphere.2012.04.004 CrossRefGoogle Scholar
  209. Metcalfe CD, Alder AC, Halling-Sørensen B, Krogh K, Fenner K, Larsbo M, Straub JO, Ternes TA, Topp E, Lapen DR, Boxall ABA (2008) Exposure assessment methods for veterinary and human-use medicines in the environment: PEC vs. MEC comparisons. Chapter 11. In: Pharmaceuticals in the environment. Sources, fate, effects and risks. pp 147–171. doi:  10.1007/978-3-540-74664-5_11
  210. Michelini L, La Rocca N, Rascio N, Ghisi R (2013) Structural and functional alterations induced by two sulfonamide antibiotics on barley plants. Plant Physiol Biochem 67:55–62. doi: 10.1016/j.plaphy.2013.02.027 CrossRefGoogle Scholar
  211. Migliore L, Cozzolino S, Fiori M (2003) Phytotoxicity to and uptake of enrofloxacin in crop plants. Chemosphere 52:1233–1244. doi: 10.1016/S0045-6535(03)00272-8 CrossRefGoogle Scholar
  212. Miller EL, Nason SL, Karthikeyan K, Pedersen JA (2015) Root uptake of pharmaceuticals and personal care product ingredients. Environ Sci Technol 50:acs.est.5b01546. doi: 10.1021/acs.est.5b01546 CrossRefGoogle Scholar
  213. Ministry of Agriculture and Rural Development (2013) Antimicrobial veterinary medicinal products in 2012 in Poland. Warsaw, PolandGoogle Scholar
  214. Mitchell SM, Ullman JL, Teel AL, Watts RJ (2014) pH and temperature effects on the hydrolysis of three β-lactam antibiotics: ampicillin, cefalotin and cefoxitin. Sci Total Environ 466–467:547–555. doi: 10.1016/j.scitotenv.2013.06.027 CrossRefGoogle Scholar
  215. Montesdeoca-Esponda S, Sosa-Ferrera Z, Santana-Rodríguez JJ (2012) Combination of microwave-assisted micellar extraction with liquid chromatography tandem mass spectrometry for the determination of fluoroquinolone antibiotics in coastal marine sediments and sewage sludges samples. Biomed Chromatogr 26:33–40. doi: 10.1002/bmc.1621 CrossRefGoogle Scholar
  216. Montforts MHMM (1999) Environmental risk assessment for veterinary medicinal products part 1. Non-immunological drug substances. Second update RIVM report 320202001/2003. BilthovenGoogle Scholar
  217. Moore MT, Kröger R (2010) Effect of three insecticides and two herbicides on rice (Oryza sativa) seedling germination and growth. Arch Environ Contam Toxicol 59:574–581. doi: 10.1007/s00244-010-9519-0 CrossRefGoogle Scholar
  218. Moral R, Paredes C, Bustamante MA, Marhuenda-Egea F, Bernal MP (2009) Utilisation of manure composts by high-value crops: safety and environmental challenges. Bioresour Technol 100:5454–5460. doi: 10.1016/j.biortech.2008.12.007 CrossRefGoogle Scholar
  219. Motarjemi Y, Moy G, Tood E (2014) Encyclopedia of food safety, vol 3. Elsevier, San DiegoGoogle Scholar
  220. Muller AK, Westergaard K, Christensen S, Sorensen SJ (2002) The diversity and function of soil microbial communities exposed to different disturbances. Microb Ecol 44:49–58. doi: 10.1007/s00248-001-0042-8 CrossRefGoogle Scholar
  221. Nebot C, Guarddon M, Seco F, Iglesias A, Miranda JM, Franco CM, Cepeda A (2014) Monitoring the presence of residues of tetracyclines in baby food samples by HPLC-MS/MS. Food Control 46:495–501. doi: 10.1016/j.foodcont.2014.05.042 CrossRefGoogle Scholar
  222. Nesme J, Simonet P (2015) The soil resistome: a critical review on antibiotic resistance origins, ecology and dissemination potential in telluric bacteria. Environ Microbiol 17:913–930. doi: 10.1111/1462-2920.12631 CrossRefGoogle Scholar
  223. Nesme J, Cecillon S, Delmont TO, Monier JM, Vogel TM, Simonet P (2014) Large-scale metagenomic-based study of antibiotic resistance in the environment. Curr Biol 24:1096–1100. doi: 10.1016/j.cub.2014.03.036 CrossRefGoogle Scholar
  224. O’Connor S, Aga DS (2007) Analysis of tetracycline antibiotics in soil: advances in extraction, clean-up, and quantification. Trends Anal Chem 26:456–465. doi: 10.1016/j.trac.2007.02.007 CrossRefGoogle Scholar
  225. Ollivier J, Kleineidam K, Kotzerke A, Kindler R, Wilke B, Schloter M (2010) Effect of sulfadiazine-contaminated pig manure on the abundances of genes and transcripts involved in nitrogen transformation in the root-rhizosphere complexes of maize and clover. Appl Environ Microbiol 76:7903–7909. doi: 10.1128/AEM.01252-10 CrossRefGoogle Scholar
  226. Oppel J, Broll G, Loffker D, Meller M, Rombke J, Ternes T, Löffler D, Meller M, Römbke J, Ternes T (2004) Leaching behaviour of pharmaceuticals in soil-testing-systems: a part of an environmental risk assessment for groundwater protection. Sci Total Environ 328:265–273. doi: 10.1016/j.scitotenv.2004.02.004 CrossRefGoogle Scholar
  227. Opris O, Copaciu F, Loredana Soran M, Ristoiu D, Niinemets U, Copolovici L (2013) Influence of nine antibiotics on key secondary metabolites and physiological characteristics in Triticum aestivum: leaf volatiles as a promising new tool to assess toxicity. Ecotoxicol Environ Saf 87:70–79. doi: 10.1016/j.ecoenv.2012.09.019 CrossRefGoogle Scholar
  228. Ostermann A, Siemens J, Welp G, Xue Q, Lin X, Liu X, Amelung W (2013) Leaching of veterinary antibiotics in calcareous Chinese croplands. Chemosphere 91:928–934. doi: 10.1016/j.chemosphere.2013.01.110 CrossRefGoogle Scholar
  229. Pan M, Chu LM (2016a) Adsorption and degradation of five selected antibiotics in agricultural soil. Sci Total Environ 545–546:48–56. doi: 10.1016/j.scitotenv.2015.12.040 CrossRefGoogle Scholar
  230. Pan M, Chu LM (2016b) Phytotoxicity of veterinary antibiotics to seed germination and root elongation of crops. Ecotoxicol Environ Saf 126:228–237. doi: 10.1016/j.ecoenv.2015.12.027 CrossRefGoogle Scholar
  231. Pan X, Qiang Z, Ben W, Chen M (2011) Residual veterinary antibiotics in swine manure from concentrated animal feeding operations in Shandong Province, China. Chemosphere 84:695–700. doi: 10.1016/j.chemosphere.2011.03.022 CrossRefGoogle Scholar
  232. Pan M, Wong CKC, Chu LM (2014) Distribution of antibiotics in wastewater-irrigated soils and their accumulation in vegetable crops in the Pearl River Delta, southern China. J Agric Food Chem 62:11062–11069. doi: 10.1021/jf503850v CrossRefGoogle Scholar
  233. Peng S, Wang Y, Zhou B, Lin X (2015) Long-term application of fresh and composted manure increase tetracycline resistance in the arable soil of eastern China. Sci Total Environ 506–507:279–286. doi: 10.1016/j.scitotenv.2014.11.010 CrossRefGoogle Scholar
  234. Picó Y, Andreu V (2007) Fluoroquinolones in soil-risks and challenges. Anal Bioanal Chem 387:1287–1299. doi: 10.1007/s00216-006-0843-1 CrossRefGoogle Scholar
  235. Pino MR, Val J, Mainar AM, Zuriaga E, Espanol C, Langa E (2015) Acute toxicological effects on the earthworm Eisenia fetida of 18 common pharmaceuticals in artificial soil. Sci Total Environ 518–519:225–237. doi: 10.1016/j.scitotenv.2015.02.080 CrossRefGoogle Scholar
  236. Podlipná R, Skálová L, Seidlová H, Szotáková B, Kubíček V, Stuchlíková L, Jirásko R, Vaněk T, Vokřál I (2013) Biotransformation of benzimidazole anthelmintics in reed (Phragmites australis) as a potential tool for their detoxification in environment. Bioresour Technol 144:216–224. doi: 10.1016/j.biortech.2013.06.105 CrossRefGoogle Scholar
  237. Pomati F, Netting AG, Calamari D, Neilan BA (2004) Effects of erythromycin, tetracycline and ibuprofen on the growth of Synechocystis sp. and Lemna minor. Aquat Toxicol 67:387–396. doi: 10.1016/j.aquatox.2004.02.001 CrossRefGoogle Scholar
  238. Popova IE, Bair DA, Tate KW, Sanjai P (2014) Sorption, leaching, and surface runoff of beef cattle veterinary pharmaceuticals under simulated irrigated pasture conditions. J Environ Qual 42:1167–1175. doi: 10.2134/jeq2013.01.0012 CrossRefGoogle Scholar
  239. Poskrobko B, Poskrobko T, Skiba K (2007) Zagrożenia i Ochrona Gleb. PWN, WarszawaGoogle Scholar
  240. Prosser RS, Sibley PK (2015) Human health risk assessment of pharmaceuticals and personal care products in plant tissue due to biosolids and manure amendments, and wastewater irrigation. Environ Int 84:209–212. doi: 10.1016/j.envint.2015.07.007 CrossRefGoogle Scholar
  241. Pruden A, Arabi M, Storteboom HN (2012) Correlation between upstream human activities and riverine antibiotic resistance genes. Environ Sci Technol 46:11541–11549. doi: 10.1021/es302657r CrossRefGoogle Scholar
  242. Pruneda A (1950) The medical impact of antimicrobial use in food animals. Report of a WHO meeting. Medicina (B. Aires) 30:175–178. doi: 10.5860/CHOICE.41-4081Google Scholar
  243. Qiao M, Chen W, Su J, Zhang B, Zhang C (2012) Fate of tetracyclines in swine manure of three selected swine farms in China. J Environ Sci 24:1047–1052. doi: 10.1016/S1001-0742(11)60890-5 CrossRefGoogle Scholar
  244. Rabølle M, Spliid NH (2000) Sorption and mobility of metronidazole, olaquindox, oxytetracycline and tylosin in soil. Chemosphere 40:715–722. doi: 10.1016/S0045-6535(99)00442-7 CrossRefGoogle Scholar
  245. Raich-Montiu J, Beltrán JL, Prat MD, Granados M (2010) Studies on the extraction of sulfonamides from agricultural soils. Anal Bioanal Chem 397:807–814. doi: 10.1007/s00216-010-3580-4 CrossRefGoogle Scholar
  246. Raich-Montiu J, Prat MD, Granados M (2011) Extraction and analysis of avermectines in agricultural soils by microwave assisted extraction and ultra high performance liquid chromatography coupled to tandem mass spectrometry. Anal Chim Acta 697:32–37. doi: 10.1016/j.aca.2011.04.021 CrossRefGoogle Scholar
  247. Ramaswamy J, Prasher SO, Patel RM, Hussain SA, Barrington SF (2010a) The effect of composting on the degradation of a veterinary pharmaceutical. Bioresour Technol 101:2294–2299. doi: 10.1016/j.biortech.2009.10.089 CrossRefGoogle Scholar
  248. Ramaswamy J, Prasher SO, Patel RM, Hussain SA, Barrington SF (2010b) The effect of composting on the degradation of a veterinary pharmaceutical. Bioresour Technol 101:2294–2299. doi: 10.1016/j.biortech.2009.10.089 CrossRefGoogle Scholar
  249. Rehman MSU, Rashid N, Ashfaq M, Saif A, Ahmad N, Han J-I (2013) Global risk of pharmaceutical contamination from highly populated developing countries. Chemosphere 138:1045–1055. doi: 10.1016/j.chemosphere.2013.02.036 CrossRefGoogle Scholar
  250. Reichel R, Rosendahl I, Peeters ETHM, Focks A, Groeneweg J, Bierl R, Schlichting A, Amelung W, Thiele-Bruhn S (2013) Effects of slurry from sulfadiazine-(SDZ) and difloxacin-(DIF) medicated pigs on the structural diversity of microorganisms in bulk and rhizosphere soil. Soil Biol Biochem 62:82–91. doi: 10.1016/j.soilbio.2013.03.007 CrossRefGoogle Scholar
  251. Rentsch D, Schmidt S, Tegeder M (2007) Transporters for uptake and allocation of organic nitrogen compounds in plants. FEBS Lett 581:2281–2289. doi: 10.1016/j.febslet.2007.04.013 CrossRefGoogle Scholar
  252. Robinson AA, Belden JB, Lydy MJ (2005) Toxicity of fluoroquinolone antibiotics to aquatic organisms. Environ Toxicol Chem 24:423–430. doi: 10.1897/04-210R.1 CrossRefGoogle Scholar
  253. Roccaro P, Vagliasindi FGA (2014) Risk assessment of the use of biosolids containing emerging organic contaminants in agriculture. Chem Eng Trans 37:817–822. doi: 10.3303/CET1437137 CrossRefGoogle Scholar
  254. Rodriguez-Ruiz A, Etxebarria J, Boatti L, Marigomez I (2015) Scenario-targeted toxicity assessment through multiple endpoint bioassays in a soil posing unacceptable environmental risk according to regulatory screening values. Environ Sci Pollut Res 22:13344–13361. doi: 10.1007/s11356-015-4564-x CrossRefGoogle Scholar
  255. Sabourin L, Duenk P, Bonte-Gelok S, Payne M, Lapen DR, Topp E (2012) Uptake of pharmaceuticals, hormones and parabens into vegetables grown in soil fertilized with municipal biosolids. Sci Total Environ 431:233–236. doi: 10.1016/j.scitotenv.2012.05.017 CrossRefGoogle Scholar
  256. Sarmah AK, Meyer MT, Boxall ABA (2006) A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment. Chemosphere 65:725–759. doi: 10.1016/j.chemosphere.2006.03.026 CrossRefGoogle Scholar
  257. Sassman SA, Lee LS (2005) Sorption of three tetracyclines by several soils: assessing the role of pH and cation exchange. Environ Sci Technol 39:7452–7459. doi: 10.1021/es0480217 CrossRefGoogle Scholar
  258. Schauss K, Focks A, Leininger S, Kotzerke A, Heuer H, Thiele-Bruhn S, Sharma S, Wilke BM, Matthies M, Smalla K, Munch JC, Amelung W, Kaupenjohann M, Schloter M, Schleper C (2009) Dynamics and functional relevance of ammonia-oxidizing archaea in two agricultural soils. Environ Microbiol 11:446–456. doi: 10.1111/j.1462-2920.2008.01783.x CrossRefGoogle Scholar
  259. Schlabach M, Grung M, Heimstad ES, Moe M, Schlabach M, Svenson A, Thomas K, Woldegiorgis A (2007) Human and veterinary pharmaceuticals, narcotics, and personal care products in the environment. Current state of knowledge and monitoring requirements. OsloGoogle Scholar
  260. Schlusener MP, Bester K (2006) Persistence of antibiotics such as macrolides, tiamulin and salinomycin in soil. Environ Pollut 143:565–571. doi: 10.1016/j.envpol.2005.10.049 CrossRefGoogle Scholar
  261. Schmitt H, Haapakangas H, Van Beelen P (2005) Effects of antibiotics on soil microorganisms: time and nutrients influence pollution-induced community tolerance. Soil Biol Biochem 37:1882–1892. doi: 10.1016/j.soilbio.2005.02.022 CrossRefGoogle Scholar
  262. Sengeløv G, Agersø Y, Halling-Sørensen B, Baloda SB, Andersen JS, Jensen LB (2003) Bacterial antibiotic resistance levels in Danish farmland as a result of treatment with pig manure slurry. Environ Int 28:587–595. doi: 10.1016/S0160-4120(02)00084-3 CrossRefGoogle Scholar
  263. Shelver WL, Hakk H, Larsen GL, DeSutter TM, Casey FXM (2010) Development of an ultra-high-pressure liquid chromatography-tandem mass spectrometry multi-residue sulfonamide method and its application to water, manure slurry, and soils from swine rearing facilities. J Chromatogr A 1217:1273–1282. doi: 10.1016/j.chroma.2009.12.034 CrossRefGoogle Scholar
  264. Shenker M, Harush D, Ben-Ari J, Chefetz B (2011) Uptake of carbamazepine by cucumber plants—a case study related to irrigation with reclaimed wastewater. Chemosphere 82:905–910. doi: 10.1016/j.chemosphere.2010.10.052 CrossRefGoogle Scholar
  265. Sittig S, Kasteel R, Groeneweg J, Hofmann D, Thiele B, Koppchen S, Vereecken H (2014) Dynamics of transformation of the veterinary antibiotic sulfadiazine in two soils. Chemosphere 95:470–477. doi: 10.1016/j.chemosphere.2013.09.100 CrossRefGoogle Scholar
  266. Smalla K, Heuer H, Gotz A, Niemeyer D, Krogerrecklenfort E, Tietze E (2000) Exogenous isolation of antibiotic resistance plasmids from piggery manure slurries reveals a high prevalence and diversity of IncQ-like plasmids. Appl Environ Microbiol 66:4854–4862. doi: 10.1128/AEM.66.11.4854-4862.2000 CrossRefGoogle Scholar
  267. Solliec M, Roy-Lachapelle A, Gasser M-O, Coté C, Généreux M, Sauvé S (2016) Fractionation and analysis of veterinary antibiotics and their related degradation products in agricultural soils and drainage waters following swine manure amendment. Sci Total Environ 543:524–535. doi: 10.1016/j.scitotenv.2015.11.061 CrossRefGoogle Scholar
  268. Song W, Guo M (2014) Applied manure and nutrient chemistry for sustainable agriculture and environment. In: He Z, Zhang H (eds) Applied manure and nutrient chemistry for sustainable agriculture and environment. pp 1–379. doi:  10.1007/978-94-017-8807-6Google Scholar
  269. Speltini A, Sturini M, Maraschi F, Viti S, Sbarbada D, Profumo A (2015) Fluoroquinolone residues in compost by green enhanced microwave-assisted extraction followed by ultra performance liquid chromatography tandem mass spectrometry. J Chromatogr A 1410:44–50. doi: 10.1016/j.chroma.2015.07.093 CrossRefGoogle Scholar
  270. Spielmeyer A, Breier B, Groißmeier K, Hamscher G (2015) Elimination patterns of worldwide used sulfonamides and tetracyclines during anaerobic fermentation. Bioresour Technol 193:307–314. doi: 10.1016/j.biortech.2015.06.081 CrossRefGoogle Scholar
  271. Srinivasan P, Sarmah AK, Manley-Harris M (2014) Sorption of selected veterinary antibiotics onto dairy farming soils of contrasting nature. Sci Total Environ 472:695–703. doi: 10.1016/j.scitotenv.2013.11.104 CrossRefGoogle Scholar
  272. Steinfeld H (2004) The livestock revolution—a global veterinary mission. Vet Parasitol 125:19–41. doi: 10.1016/j.vetpar.2004.05.003 CrossRefGoogle Scholar
  273. Sterling TM (1994) Mechanisms of herbicide absorption across plant membranes and accumulation in plant cells in plant cells’ and accumulation across plant membranes of herbicide absorption mechanisms move across plant membranes. Weed Sci 42:263–276Google Scholar
  274. Storteboom HN, Kim SC, Doesken KC, Carlson KH, Davis JG, Pruden A (2007) Response of antibiotics and resistance genes to high-intensity and low-intensity manure management. J Environ Qual 36:1695. doi: 10.2134/jeq2007.0006 CrossRefGoogle Scholar
  275. Sui Q, Cao X, Lu S, Zhao W, Qiu Z, Yu G (2015) Occurrence, sources and fate of pharmaceuticals and personal care products in the groundwater: a review. Emerg Contam. doi: 10.1016/j.emcon.2015.07.001 CrossRefGoogle Scholar
  276. Sura S, Degenhardt D, Cessna AJ, Larney FJ, Olson AF, McAllister TA (2015) Transport of three veterinary antimicrobials from feedlot pens via simulated rainfall runoff. Sci Total Environ 521–522:191–199. doi: 10.1016/j.scitotenv.2015.03.080 CrossRefGoogle Scholar
  277. Susarla S, Medina VF, McCutcheon SC (2002) Phytoremediation: an ecological solution to organic chemical contamination. Ecol Eng 18:647–658. doi: 10.1016/S0925-8574(02)00026-5 CrossRefGoogle Scholar
  278. Tadeo JL, Sánchez-Brunete C, Albero B, García-Valcárcel AI, Pérez RA (2012) Analysis of emerging organic contaminants in environmental solid samples. Cent Eur J Chem 10:480–520. doi: 10.2478/s11532-011-0157-9 CrossRefGoogle Scholar
  279. Tamminen M, Karkman A, Lõhmus A, Muziasari WI, Takasu H, Wada S, Suzuki S, Virta M (2011) Tetracycline resistance genes persist at aquaculture farms in the absence of selection pressure. Environ Sci Technol 45:386–391. doi: 10.1021/es102725n CrossRefGoogle Scholar
  280. Tamtam F, Van Oort F, Le Bot B, Dinh T, Mompelat S, Chevreuil M, Lamy I, Thiry M (2011) Assessing the fate of antibiotic contaminants in metal contaminated soils four years after cessation of long-term waste water irrigation. Sci Total Environ 409:540–547. doi: 10.1016/j.scitotenv.2010.10.033 CrossRefGoogle Scholar
  281. Tang X, Lou C, Wang S, Lu Y, Liu M, Hashmi MZ, Liang X, Li Z, Liao Y, Qin W, Fan F, Xu J, Brookes PC (2015) Effects of long-term manure applications on the occurrence of antibiotics and antibiotic resistance genes (ARGs) in paddy soils: evidence from four field experiments in south of China. Soil Biol Biochem 90:179–187. doi: 10.1016/j.soilbio.2015.07.027 CrossRefGoogle Scholar
  282. Tanoue R, Sato Y, Motoyama M, Nakagawa S, Shinohara R, Nomiyama K (2012) Plant uptake of pharmaceutical chemicals detected in recycled organic manure and reclaimed wastewater. J Agric Food Chem 60:10203–10211. doi: 10.1021/jf303142t CrossRefGoogle Scholar
  283. Tarazona JV, Cesnaitis R, Herranz-Montes FJ, Versonnen B (2013) Identification of chemical hazards for terrestrial plants in the regulatory context: comparison of OECD and ISO guidelines. Chemosphere 93:2578–2584. doi: 10.1016/j.chemosphere.2013.09.078 CrossRefGoogle Scholar
  284. Teeter JS, Meyerhoff DR (2003) Aerobic degradation of tylosin in cattle, chicken, and swine excreta. Environ Res 93:45–51. doi: 10.1016/S0013-9351(02)00086-5 CrossRefGoogle Scholar
  285. Teijon G, Candela L, Tamoh K, Molina-Diaz A, Fernandez-Alba AR (2010) Occurrence of emerging contaminants, priority substances (2008/105/CE) and heavy metals in treated wastewater and groundwater at Depurbaix facility (Barcelona, Spain). Sci Total Environ 408:3584–3595. doi: 10.1016/j.scitotenv.2010.04.041 CrossRefGoogle Scholar
  286. The Commision of the European Communities (2005) Commission regulation (EC) No 378/2005 of 4 March 2005 on detailed rules for the implementation of Regulation (EC) No 1831/2003 of the European Parliament and of the Council as regards the duties and tasks of the Community Reference Laboratory concerning. BrusselsGoogle Scholar
  287. The European Agency for the Evaluation of Medical Products (2000) Environmental impact assessment (EIAs) for veteinary medicinal products (VMPs): phase I. LondonGoogle Scholar
  288. Thiele-Bruhn S (2003) Pharmaceutical antibiotic compounds in soils—a review. J Plant Nutr Soil Sci 166:145–167. doi: 10.1002/jpln.200390023 CrossRefGoogle Scholar
  289. Thiele-Bruhn S (2005) Microbial inhibittion by pharmaceutical antibiotics in different soils-dose-responcse relations determinaed with the iron(III) reduction test. Environ Toxicol Chem 24:869. doi: 10.1897/04-166R.1 CrossRefGoogle Scholar
  290. Thiele-Bruhn S, Beck IC (2005) Effects of sulfonamide and tetracycline antibiotics on soil microbial activity and microbial biomass. Chemosphere 59:457–465. doi: 10.1016/j.chemosphere.2005.01.023 CrossRefGoogle Scholar
  291. Thiele-Bruhn S, Peters D (2007) Photodegradation of pharmaceutical antibiotics on slurry and soil surfaces. Landbauforschung Volkenrode 57:13–23Google Scholar
  292. Trapp S (2000) Modelling uptake into roots and subsequent translocation of neutral and ionisable organic compounds. Pest Manag Sci 56:767–778. doi:10.1002/1526-4998(200009)56:9<767::AID-PS198>3.0.CO;2-QGoogle Scholar
  293. Trapp S, Mc Farlane JC (1995) Plant contamination: modeling and simulation of organic chemical processes. CRC Press, Boca Raton, FLGoogle Scholar
  294. Tuhkanen T, Vieno NM, Härkki H, Tuhkanen T, Kronberg L (2007) Occurence of pharmaceuticals in river water and their elimination in a pilot-scale drinking water treatment plant. Environ Sci Technol 41:5077–5084. doi: 10.1021/es062720x CrossRefGoogle Scholar
  295. Udikovic-Kolic N, Wichmann F, Broderick NA, Handelsman J (2014) Bloom of resident antibiotic-resistant bacteria in soil following manure fertilization. Proc Natl Acad Sci U S A 111:15202–15207. doi: 10.1073/pnas.1409836111 CrossRefGoogle Scholar
  296. US Food and Drug Administration (2013) Guidance for industry #213 new animal drugs and new animal drug combination products administered in or on medicated feed or drinking water of food-producing animals: recommendations for drug sponsors for voluntarily aligning product use conditions with, Federal Register. RockvilleGoogle Scholar
  297. Uslu MÖ, Yediler A, Balcıoğlu IA, Schulte-Hostede S (2007) Analysis and sorption behavior of fluoroquinolones in solid matrices. Water Air Soil Pollut 190:55–63. doi: 10.1007/s11270-007-9580-0 CrossRefGoogle Scholar
  298. Vaclavik E, Halling-Sørensen B, Ingerslev F (2004) Evaluation of manometric respiration tests to assess the effects of veterinary antibiotics in soil. Chemosphere 56:667–676. doi: 10.1016/j.chemosphere.2004.02.018 CrossRefGoogle Scholar
  299. Van Doorslaer X, Dewulf J, Van Langenhove H, Demeestere K (2014) Fluoroquinolone antibiotics: an emerging class of environmental micropollutants. Sci Total Environ 500–501C:250–269. doi: 10.1016/j.scitotenv.2014.08.075 CrossRefGoogle Scholar
  300. Verlicchi P, Zambello E (2014) How efficient are constructed wetlands in removing pharmaceuticals from untreated and treated urban wastewaters? A review. Sci Total Environ 470–471:1281–1306. doi: 10.1016/j.scitotenv.2013.10.085 CrossRefGoogle Scholar
  301. Verlicchi P, Zambello E (2015) Pharmaceuticals and personal care products in untreated and treated sewage sludge: occurrence and environmental risk in the case of application on soil—a critical review. Sci Total Environ 538:750–767. doi: 10.1016/j.scitotenv.2015.08.108 CrossRefGoogle Scholar
  302. Wade Miller G (2006) Integrated concepts in water reuse: managing global water needs. Desalination 187:65–75. doi: 10.1016/j.desal.2005.04.068 CrossRefGoogle Scholar
  303. Wagil M, Białk-Bielińska A, Puckowski A, Wychodnik K, Maszkowska J, Mulkiewicz E, Kumirska J, Stepnowski P, Stolte S (2015) Toxicity of anthelmintic drugs (fenbendazole and flubendazole) to aquatic organisms. Environ Sci Pollut Res 22:2566–2573. doi: 10.1007/s11356-014-3497-0 CrossRefGoogle Scholar
  304. Walsh C (2000) Molecular mechanisms that confer antibacterial drug resistance. Nature 406:775–781. doi: 10.1038/35021219 CrossRefGoogle Scholar
  305. Wang Q, Yates SR (2008) Laboratory study of oxytetracycline degradation kinetics in animal manure and soil. J Agric Food Chem 56:1683–1688. doi: 10.1021/jf072927p CrossRefGoogle Scholar
  306. Wang J, Lin H, Sun W, Xia Y, Ma J, Fu J, Zhang Z, Wu H, Qian M (2016) Variations in the fate and biological effects of sulfamethoxazole, norfloxacin and doxycycline in different vegetable-soil systems following manure application. J Hazard Mater 304:49–57. doi: 10.1016/j.jhazmat.2015.10.038 CrossRefGoogle Scholar
  307. Warren CR (2013) Quaternary ammonium compounds can be abundant in some soils and are taken up as intact molecules by plants. New Phytol 198:476–485. doi: 10.1111/nph.12171 CrossRefGoogle Scholar
  308. Wei R, Ge F, Zhang L, Hou X, Cao Y, Gong L, Chen M, Wang R, Bao E (2016) Occurrence of 13 veterinary drugs in animal manure-amended soils in Eastern China. Chemosphere 144:2377–2383. doi: 10.1016/j.chemosphere.2015.10.126 CrossRefGoogle Scholar
  309. WHO (2000) WHO global principles for the containment of antimicrobial resistance in animals intended for food. World Health, Geneva, SwitzerlandGoogle Scholar
  310. Winckler C, Grafe A (2001) Use of veterinary drugs in intensive animal production: evidence for persistence of tetracycline in pig slurry. J Soil Sediment 1:66–70. doi: 10.1007/BF02987711 CrossRefGoogle Scholar
  311. Winckler C, Engels H, Hund-Rinke K, Luckow T, Simon M, Steffens G (2003) Verhalten von Tetrazyklinen und anderen. Veterinär-antibiotika in Wirtschafts-dünger und Boden. Umweltbundesamt, 44/04Google Scholar
  312. Woodward KN (2008) Assessment of user safety, exposure and risk to veterinary medicinal products in the European Union. Regul Toxicol Pharmacol 50:114–128. doi: 10.1016/j.yrtph.2007.10.007 CrossRefGoogle Scholar
  313. World Health Organization (2001) Monitoring antimicrobial usage in food animals for the protection of human health. WHO, Geneva. doi: WHO/CDS/CSR/EPH/2002.11Google Scholar
  314. Wu N, Qiao M, Zhang B, Cheng WD, Zhu YG (2010a) Abundance and diversity of tetracycline resistance genes in soils adjacent to representative swine feedlots in China. Environ Sci Technol 44:6933–6939. doi: 10.1021/es1007802 CrossRefGoogle Scholar
  315. Wu C, Spongberg AL, Witter JD, Fang M, Ames A, Czajkowski KP (2010b) Detection of pharmaceuticals and personal care products in agricultural soils receiving biosolids application. Clean Soil Air Water 38:230–237. doi: 10.1002/clen.200900263 CrossRefGoogle Scholar
  316. Wu X, Wei Y, Zheng J, Zhao X, Zhong W (2011) The behavior of tetracyclines and their degradation products during swine manure composting. Bioresour Technol 102:5924–5931. doi: 10.1016/j.biortech.2011.03.007 CrossRefGoogle Scholar
  317. Wu X, Ernst F, Conkle JL, Gan J (2013) Comparative uptake and translocation of pharmaceutical and personal care products (PPCPs) by common vegetables. Environ Int 60:15–22. doi: 10.1016/j.envint.2013.07.015 CrossRefGoogle Scholar
  318. Wu X, Dodgen LK, Conkle JL, Gan J (2015) Plant uptake of pharmaceutical and personal care products from recycled water and biosolids: a review. Sci Total Environ 536:655–666. doi: 10.1016/j.scitotenv.2015.07.129 CrossRefGoogle Scholar
  319. Yang Q, Zhang J, Zhu K, Zhang H (2009) Influence of oxytetracycline on the structure and activity of microbial community in wheat rhizosphere soil. J Environ Sci 21:954–959. doi: 10.1016/S1001-0742(08)62367-0 CrossRefGoogle Scholar
  320. Zhang T, Zhang XX, Ye L (2011) Plasmid metagenome reveals high levels of antibiotic resistance genes and mobile genetic elements in activated sludge. PLoS One 6:e26041. doi: 10.1371/journal.pone.0026041 CrossRefGoogle Scholar
  321. Zhang CL, Guo XL, Li BY, Wang Y (2012) Biodegradation of ciprofloxacin in soil. J Mol Liq 173:184–186. doi: 10.1016/j.molliq.2012.06.016 CrossRefGoogle Scholar
  322. Zhang W, Huang MH, Qi FF, Sun PZ, Van Ginkel SW (2013a) Effect of trace tetracycline concentrations on the structure of a microbial community and the development of tetracycline resistance genes in sequencing batch reactors. Bioresour Technol 150:9–14. doi: 10.1016/j.biortech.2013.09.081 CrossRefGoogle Scholar
  323. Zhang DQ, Gersberg RM, Hua T, Zhu J, Goyal MK, Ng WJ, Tan SK (2013b) Fate of pharmaceutical compounds in hydroponic mesocosms planted with Scirpus validus. Environ Pollut 181:98–106. doi: 10.1016/j.envpol.2013.06.016 CrossRefGoogle Scholar
  324. Zhang D, Gersberg RM, Ng WJ, Tan SK (2014a) Removal of pharmaceuticals and personal care products in aquatic plant-based systems: a review. Environ Pollut 184:620–639. doi: 10.1016/j.envpol.2013.09.009 CrossRefGoogle Scholar
  325. Zhang Y, Tang H, Zhou Q, Zhu L (2014b) Effect of temperature and metal ions on degradation of oxytetracycline in different matrices. J Environ Prot 5:672–680. doi: 10.4236/jep.2014.58068 CrossRefGoogle Scholar
  326. Zhao L, Dong YH, Wang H (2010) Residues of veterinary antibiotics in manures from feedlot livestock in eight provinces of China. Sci Total Environ 408:1069–1075. doi: 10.1016/j.scitotenv.2009.11.014 CrossRefGoogle Scholar
  327. Zheng W, Zhang L, Zhang K, Wang X, Xue F (2012) Determination of tetracyclines and their epimers in agricultural soil fertilized with swine manure by ultra-high-performance liquid chromatography tandem mass spectrometry. J Integr Agric 11:1189–1198. doi: 10.1016/S2095-3119(12)60114-2 CrossRefGoogle Scholar
  328. Zhou LJ, Ying GG, Liu S, Zhao JL, Chen F, Zhang RQ, Peng FQ, Zhang QQ (2012) Simultaneous determination of human and veterinary antibiotics in various environmental matrices by rapid resolution liquid chromatography-electrospray ionization tandem mass spectrometry. J Chromatogr A 1244:123–138. doi: 10.1016/j.chroma.2012.04.076 CrossRefGoogle Scholar
  329. Zhu YG, Johnson TA, Su JQ, Qiao M, Guo GX, Stedtfeld RD, Hashsham SA, Tiedje JM (2013) Diverse and abundant antibiotic resistance genes in Chinese swine farms. Proc Natl Acad Sci U S A 110:3435–3440. doi: 10.1073/pnas.1222743110 CrossRefGoogle Scholar
  330. Zielezny Y, Groeneweg J, Vereecken H, Tappe W (2006) Impact of sulfadiazine and chlorotetracycline on soil bacterial community structure and respiratory activity. Soil Biol Biochem 38:2372–2380. doi: 10.1016/j.soilbio.2006.01.031 CrossRefGoogle Scholar
  331. Zuo Y, Lin Y (2007) Solvent effects on the silylation-gas chromatography-mass spectrometric determination of natural and synthetic estrogenic steroid hormones. Comment on “Formation of chlorinated estrones via hypochlorous disinfection of wastewater effluent containing estrone” by Hideyuki Nakamura, Ryoko Kuruto-Niwa, Mitsuo Uchida and Yoshiyasu Terao. Chemosphere 69:1175–1176. doi: 10.1016/j.chemosphere.2007.03.065 CrossRefGoogle Scholar
  332. Zuo Y, Zhang K, Deng Y (2006) Occurrence and photochemical degradation of 17α-ethinylestradiol in Acushnet river estuary. Chemosphere 63:1583–1590. doi: 10.1016/j.chemosphere.2005.08.063 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Paulina Łukaszewicz
    • 1
  • Joanna Maszkowska
    • 1
  • Ewa Mulkiewicz
    • 1
  • Jolanta Kumirska
    • 1
  • Piotr Stepnowski
    • 1
  • Magda Caban
    • 1
    Email author
  1. 1.Faculty of Chemistry, Institute for Environmental and Human Health ProtectionUniversity of GdanskGdańskPoland

Personalised recommendations