Aluminium Toxicity to Plants as Influenced by the Properties of the Root Growth Environment Affected by Other Co-Stressors: A Review

  • Joanna Siecińska
  • Artur NosalewiczEmail author
Part of the Reviews of Environmental Contamination and Toxicology book series (RECT, volume 243)


Aluminium toxicity to crops depends on the acidity of the soil and specific plant resistance. However, it is also strongly affected by other environmental factors that have to be considered to properly evaluate the resultant effects on plants. Observed weather perturbations and predicted climate changes will increase the probability of co-occurrence of aluminium toxicity and other abiotic stresses.

In this review the mechanisms of plant—aluminium interactions are shown to be influenced by soil mineral nutrients, heavy metals, organic matter, oxidative stress and drought. Described effects of aluminium toxicity include: root growth inhibition, reduction in the uptake of mineral nutrients resulting from the inhibition of transport processes through ion channels; epigenetic changes to DNA resulting in gene silencing. Complex processes occurring in the rhizosphere are highlighted, including the role of soil organic matter and aluminium detoxification by mucilage.

There is a considerable research gap in the understanding of root growth in the soil environment in the presence of toxic aluminium concentrations as affected by interactions with abiotic stressors. This knowledge is important for the selection of feasible methods aimed at the reduction of negative consequences of crop production in acidic soils affected by adverse growth environment.


Aluminium toxicity Soil acidity Abiotic stresses Drought Nutrient deficiency Plant stresses 


  1. Abd El-Azeem SAM, Ahmad M, Usman ARA, Kim KR, Oh SE, Lee SO, Ok YS (2013) Changes of biochemical properties and heavy metal bioavailability in soil treated with natural liming materials. Environ Earth Sci 70:3411–3420. doi: 10.1007/s12665-013-2410-3 CrossRefGoogle Scholar
  2. Achary VMM, Panda BB (2010) Aluminium-induced DNA damage and adaptive response to genotoxic stress in plant cells are mediated through reactive oxygen intermediates. Mutagenesis 25:201–209. doi: 10.1093/mutage/gep063 CrossRefGoogle Scholar
  3. Achary VMM, Jena S, Panda KK, Panda BB (2008) Aluminium induced oxidative stress and DNA damage in root cells of Allium cepa L. Ecotoxicol Environ Saf 70:300–310CrossRefGoogle Scholar
  4. Achary VMM, Parinandi NL, Panda BB (2013) Calcium channel blockers protect against aluminium-induced DNA damage and block adaptive response to genotoxic stress in plant cells. Mutat Res Genet Toxicol Environ Mutagen 751:130–138. doi: 10.1016/j.mrgentox.2012.12.008 CrossRefGoogle Scholar
  5. Ahn SJ, Sivaguru M, Osawa H, Chung GC, Matsumoto H (2001) Aluminium inhibits the H(+)-ATPase activity by permanently altering the plasma membrane surface potentials in squash roots. Plant Physiol 126:1381–1390CrossRefGoogle Scholar
  6. Alvarez I, Sam O, Reynaldo I, Testillano P, del Carmen RM, Arias M (2012) Morphological and cellular changes in rice roots (Oryza sativa L.) caused by Al stress. Bot Stud 53:67–73Google Scholar
  7. Alvim MN, Ramos FT, Oliveira DC, Isaias R, França MGC (2012) Aluminium localization and toxicity symptoms related to root growth inhibition in rice (Oryza sativa L.) seedlings. J Biosci 37:1079–1088. doi: 10.1007/s12038-012-9275-6 CrossRefGoogle Scholar
  8. Barceló J, Guevara P, Poschenrieder C (1993) Silicon amelioration of aluminium toxicity in teosinte (Zea mays L. ssp. mexicana). Plant and Soil 154:249–255CrossRefGoogle Scholar
  9. Baylis AD, Gragopoulou C, Davidson KJ, Birchall JD (1994) Effects of silicon on the toxicity of aluminium to soybean. Commun Soil Sci Plant Anal 25:537–546CrossRefGoogle Scholar
  10. Bengough AG, McKenzie BM, Hallett PD, Valentine TA (2011) Root elongation, water stress, and mechanical impedance: a review of limiting stresses and beneficial root tip traits. J Exp Bot 62:59–68. doi: 10.1093/jxb/erq350 CrossRefGoogle Scholar
  11. Bhalerao SA, Prabhu DV (2013) Aluminium toxicity in plants—a review. J Appl Chem 2:447–474Google Scholar
  12. Bhuja P, McLachlan K, Stephens J, Taylor G (2004) Accumulation of 1,3-beta-D-glucans, in response to aluminium and cytosolic calcium in Triticum aestivum L. Plant Cell Physiol 45:543–549. doi: 10.1093/pcp/pch068 CrossRefGoogle Scholar
  13. Bian M, Zhou M, Sun D, Li C (2013) Molecular approaches unravel the mechanism of acid soil tolerance in plants. Crop J 1(2):91–104. doi: 10.1016/j.cj.2013.08.002 CrossRefGoogle Scholar
  14. Blair LM, Taylor GJ (1997) The nature of interaction between aluminium and manganese on growth and metal accumulation in Triticum aestivum L. Environ Exp Bot 37:25–37. doi: 10.1016/S0098-8472(96)01036-2 CrossRefGoogle Scholar
  15. Blamey FPC (2001) The role of the root cell wall in aluminium toxicity. In: Ae N, Arihara J, Okada K, Srinivasan A (eds) Plant nutrient acquisition: new perspectives. Springer, Tokyo, pp 201–226CrossRefGoogle Scholar
  16. Blevins DG, Lukaszewski KM (1998) B in plant structure and function. Annu Rev Plant Physiol Plant Mol Biol 49:481–500CrossRefGoogle Scholar
  17. Bolan NS, Adriano DC, Curtin D (2003) Soil acidification and liming interactions with nutrient and heavy metal transformation. Adv Agron 78:215–269CrossRefGoogle Scholar
  18. Boscolo PRS, Menossi M, Jorge RA (2003) Aluminium-induced oxidative stress in maize. Phytochemistry 62:181–189. doi: 10.1016/S0031-9422(02)00491-0 CrossRefGoogle Scholar
  19. Bose J, Babourina O, Rengel Z (2011) Role of magnesium in alleviation of aluminium toxicity in plants. J Exp Bot 62:2251–2264. doi: 10.1093/jxb/erq456 CrossRefGoogle Scholar
  20. Brunner I, Sperisen C (2013) Aluminium exclusion and aluminium tolerance in woody plants. Front Plant Sci 4:1–12. doi: 10.3389/fpls.2013.00172 CrossRefGoogle Scholar
  21. Cai M, Wang N, Xing C, Wang F, Wu K, Du X (2013) Immobilization of aluminium with mucilage secreted by root cap and root border cells is related to aluminium resistance in Glycine max L. Environ Sci Pollut Res 20:8924–8933. doi: 10.1007/s11356-013-1815-6 CrossRefGoogle Scholar
  22. Cakmak I, Horst WJ (1991) Effect of aluminium on lipid peroxidation, superoxide dismutase, catalase and peroxidase activities in root tips of soybean (Glycine max L.). Physiol Plant 83:463–468CrossRefGoogle Scholar
  23. Cakmak I, Kirkby EA (2008) Role of magnesium in carbon partitioning and alleviating photooxidative damage. Physiol Plant 133:692–704. doi: 10.1111/j.1399-3054.2007.01042.x CrossRefGoogle Scholar
  24. Cao Y, Lou Y, Han Y, Shi J, Wang Y, Ming F (2011) Al toxicity leads to enhanced cell division and changed photosynthesis in Oryza rufipogon L. Mol Biol Rep 38(8):4839–4846. doi: 10.1007/s11033-010-0618-9 CrossRefGoogle Scholar
  25. Chang YC, Ma JF, Matsumoto H (1998) Mechanisms of Al-induced iron chlorosis in wheat (Triticum aestivum L.). Al-inhibited biosynthesis and secretion of phytosiderophore. Plant Physiol 102(1):9–15. doi: 10.1034/j.1399-3054.1998.1020102.x CrossRefGoogle Scholar
  26. Chen RF, Zhang FL, Zhang QM, Sun QB, Dong XY, Shen RF (2012) Aluminium-phosphorus interactions in plants growing on acid soils: does phosphorus always alleviate aluminium toxicity? J Sci Food Agric 92:995–1000. doi: 10.1002/jsfa.4566 CrossRefGoogle Scholar
  27. Choi CS, Sano H (2007) Abiotic-stress induces demethylation and transcriptional activation of a gene encoding a glycerophospho diesterase-like protein in tobacco plants. Mol Genet Genomics 277(5):589–600CrossRefGoogle Scholar
  28. Clarkson DT (1965) The effect of aluminium and some other trivalent metal cations on cell division in the root apices of Allium cepa. Ann Bot 29(2):310–315CrossRefGoogle Scholar
  29. Clarkson DT (1969) Metabolic aspects of aluminium toxicity and some possible mechanisms for resistance. In: Rorison IH (ed) Ecological aspects of the mineral nutrition of plants, British Ecological Symposium No. 9. Blackwell Scientific Publications, p 381–397Google Scholar
  30. Clune TS, Copeland L (1999) Effects of aluminium on canola roots. Plant and Soil 216:27–33CrossRefGoogle Scholar
  31. Cumming JR, Ning J (2003) Arbuscular mycorrhizal fungi alter phosphorus relations of broomsedge (Andropogon virginicus L.) plants. J Exp Bot 54:1447–1459CrossRefGoogle Scholar
  32. da Silva IR, Ferrufino A, Sanzonowicz C, Smyth TJ, Israel DW, Carter TE Jr (2005) Interactions between magnesium, calcium, and aluminium on soybean root elongation. Rev Bras Ciênc Solo 29:747–754CrossRefGoogle Scholar
  33. de Camargo CDO, Filho AWPF (2001) Breeding bread wheat for tolerance to aluminium toxicity. In: Bedõ Z, Láng L (eds) Wheat in a global environment. Kluwer Academic, The Netherlands, pp 655–664CrossRefGoogle Scholar
  34. Delhaize E, Ryan PR (1995) Aluminium toxicity and tolerance in plants. Plant Physiol 107(31):5–321Google Scholar
  35. Delhaize E, Ryan PR, Hebb DM, Yamamoto Y, Sasaki T, Matsumoto H (2004) Engineering high-level aluminium tolerance in barley with the ALMT1 gene. Proc Natl Acad Sci U S A 101:15249–15254. doi: 10.1073/pnas.0406258101 CrossRefGoogle Scholar
  36. Domingues AM, Silva E, Freitas G, Ganança JF, Slaski JJ, Ângelo M, PDE C (2013) Aluminium tolerance in bean traditional cultivars from Madeira. Rev Ciênc Agron 36:148–156Google Scholar
  37. Dong ZY, Wang YM, Zhang ZJ, Shen Y, Lin XY, Ou XF, Han FP, Liu B (2006) Extent and pattern of DNA methylation alteration in rice lines derived from introgressive hybridization of rice and Zizania latifolia Griseb. Theor Appl Genet 113:196–205CrossRefGoogle Scholar
  38. Dorneles AOS, Pereira AS, Rossato LV, Possebom G, Sasso VM, Bernardy K, Sandri RQ, Nicoloso FT, Ferreira PAA, Tabaldi LA (2016) Silicon reduces aluminium content in tissues and ameliorates its toxic effects on potato plant growth. Cienc Rural 46:506–512CrossRefGoogle Scholar
  39. Ezaki B, Katsuhara M, Kawamura M, Matsumoto H (2001) Different mechanisms of four aluminium (Al)-resistant transgenes for Al toxicity in Arabidopsis. Plant Physiol 127:918–927CrossRefGoogle Scholar
  40. Foy CD (1978) Plant adaptation to acid, aluminium-toxic soils. Commun Soil Sci Plant Anal 19:959–987CrossRefGoogle Scholar
  41. Gassmann W, Schroeder JI (1994) Inward-rectifying K1 channels in root hairs of wheat: a mechanism for aluminium-sensitive low-affinity K1 uptake and membrane potential control. Plant Physiol 105:1399–1408CrossRefGoogle Scholar
  42. Godbold DL, Kettner C (1991) Use of root elongation studies to determine aluminium and lead toxicity in Picea abies seedlings. J Plant Physiol 138(2):231–235CrossRefGoogle Scholar
  43. Goldman IL, Catrer TE Jr, Patterson RP (1989) A determinal interaction of subsoil aluminium and drought stress on the leaf water status of soybean. Agron J 81:461–463CrossRefGoogle Scholar
  44. Grauer UE, Horst WJ (1992) Modeling cation amelioration of aluminium phytotoxicity. Soil Sci Soc Am J 56:166–172. doi: 10.2136/sssaj1992.03615995005600010026x CrossRefGoogle Scholar
  45. Gundersen P, Rasmussen L (1990) Nitrification in forest soils: effects from nitrogen deposition on soil acidification and aluminium release. Rev Environ Contam Toxicol 113:1–45Google Scholar
  46. Guo TR, Zhang GP, Zhou MX, Wu FB, Chen JX (2004) Effects of aluminium and cadmium toxicity on growth and antioxidant enzyme activities of two barley genotypes with different Al resistance. Plant and Soil 258:241–248. doi: 10.1023/B:PLSO.0000016554.87519.d6 CrossRefGoogle Scholar
  47. Guo Z, Liao B, Huang C (2005) Mobility and speciation of Cd, Cu and Zn in two acidic soils affected by stimulated acid rain. J Environ Sci 17(2):332–334Google Scholar
  48. Guo TR, Zhang GP, Zhou MX, Wu FB, Chen JX (2007) Influence of aluminium and cadmium stresses on mineral nutrition and root exudates in two barley cultivars. Pedosphere 17:505–512. doi: 10.1016/S1002-0160(07)60060-5 CrossRefGoogle Scholar
  49. Guo TR, Yao PC, Zhang ZD, Wang JJ, Wang M (2012) Involvement of antioxidative defense system in rice seedlings exposed to aluminium toxicity and phosphorus deficiency. Ric Sci 19:207–212. doi: 10.1016/S1672-6308(12)60042-0 CrossRefGoogle Scholar
  50. Gupta N, Gaurav SS, Kumar A (2013) Molecular basis of aluminium toxicity in plants: a review. Am J Plant Sci 4:21–37CrossRefGoogle Scholar
  51. Hajiboland R (2011) Effect of micronutrients deficiencies on plant stress responses. In: Ahmad P, Prasad MNV (eds) Abiotic stress responses in plants: metabolism, productivity and sustainability. Springer, New YorkGoogle Scholar
  52. Haling RE, Simpson RJ, Culvenor RA, Lambers H, Richardson AE (2011) Effect of soil acidity, soil strength and macropores on root growth and morphology of perennial grass species differing in acid-soil resistance. Plant Cell Environ 34:444–456. doi: 10.1111/j.1365-3040.2010.02254.x CrossRefGoogle Scholar
  53. Heidarabadi MD, Ghanati F, Fujiwara T (2011) Interaction between boron and aluminium and their effects on phenolic metabolism of Linum usitatissimum L. roots. Plant Physiol Biochem 49(12):1377–1383. doi: 10.1016/j.plaphy.2011.09.008 Epub 21 Sept 2011CrossRefGoogle Scholar
  54. Hinsinger P (2001) Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: a review. Plant and Soil 237:173–195CrossRefGoogle Scholar
  55. Hodson MJ, Evans DE (1995) Aluminium/silicon interactions in higher plants. J Exp Bot 46:161–171CrossRefGoogle Scholar
  56. Horst WJ (1995) The role of the apoplast in aluminium toxicity and resistance of higher plants: a review. Z Pflanzenernähr Bodenkd 158:419–428CrossRefGoogle Scholar
  57. Horst WJ, Wagner A, Marschner H (1982) Mucilage protects root meristems from aluminium injury. Z Pflanzenphysiol 109:95–103CrossRefGoogle Scholar
  58. Hossain AKMZ, Hossain MA, Koyama H, Hara T (2004) Effects of aluminium and boron supply on growth of seedlings among 15 cultivars of wheat (Triticum aestivum L.) grown in Bangladesh. Soil Sci Plant Nutr 50:189–195CrossRefGoogle Scholar
  59. Huang JW, Shaff JE, Grunes DL, Kochian LV (1992) Aluminium effects on calcium fluxes at the root apex of aluminium-tolerant and aluminium sensitive wheat cultivars. Plant Physiol 98:230–237CrossRefGoogle Scholar
  60. Huang J, Zhang Y, Peng JS, Zhong C, Yi HY, Ow DW, Gong JM (2012) Fission yeast HMT1 lowers seed cadmium through phytochelatin-dependent vacuolar sequestration in Arabidopsis. Plant Physiol 158:1779–1788. doi: 10.1104/pp.111.192872 CrossRefGoogle Scholar
  61. Huang W, Yang X, Yao S, Lwin OT, He H, Wang A, Li C, He L (2014) Reactive oxygen species burst induced by aluminium stress triggers mitochondria-dependent programmed cell death in peanut root tip cells. Plant Physiol Biochem 82:76–84. doi: 10.1016/j.plaphy.2014.03.037 CrossRefGoogle Scholar
  62. Ikeda H, Tadano T (1993) Ultrastructural changes of the root tip cells in barley induced by a comparatively low concentration of aluminium. Soil Sci Plant Nutr 39:109–117. doi: 10.1080/00380768.1993.10416980 CrossRefGoogle Scholar
  63. Jarvis SC, Hatch DJ (1986) The effects of low concentrations of aluminium on the growth and uptake of nitrate-N by white clover. Plant and Soil 95:43–55CrossRefGoogle Scholar
  64. Jerzykiewicz J (2001) Aluminium effect on nitrate assimilation in cucumber (Cucumis sativus L.) roots. Acta Physiol Plant 23:213–219. doi: 10.1007/s11738-001-0011-3 CrossRefGoogle Scholar
  65. Kidd PS, Llugany M, Poschenrieder C, Gunsé B, Barceló J (2001) The role of root exudates in aluminium resistance and silicon-induced ameliotarion of aluminium toxicity in three varieties of maize (Zea mays L.). J Exp Bot 52:1339–1352Google Scholar
  66. Kimatu JN (2015) Correlating aluminium toxicity, heterosis and epigenetic mechanisms in maize yield improvement in acid soils. Biotechnol Mol Biol Rev 10:12–18. doi: 10.5897/BMBR2014-0234 CrossRefGoogle Scholar
  67. Kimatu JN, Diarso M, Song C, Agboola RS, Pang J (2011) DNA cytosine methylation alterations associated with aluminium toxicity and low pH in Sorghum bicolor. Afr J Agric Res 6:4579–4593. doi: 10.5897/AJAR11.954 CrossRefGoogle Scholar
  68. Kochian L (1995) Cellular mechanisms toxicity in plants. Annu Rev Plant Physiol Plant Mol Biol 46:237–260CrossRefGoogle Scholar
  69. Kopittke PM, Menzies NW, Blamey FPC (2005) Rhizotoxicity of aluminate and polycationic aluminium at high pH. Plant and Soil 266:177–186. doi: 10.1007/s11104-005-2229-0 CrossRefGoogle Scholar
  70. Kopittke PM, Blamey FPC, Menzies NW (2008) Toxicities of soluble Al, Cu, and La include ruptures to rhizodermal and root cortical cells of cowpea. Plant and Soil 303:217–227. doi: 10.1007/s11104-007-9500-5 CrossRefGoogle Scholar
  71. Lazarević B, Horvat T, Poljak M (2014) Effect of acid aluminous soil on photosynthetic parameters of potato (Solanum tuberosum L.). Potato Res 57:33–46. doi: 10.1007/s11540-014-9251-7 CrossRefGoogle Scholar
  72. Lee SE, Yim HK, Lim MN, Yoon IS, Kim JH, Hwang YS (2015) Abscisic acid prevents the coalescence of protein storage vacuoles by upregulating expression of a tonoplast intrinsic protein gene in barley aleurone. J Exp Bot 66(5):1191–1203. doi: 10.1093/jxb/eru467 CrossRefGoogle Scholar
  73. Liao H, Wan H, Shaff J, Wang X, Yan X, Kochian LV (2006) Phosphorus and aluminium interactions in soybean in relation to aluminium tolerance. Exudation of specific organic acids from different regions of the intact. Plant Physiol 141:674–684. doi: 10.1104/pp.105.076497.674 CrossRefGoogle Scholar
  74. Ligaba A, Maron L, Shaff J, Kochian L, Piñeros M (2012) Maize ZmALMT2 is a root anion transporter that mediates constitutive root malate efflux. Plant Cell Environ 35:1185–1200. doi: 10.1111/j.1365-3040.2011.02479.x CrossRefGoogle Scholar
  75. Liu K, Luan S (2001) Internal aluminium block of plant inward K(+) channels. Plant Cell 13:1453–1465CrossRefGoogle Scholar
  76. Liu Q, Yang JL, He LS, Li YY, Zheng SJ (2008) Effect of aluminium on cell wall, plasma membrane, antioxidants and root elongation in triticale. Biol Plant 52:87–92. doi: 10.1007/s10535-008-0014-7 CrossRefGoogle Scholar
  77. Ma JF, Ryan PR (2010) Understanding how plants cope with acid soils. Funct Plant Biol 37:1–4CrossRefGoogle Scholar
  78. Manavalan LP, Guttikonda SK, Tran LSP, Nguyan HT (2009) Physiological and molecular approaches to improve drought resistance in soybean. Plant Cell Physiol 50:1260–1276. doi: 10.1093/pcp/pcp082 CrossRefGoogle Scholar
  79. Matsumoto H (2000) Cell biology of aluminium toxicity and tolerance in higher plants. Int Rev Cytol 200:1–47. doi: 10.1016/S0074-7696(00)00001-2 CrossRefGoogle Scholar
  80. Matsumoto H, Motoda H (2012) Aluminium toxicity recovery processes in root apices. Possible association with oxidative stress. Plant Sci 185–186:1–8. doi: 10.1016/j.plantsci.2011.07.019 CrossRefGoogle Scholar
  81. Matsumoto H, Yamaya T (1986) Inhibition of potassium and regulation of membrane-associated Mg2+-ATPase activity of pea roots by aluminium. Soil Sci Plant Nutr 32:179–188. doi: 10.1080/00380768.1986.10557495 CrossRefGoogle Scholar
  82. Matsumoto H, Morimura S, Takahashi E (1977) Binding of aluminium to DNA of DNP in pea root nuclei. Plant Cell Physiol 18:987–993Google Scholar
  83. Meriño-Gergichevich C, Alberdi M, Ivanov AG, Reyes-Diaz M (2010) Al3+–Ca2+ interaction in plants growing in acid soils: Al-phytotoxicity response to calcareous amendments. J Soil Sci Plant Nutr 10:217–243Google Scholar
  84. Milla MAR, Butler E, Huete AR, Wilson CF, Anderson O, Gustafson JP (2002) Expressed sequence tag-based gene expression analysis under aluminium stress in rye. Plant Physiol 130:1706–1716CrossRefGoogle Scholar
  85. Nezames CD, Sjogren CA, Barajas JF, Larsen PB (2012) The Arabidopsis cell cycle checkpoint regulators TANMEI/ALT2 and ATR mediate the active process of aluminium-dependent root growth inhibition. Plant Cell 24:608–621. doi: 10.1105/tpc.112.095596 Epub 17 Feb 2012CrossRefGoogle Scholar
  86. Osawa H, Endo I, Hara Y, Matsushima Y, Tange T (2011) Transient proliferation of proanthocyanidin-accumulating cells on the epidermal apex contributes to highly aluminium-resistant root elongation in camphor tree. Plant Physiol 155(1):433–446. doi: 10.1104/pp.110.166967 CrossRefGoogle Scholar
  87. Ownby JD (1993) Mechanisms of reaction of hematoxylin with aluminium-treated wheat roots. Physiol Plant 87:371–380CrossRefGoogle Scholar
  88. Palmgren MG, Harper JF (1999) Pumping with plant P-type ATPases. J Exp Bot 50:883–893CrossRefGoogle Scholar
  89. Pal’ove-Balang P, Mistrik I (2007) Impact of low pH and aluminium on nitrogen uptake and metabolism in roots of Lotus japonicus. Biologia 62:715–719. doi: 10.2478/s11756-007-0133-1 CrossRefGoogle Scholar
  90. Pal’ove-Balang P, Čiamporová M, Zelinová V, Pavlovkin J, Gurinová E, Mistrík I (2012) Cellular responses of two Latin-American cultivars of Lotus corniculatus to low pH and Al stress. Cent Eur J Biol 7:1046–1054. doi: 10.2478/s11535-012-0098-0 CrossRefGoogle Scholar
  91. Panda SK, Matsumoto H (2007) Molecular physiology of aluminium toxicity and tolerance in plants. Bot Rev 73:326–347. doi: 10.1663/0006-8101(2007)73[326:MPOATA]2.0.CO;2 CrossRefGoogle Scholar
  92. Panda SK, Yamamoto Y, Kondo H, Matsumoto H (2008) Mitochondrial alterations related to programmed cell death in tobacco cells under aluminium stress. C R Biol 331:597–610. doi: 10.1016/j.crvi.2008.04.008 CrossRefGoogle Scholar
  93. Pécsváradi AZ, Nagy Z, Varga A, Vashegyi A, Labádi I, Galbács G, Zsoldos F (2009) Chloroplastic glutamine synthetase is activated by direct binding of aluminium. Physiol Plant 135:43–50CrossRefGoogle Scholar
  94. Pina RG, Cervantes C (1996) Microbial interactions with aluminium. Biometals 9:311–316CrossRefGoogle Scholar
  95. Pontigo S, Ribera A, Gianfreda L, de la Luz MM, Nikolic M, Cartes P (2015) Silicon in vascular plants: uptake, transport and its influence on mineral stress under acidic conditions. Planta 242:23–37. doi: 10.1007/s00425-015-2333-1 CrossRefGoogle Scholar
  96. Poschenrieder C, Gunsé B, Corrales I, Barceló J (2008) A glance into aluminium toxicity and resistance in plants. Sci Total Environ 400:356–368. doi: 10.1016/j.scitotenv.2008.06.003 CrossRefGoogle Scholar
  97. Prabagar S, Hodson MJ, Evans DE (2011) Silicon amelioration of aluminium toxicity and cell death in suspension cultures of Norway spruce (Picea abies (L.) Karst). Environ Exp Bot 70:266–276. doi: 10.1016/j.envexpbot.2010.10.001 CrossRefGoogle Scholar
  98. Purcino AAC, Carvalho Alves VM, Parentoni SN, Belele ChL, Loguercio LL (2003) Aluminium effects on nitrogen uptake and nitrogen assimilating enzymes in maize genotypes with contrasting tolerance to aluminium toxicity. J Plant Nutr 21(1):31–61. doi: 10.1081/PLN-120016496 CrossRefGoogle Scholar
  99. Qifu MA, Rengel Z, Kuo J (2002) Aluminium toxicity in rye (Secale cereale): root growth and dynamics of cytoplasmic Ca2+ in intact root tips. Ann Bot 89:241–244CrossRefGoogle Scholar
  100. Rengel Z (1996) Tansley review no 89—uptake of aluminium by plant cells. New Phytol 134:389–406CrossRefGoogle Scholar
  101. Rengel Z, Elliott DC (1992) Aluminium inhibits net 45Ca2+ uptake by Amaranthus protoplasts. Biochem Physiol Pflanz 188:177–186CrossRefGoogle Scholar
  102. Rengel Z, Robinson DL (1989) Competitive Al3+ inhibition of net Mg2+ uptake by intact lolium multiflorum roots: I. Kinetics. Plant Physiol 91:1407–1413. doi: 10.1104/pp.91.4.1407 CrossRefGoogle Scholar
  103. Rengel Z, Zhang WH (2003) Role of dynamics of intracellular calcium in aluminium-toxicity syndrome. New Phytol 159:295–314. doi: 10.1046/j.1469-8137.2003.00821.x CrossRefGoogle Scholar
  104. Rounds MA, Larsen PB (2008) Aluminium-dependent root-growth inhibition in Arabidopsis results from AtATR-regulated cell-cycle arrest. Curr Biol 18:1495–1500. doi: 10.1016/j.cub.2008.08.050 CrossRefGoogle Scholar
  105. Rouphael Y, Cardarelli M, Colla G (2015) Role of arbuscular mycorrhizal fungi in alleviating the adverse effects of acidity and aluminium toxicity in zucchini squash. Sci Hortic 188:97–105. doi: 10.1016/j.scienta.2015.03.031 CrossRefGoogle Scholar
  106. Rufty TW Jr, MacKown CT, Lazof DB, Carter TE (1995) Effects of aluminium on nitrate uptake and assimilation. Plant Cell Environ 18(11):1325–1331CrossRefGoogle Scholar
  107. Ryan PR, Ditomaso JM, Kochian LV (1993) Aluminium toxicity in roots: an investigation of spatial sensitivity and the role of the root cap. J Exp Bot 44:437–446. doi: 10.1093/jxb/44.2.437 CrossRefGoogle Scholar
  108. Samac DA, Tesfaye M (2003) Plant improvement for tolerance to aluminium in acid soils—a review. Plant Cell Tiss Org Cult 75:189–207. doi: 10.1023/A:1025843829545 CrossRefGoogle Scholar
  109. Sampson M, Clarkson D, Davies DD (1965) DNA synthesis in aluminium-treated roots of barley. Science 148:1476–1477CrossRefGoogle Scholar
  110. Sasaki T, Yamamoto Y, Ezaki B, Katsuhara M, Ahn SJ, Ryan PR, Delhaize E, Matsumoto H (2004) A wheat gene encoding an aluminium-activated malate transporter. Plant J 37:645–653. doi: 10.1111/j.1365-313X.2003.01991.x CrossRefGoogle Scholar
  111. Scheffer-Basso SM, Prior BC (2015) Aluminium toxicity in roots of legume seedlings assessed by topological analysis. Acta Sci Agron 37:61–68. doi: 10.4025/actasciagron.v37i1.18362 CrossRefGoogle Scholar
  112. Schier GA, McQuattie CJ (2000) Effect of water stress on aluminium toxicity in pitch pine seedlings. J Plant Nutr 23:637–647CrossRefGoogle Scholar
  113. Schmohl N, Horst WJ (2000) Cell wall pectin content modulates aluminium sensitivity of Zea mays (L.) cells grown in suspension culture. Plant Cell Environ 23:735–742. doi: 10.1046/j.1365-3040.2000.00591.x CrossRefGoogle Scholar
  114. Scholl LV, Keltjens WG, Hoffland E, Breemen NV (2005) Effect of ectomycorrhizal colonization on the uptake of Ca, Mg, and Al by Pinus sylvestris under aluminium toxicity. For Ecol Manage 215:352–360. doi: 10.1016/j.foreco.2005.05.025 CrossRefGoogle Scholar
  115. Shamsi IH, Wei K, Jilani G, Zhang G (2007) Interactions of cadmium and aluminium toxicity in their effect on growth and physiological parameters in soybean. J Zhejiang Univ Sci B 8:181–188. doi: 10.1631/jzus.2007.B0181 CrossRefGoogle Scholar
  116. Silva IR, Smyth TJ, Moxley DF, Carter TE, Allen NS, Rufty TW (2000) Aluminium accumulation at nuclei of cells in the root tip. Fluorescence detection using lumogallion and confocal laser scanning microscopy. Plant Physiol 123:543–552. doi: 10.1104/pp.123.2.543 CrossRefGoogle Scholar
  117. Silva IR, Ferrufino A, Sanzonowicz C, Smyth TJ, Israel DW, Carter TE Jr (2005) Interactions between magnesium, calcium, and aluminium on soybean root elongation. Rev Bras Ciênc Solo 29:747–754. doi: 10.1590/S0100-06832005000500010 CrossRefGoogle Scholar
  118. Silva S, Pinto-Carnide O, Martins-Lopes P, Matos M, Guedes-Pint H, Santos C (2010) Differential aluminium changes on nutrient accumulation and root differentiation in an Al sensitive vs. tolerant wheat. Environ Exp Bot 68:91–98. doi: 10.1016/j.envexpbot.2009.10.005 CrossRefGoogle Scholar
  119. Simões CC, Melo JO, Magalhaes JV, Guimarães CT (2012) Genetic and molecular mechanisms of aluminium tolerance in plants. Genet Mol Res 11:1949–1957. doi: 10.4238/2012.July.19.14 CrossRefGoogle Scholar
  120. Singh VP, Tripathi DK, Kumar D, Chauhan DK (2011) Influence of exogenous silicon addition on aluminium tolerance in rice seedlings. Biol Trace Elem Res 144:1260–1274CrossRefGoogle Scholar
  121. Singh S, Verma A, Dubey VK (2012) Effectivity of anti-oxidative enzymatic system on diminishing the oxidative stress induced by aluminium in chickpea (Cicer arietinum L.) seedlings. Braz J Plant Physiol 24:47–54. doi: 10.1590/S1677-04202012000100007 CrossRefGoogle Scholar
  122. Sivaguru M, Fujiwara T, Samaj J, Baluska F, Yang ZM, Osawa H, Maeda T, Mori T, Volkmann D, Matsumoto H (2000) Aluminium-induced 1→3-β-D-glucan inhibits cell-to-cell trafficking of molecules through plasmodesmata. A new mechanism of aluminium toxicity in plants. Plant Physiol 124:991–1005CrossRefGoogle Scholar
  123. Slugeňová K, Ditmarová Ľ, Kurjak D, Váľka J (2011) Drought and aluminium as stress factors in Norway spruce (Picea abies [L.] Karst) seedlings. J For Sci 57:547–554CrossRefGoogle Scholar
  124. Sun Q, Bin SRF, Zhao XQ, Chen RF, Dong XY (2008) Phosphorus enhances Al resistance in Al-resistant Lespedeza bicolor but not in Al-sensitive L. cuneata under relatively high Al stress. Ann Bot 102:795–804. doi: 10.1093/aob/mcn166 CrossRefGoogle Scholar
  125. Tamás L, Huttová J, Mistrík I, Simonovicová M, Siroká B (2006) Aluminium-induced drought and oxidative stress in barley roots. J Plant Physiol 163:781–784. doi: 10.1016/j.jplph.2005.08.012 CrossRefGoogle Scholar
  126. Tan K, Keltjens WG (1990) Interaction between aluminium and phosphorus in sorghum plants. Plant and Soil 23:15–23. doi: 10.1007/BF00010927 CrossRefGoogle Scholar
  127. Tan K, Keltjens WG (1995) Analysis of acid-soil stress in sorghum genotypes with emphasis on aluminium and magnesium interactions. Plant and Soil 171:147–150CrossRefGoogle Scholar
  128. Taylor GJ (1988) Mechanisms of aluminium tolerance in Triticum aestivum (wheat). V. Nitrogen nutrition, plant-induced pH and tolerance to aluminium: correlation without causality? Can J Bot 66:694–699CrossRefGoogle Scholar
  129. Taylor WK, MacFie SM (1994) Modelling the potential for B amelioration of aluminium toxicity using the Weibull function. Can J Bot 72:1187–1196CrossRefGoogle Scholar
  130. Tesfaye M, Temple SJ, Allan DL, Vance CP, Samac DA (2001) Overexpression of malate dehydrogenase in transgenic alfalfa enhances organic acid synthesis and confers tolerance to aluminium. Plant Physiol 127:1836–1844. doi: 10.1104/pp.010376 CrossRefGoogle Scholar
  131. Too EJ, Carlsson AS, Onkware AO, Were BA, Geleta M, Bryngelsson T, Gudu S (2014) Cell membrane integrity, callose accumulation, and root growth in aluminium-stressed sorghum seedlings. Biol Plant 58:768–772. doi: 10.1007/s10535-014-0455-0 CrossRefGoogle Scholar
  132. Vardar F, Ar E, Gözük N (2006) Effects of aluminium on in vitro root growth and seed germination of tobacco (Nicotiana tabacum L.). Adv Food Sci 28:85–88Google Scholar
  133. Wahyudi I, Handayanto E (2015) The potential of legume tree prunings as organic matters for improving phosphorus availability in an acid soil. J Degrad Min Lands Manage 2:259–266. doi: 10.15243/jdmlm.2014.022.259 CrossRefGoogle Scholar
  134. Wang Y, Stass A, Horst WJ (2004) Apoplastic binding of aluminium is involved in silicon-induced amelioration of aluminium toxicity in maize. Plant Physiol 136:3762–3770. doi: 10.1104/pp.104.045005 CrossRefGoogle Scholar
  135. Wang J, Raman H, Zhang G, Mendham N, Zhou M (2006) Aluminium tolerance in barley (Hordeum vulgare L.): physiological mechanisms, genetics and screening methods. J Zhejiang Univ Sci B 7:769–787. doi: 10.1631/jzus.2006.B0769 CrossRefGoogle Scholar
  136. Wang TZ, Tian QY, Wang BL, Zhao MG, Zhang WH (2014) Genome variations account for different response to three mineral elements between Medicago truncatula ecotypes Jemalong A17 and R108. BMC Plant Biol 14:1–11. doi: 10.1186/1471-2229-14-122 CrossRefGoogle Scholar
  137. Wang W, Zhao XQ, Chen RF, Dong XY, Lan P, Ma JF, Shen RF (2015) Altered cell wall properties are responsible for ammonium-reduced aluminium accumulation in rice roots. Plant Cell Environ 38:1382–1390. doi: 10.1111/pce.12490 CrossRefGoogle Scholar
  138. Watanabe T, Jansen J, Osaki M (2006) Al–Fe interactions and growth enhancement in Melastoma Malabathricum and Miscanthus sinensis dominating acid sulphate soils. Plant Cell Environ 29:2124–2132CrossRefGoogle Scholar
  139. Watanabe T, Misawa S, Hiradate S, Osaki M (2008) Root mucilage enhances aluminium accumulation in Melastoma malabathricum, an aluminium accumulator. Plant Signal Behav 3:603–605. doi: 10.1111/j.1469-8137.2008.02397.x CrossRefGoogle Scholar
  140. White PJ, Broadley MR (2003) Calcium in plants. Ann Bot 92:487–511CrossRefGoogle Scholar
  141. Whitmore AP, Whalley WR, Bird NR, Watts CW, Gregory AS (2011) Estimating soil strength in the rooting zone of wheat. Plant and Soil 339:363–375. doi: 10.1007/s11104-010-0588-7 CrossRefGoogle Scholar
  142. Wu FB, Zhang GP (2002) Genotypic variation in kernel heavy metal concentrations in barley and as affected by soil factors. J Plant Nutr 25(6):1163–1173. doi: 10.1081/PLN-120004380 CrossRefGoogle Scholar
  143. Xia J, Yamaji N, Kasai T, Ma JF (2010) Plasma membrane-localized transporter for aluminium in rice. Proc Natl Acad Sci U S A 107:18381–18385. doi: 10.1073/pnas.1004949107 CrossRefGoogle Scholar
  144. Yamamoto Y, Kobayashi Y, Matsumoto H (2001) Lipid peroxidation is an early symptom triggered by aluminium, but not the primary cause of elongation inhibition in pea roots. Plant Physiol 125:199–208. doi: 10.1104/pp.125.1.199 CrossRefGoogle Scholar
  145. Yang YH, Gu HJ, Fan WY, Bilkisu A (2004) Effects of boron on aluminium toxicity on seedlings of two soybean cultivars. Water Air Soil Pollut 154:239–248CrossRefGoogle Scholar
  146. Yang JL, Li YY, Zhang YJ, Zhang SS, Wu YR, Wu P, Zheng SJ (2008) Cell Wall polysaccharides are specifically involved in the exclusion of aluminium from the rice root apex. Plant Physiol 146:602–611. doi: 10.1104/pp.107.111989 CrossRefGoogle Scholar
  147. Yang ZB, Eticha D, Rotter B, Rao IM, Horst WJ (2011) Physiological and molecular analysis of polythylene glycol-induced reduction of aluminium accumulation in the root tips of common bean (Phaseolus vulgaris). New Phytol 192:99–113. doi: 10.1111/j.1469-8137.2011.03784.x CrossRefGoogle Scholar
  148. Yu M, Goldbach HE (2007) Influence of boron on Al absorption and Ca release of root border cells of pea (Pisum sativum). In: Xu F, Goldbach HE, Brown PH, Bell RW, Fujiwara T, Hunt CD, Goldberg S, Shi L (eds), Advances in plant and animal boron nutrition. Proceedings of the 3rd international symposium on all aspects of plant and animal boron nutrition, pp 63–68. ISBN: 978-1-4020-5381-8Google Scholar
  149. Zhang WH, Rengel Z (1999) Aluminium induces an increase in cytoplasmic calcium in intact wheat root apical cells. Aust J Plant Physiol 26:401–409Google Scholar
  150. Zhang H, Jiang Z, Qin R, Zhang H, Zou J, Jiang W, Liu D (2014) Accumulation and cellular toxicity of aluminium in seedling of Pinus massoniana. BMC Plant Biol 14:1–16. doi: 10.1186/s12870-014-0264-9 CrossRefGoogle Scholar
  151. Zhang YK, Zhu DF, Zhang YP, Chen HZ, Xiang J, Lin XQ (2015) Low pH-induced changes of antioxidant enzyme and ATPase activities in the roots of rice (Oryza sativa L.) seedlings. PLoS One 10:1–12. doi: 10.1371/journal.pone.0116971 CrossRefGoogle Scholar
  152. Zhao Z, Ma JF, Sato K, Takeda K (2003) Differential Al resistance and citrate secretion in barley (Hordeum vulgare L.). Planta 217:794–800. doi: 10.1007/s00425-003-1043-2 CrossRefGoogle Scholar
  153. Zheng SJ (2010) Crop production on acidic soils: overcoming aluminium toxicity and phosphorus deficiency. Ann Bot 106:183–184. doi: 10.1093/aob/mcq134 CrossRefGoogle Scholar
  154. Zheng SJ, Yang JL, He YF, Yu XH, Zhang L, You JF, Shen RF, Matsumoto H (2005) Immobilization of aluminium with phosphorus in roots is associated with high aluminium resistance in buckwheat. Plant Physiol 138:297–303. doi: 10.1104/pp.105.059667 CrossRefGoogle Scholar
  155. Zheng L, Lan P, Shen RF, Li WF (2014) Proteomics of aluminium tolerance in plants. Proteomics 14:566–578. doi: 10.1002/pmic.201300252 CrossRefGoogle Scholar
  156. Zhou XX, Yang LT, Qi YP, Guo P, Chen LS (2015) Mechanisms on boron-induced alleviation of aluminium-toxicity in Citrus grandis seedlings at a transcriptional level revealed by cDNA-AFLP analysis. PLoS One 10(3):e0115485. doi: 10.1371/journal.pone.0115485 CrossRefGoogle Scholar
  157. Zhu XF, Shi YZ, Lei GJ, Fry SC, Zhang BC, Zhou YH et al (2012) XTH31, encoding an in vitro XEH/XET-active enzyme, regulates aluminium sensitivity by modulating in vivo XET action, cell wall xyloglucan content, and aluminium binding capacity in Arabidopsis. Plant Cell 24:4731–4747. doi: 10.1105/tpc.112.106039 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Institute of AgrophysicsPolish Academy of SciencesLublinPoland

Personalised recommendations