Advertisement

Prospective Environmental Risk Assessment for Sediment-Bound Organic Chemicals: A Proposal for Tiered Effect Assessment

  • Noël J. Diepens
  • Albert A. Koelmans
  • Hans Baveco
  • Paul J. van den Brink
  • Martine J. van den Heuvel-Greve
  • Theo C. M. Brock
Part of the Reviews of Environmental Contamination and Toxicology book series (RECT, volume 239)

Abstract

A broadly accepted framework for prospective environmental risk assessment (ERA) of sediment-bound organic chemicals is currently lacking. Such a framework requires clear protection goals, evidence-based concepts that link exposure to effects and a transparent tiered-effect assessment. In this paper, we provide a tiered prospective sediment ERA procedure for organic chemicals in sediment, with a focus on the applicable European regulations and the underlying data requirements. Using the ecosystem services concept, we derived specific protection goals for ecosystem service providing units: microorganisms, benthic algae, sediment-rooted macrophytes, benthic invertebrates and benthic vertebrates. Triggers for sediment toxicity testing are discussed.

We recommend a tiered approach (Tier 0 through Tier 3). Tier-0 is a cost-effective screening based on chronic water-exposure toxicity data for pelagic species and equilibrium partitioning. Tier-1 is based on spiked sediment laboratory toxicity tests with standard benthic test species and standardised test methods. If comparable chronic toxicity data for both standard and additional benthic test species are available, the Species Sensitivity Distribution (SSD) approach is a more viable Tier-2 option than the geometric mean approach. This paper includes criteria for accepting results of sediment-spiked single species toxicity tests in prospective ERA, and for the application of the SSD approach. We propose micro/mesocosm experiments with spiked sediment, to study colonisation success by benthic organisms, as a Tier-3 option. Ecological effect models can be used to supplement the experimental tiers. A strategy for unifying information from various tiers by experimental work and exposure—and effect modelling is provided.

Keywords

Sediment ecotoxicology Benthic organisms Sediment-spiked toxicity tests Species sensitivity distributions Microcosms Exposure and effect modelling 

Notes

Acknowledgements

This research was funded by CEFIC, the Long Range Research Initiative (LRI). We would like to thank all workshop participants (see full name list in Appendix 1) for their participation in the discussions during the workshop Prospective Sediment Risk Assessment held on 24-02-14 in Wageningen. We want to thank Gertie Arts for taking the minutes during the workshop and Mick Hamer, Stuart Marshall, and Paul Thomas for their comments on an earlier version of this manuscript.

References

  1. Adams WJ, Kimerle RA, Barnett JW (1992) Sediment quality and aquatic life assessment. Environ Sci Technol 26:1864–1875. doi: 10.1021/es00034a001CrossRefGoogle Scholar
  2. Adriaanse PI (1996) Fate of pesticides in field ditches: the TOXSWA simulation model vol 90. SC-DLO, WageningenGoogle Scholar
  3. Aldenberg T, Jaworska JS (2000) Uncertainty of the hazardous concentration and fraction affected for normal species sensitivity distributions. Ecotoxicol Environ Saf 46:1–18. doi: 10.1006/eesa.1999.1869CrossRefGoogle Scholar
  4. Aldenberg T, Jaworska JS, Traas TP, Posthuma L (2002) Normal species sensitivity distributions and probabilistic ecological risk assessment. In: Posthuma L, Traas T, Suter G (eds) Species sensitivity distributions in risk assessment. CRC Press, Boca Raton, FL, pp 49–102Google Scholar
  5. Allen YT, Thain JE, Haworth S, Barry J (2007) Development and application of long-term sublethal whole sediment tests with Arenicola marina and Corophium volutator using Ivermectin as the test compound. Environ Pollut 146:92–99. doi: 10.1016/j.envpol.2006.06.007CrossRefGoogle Scholar
  6. Amweg EL, Weston DP (2007) Whole-sediment toxicity identification evaluation tools for pyrethroid insecticides: I. Piperonyl butoxide addition. Environ Toxicol Chem 26:2389–2396. doi: 10.1897/07-017r.1CrossRefGoogle Scholar
  7. Anderson BS, Lowe S, Phillips BM, Hunt JW, Vorhees J, Clark S, Clark S, Tjeerdema RS (2008) Relative sensitivities of toxicity test protocols with the amphipods Eohaustorius estuarius and Ampelisca abdita. Ecotoxicol Environ Saf 69:24–31. doi: 10.1016/j.ecoenv.2007.05.005CrossRefGoogle Scholar
  8. Ankley GT, Call DJ, Cox JS, Kahl MD, Hoke RA, Kosian PA (1994) Organic carbon partitioning as a basis for predicting the toxicity of chlorpyrifos in sediments. Environ Toxicol Chem 13:621–626. doi: 10.1002/etc.5620130411CrossRefGoogle Scholar
  9. Ankley GT et al (2010) Adverse outcome pathways: a conceptual framework to support ecotoxicology research and risk assessment. Environ Toxicol Chem 29:730–741. doi: 10.1002/etc.34CrossRefGoogle Scholar
  10. Ashauer R, Boxall A, Brown C (2006) Predicting effects on aquatic organisms from fluctuating or pulsed exposure to pesticides. Environ Toxicol Chem 25:1899–1912. doi: 10.1897/05-393r.1CrossRefGoogle Scholar
  11. ASTM (2013) ASTM E2591-07(2013), Standard guide for conducting whole sediment toxicity tests with amphibians. ASTM, West Conshohocken, PA. doi: 10.1520/E2591-07R13CrossRefGoogle Scholar
  12. Bal-Price A et al (2014) Considerations in the development of in vitro toxicity testing methods intended for regulatory use. In: In vitro toxicology systems, Methods in pharmacology and toxicology. Springer, New York, NY, pp 551–569. doi: 10.1007/978-1-4939-0521-8_25CrossRefGoogle Scholar
  13. Bartell SM, Pastorok RA, Akçakaya HR, Regan H, Ferson S, Mackay C (2003) Realism and relevance of ecological models used in chemical risk assessment. Hum Ecol Risk Assess 9:907–938. doi: 10.1080/713610016CrossRefGoogle Scholar
  14. Bartlett AJ, Borgmann U, Dixon DG, Batchelor SP, Maguire RJ (2004) Accumulation of tributyltin in Hyalella azteca as an indicator of chronic toxicity: survival, growth, and reproduction. Environ Toxicol Chem 23:2878–2888. doi: 10.1897/03-521.1CrossRefGoogle Scholar
  15. Baveco JM, Norman S, Roessink I, Galic N, Van den Brink PJ (2014) Comparing population recovery after insecticide exposure for four aquatic invertebrate species using models of different complexity. Environ Toxicol Chem 33:1517–1528. doi: 10.1002/etc.2605CrossRefGoogle Scholar
  16. Beketov MA, Cedergreen N, Wick LY, Kattwinkel M, Duquesne S, Liess M (2012) Sediment toxicity testing for prospective risk assessment—a new framework and how to establish it. Hum Ecol Risk Assess 19:98–117. doi: 10.1080/10807039.2012.683741CrossRefGoogle Scholar
  17. Besseling E, Wegner A, Foekema EM, van den Heuvel-Greve MJ, Koelmans AA (2013) Effects of microplastic on fitness and PCB bioaccumulation by the Lugworm Arenicola marina (L.). Environ Sci Technol 47:593–600. doi: 10.1021/es302763xCrossRefGoogle Scholar
  18. Best EPH, Boyd WA (1999) A simulation model for growth of the submersed aquatic macrophyte Eurasian Watermilfoil (Myriophyllum spicatum L.). Technical Report A-99-3 US Army Corps of EngineersGoogle Scholar
  19. Beyer J, Petersen K, Song Y, Ruus A, Grung M, Bakke T, Tollefsen KE (2014) Environmental risk assessment of combined effects in aquatic ecotoxicology: a discussion paper. Mar Environ Res 96:81–91. doi: 10.1016/j.marenvres.2013.10.008CrossRefGoogle Scholar
  20. Boesten JJTI, Köpp H, Adriaanse PI, Brock TCM, Forbes VE (2007) Conceptual model for improving the link between exposure and effects in the aquatic risk assessment of pesticides. Ecotoxicol Environ Saf 66:291–308CrossRefGoogle Scholar
  21. Brandes L, den Hollander H, van de Meent D (1996) SimpleBox 2.0: a nested multimedia fate model for evaluating the environmental fate of chemicals. Rijksinstituut voor Volksgezondheid en Milieu RIVM, BilthovenGoogle Scholar
  22. Brinke M, Hoss S, Fink G, Ternes TA, Heininger P, Traunspurger W (2010) Assessing effects of the pharmaceutical ivermectin on meiobenthic communities using freshwater microcosms. Aquat Toxicol 99:126–137. doi: 10.1016/j.aquatox.2010.04.008CrossRefGoogle Scholar
  23. Brock TCM (2013) Priorities to improve the ecological risk assessment and management for pesticides in surface water. Integr Environ Assess Manag 9:e64–e74. doi: 10.1002/ieam.1429CrossRefGoogle Scholar
  24. Castano A et al (2003) The use of fish cells in ecotoxicology. The report and recommendations of ECVAM Workshop 47. Altern Lab Anim 31:317–351Google Scholar
  25. Clemmens A, Holly F, Schuurmans W (1993) Description and evaluation of program: duflow. J Irrig Drain Eng 119:724–734. doi: 10.1061/(ASCE)0733-9437(1993)119:4(724)CrossRefGoogle Scholar
  26. Cornelissen G, Gustafsson Ö, Bucheli TD, Jonker MTO, Koelmans AA, van Noort PCM (2005) Extensive sorption of organic compounds to black carbon, coal, and kerogen in sediments and soils: mechanisms and consequences for distribution, bioaccumulation, and biodegradation. Environ Sci Technol 39:6881–6895. doi: 10.1021/es050191bCrossRefGoogle Scholar
  27. Covich AP, Palmer MA, Crowl TA (1999) The role of benthic invertebrate species in freshwater ecosystems: zoobenthic species influence energy flows and nutrient cycling. Bioscience 49:119–127CrossRefGoogle Scholar
  28. Covich AP et al (2004) The role of biodiversity in the functioning of freshwater and marine benthic ecosystems. Bioscience 54:767–775. doi: 10.1641/0006-3568(2004)054[0767:trobit]2.0.co;2CrossRefGoogle Scholar
  29. Crum SJ, Brock TC (1994) Fate of chlorpyrifos in indoor microcosms and outdoor experimental ditches. In: Hill I, Heimbach F, Leeuwangh P, Matthiesen P (eds) Freshwater field tests for hazard assessment of chemicals. Lewis Publishers, Chelsea, MI, pp 315–322Google Scholar
  30. Davies IM, Gillibrand PA, McHenery JG, Rae GH (1998) Environmental risk of ivermectin to sediment dwelling organisms. Aquaculture 163:29–46. doi: 10.1016/S0044-8486(98)00211-7CrossRefGoogle Scholar
  31. Day KE, Maguire RJ, Milani D, Batchelor SP (1998) Toxicity of tributyltin to four species of freshwater benthic invertebrates using spiked sediment bioassays. Water Qual Res J Can 33:111–132Google Scholar
  32. De Laender F, Morselli M, Baveco H, Van den Brink PJ, Di Guardo A (2015) Theoretically exploring direct and indirect chemical effects across ecological and exposure scenarios using mechanistic fate and effects modelling. Environ Int 74:181–190. doi: 10.1016/j.envint.2014.10.012CrossRefGoogle Scholar
  33. Di Guardo A, Hermens JLM (2013) Challenges for exposure prediction in ecological risk assessment. Integr Environ Assess Manag 9:e4–e14. doi: 10.1002/ieam.1442CrossRefGoogle Scholar
  34. Di Toro D et al (1991) Technical basis for the equilibrium partitioning method for establishing sediment quality criteria. Environ Toxicol Chem 11:1541–1583CrossRefGoogle Scholar
  35. Diepens NJ, Beltman W, Koelmans AA, Van den Brink PJ, Baveco H. Under revision. Dynamics and recovery of a sediment exposed Chironomus riparius population: A modelling approach Environmental PollutionGoogle Scholar
  36. Diepens NJ, Dimitrov MR, Koelmans AA, Smidt H. Online. Molecular assessment of bacterial community dynamics and functional endpoints during sediment bioaccumulation tests. Environmental Science & Technology. doi: 10.1021/acs.est.5b02992CrossRefGoogle Scholar
  37. Diepens NJ, Van den Heuvel-Greve M, Koelmans AA. Online. Modeling of bioaccumulation in marine benthic invertebrates using a multispecies experimental approach. Environmental Science & Technology. doi:  10.1021/acs.est.5b02500CrossRefGoogle Scholar
  38. Diepens N, Arts G, Focks A, Koelmans AA (2014a) Uptake, translocation and elimination in sediment-rooted macrophytes: a model-supported analysis of whole sediment test data. Environ Sci Technol 48:12344–12353. doi: 10.1021/es503121xCrossRefGoogle Scholar
  39. Diepens NJ, Arts GHP, Brock TCM, Smidt H, Van den Brink PJ, Van den Heuvel-Greve MJ, Koelmans AA (2014b) Sediment toxicity testing of organic chemicals in the context of prospective risk assessment: a review. Crit Rev Environ Sci Technol 44:255–302. doi: 10.1080/01496395.2012.718945CrossRefGoogle Scholar
  40. Duft M, Schulte-Oehlmann U, Tillmann M, Markert B, Oehlmann J (2003) Toxicity of triphenyltin and tributyltin to the freshwater mud snail Potamopyrgus antipodarum in a new sediment biotest. Environ Toxicol Chem 22:145–152. doi: 10.1002/etc.5620220119CrossRefGoogle Scholar
  41. ECHA (2008) Guidance on information requirements and chemical safety assessment. Chapter R.10: Characterisation of dose [concentration]-response for environment. Guidance for the implementation of REACH. European Chemicals Agency, HelsinkiGoogle Scholar
  42. ECHA (2014a) Guidance on information requirements and chemical safety assessment. Chapter R.7b: Endpoint specific guidance. European chemicals agency, HelsinkiGoogle Scholar
  43. ECHA (2014b) Guidance on the biocidal products regulation. Volume IV: Environment: Part A: Information requirements. European chemicals agency, HelsinkiGoogle Scholar
  44. ECHA (2014c) ECHA Principles for environmental risk assessment of the sediment compartment. In: Jose V, Tarazona BV, Janssen C, De Laender F, Vangheluwe M, Knight D (eds) Proceedings of the topical scientific workshop, 7-8 May 2013. European Chemicals Agency, HelsinkiGoogle Scholar
  45. EFSA (2005) Opinion of the scientific panel on plant health, plant protection products and their residues on a request from the EFSA related to the assessment of the acute and chronic risk to aquatic organisms with regard to the possibility of lowering the assessment factor if additional species were tested. EFSA J 301:1–45Google Scholar
  46. EFSA (2009) The usefulness of total concentrations and pore water concentrations of pesticides in soil as metrics for the assessment of ecotoxicological effects. EFSA J 922:1–90Google Scholar
  47. EFSA (2010a) Scientific opinion on outline proposals for assessment of exposure of organisms to substances in soil. EFSA J 8:1442–1478CrossRefGoogle Scholar
  48. EFSA (2010b) Scientific Opinion on the development of specific protection goal options for environmental risk assessment of pesticides, in particular in relation to the revision of the Guidance Documents on Aquatic and Terrestrial Ecotoxicology (SANCO/3268/2001 and SANCO/10329/2002). EFSA J 8:55. doi:10.2903/jGoogle Scholar
  49. EFSA (2013) Guidance on tiered risk assessment for plant protection products for aquatic organisms in edge of field surface waters. EFSA J 11:186Google Scholar
  50. EFSA (2014a) EFSA Guidance Document for evaluating laboratory and field dissipation studies to obtain DegT50 values of active substances of plant protection products and transformation products of these active substances in soil. EFSA J 12:37. doi:10.2903/j.efsa.2014.3662Google Scholar
  51. EFSA (2014b) Scientific Opinion on good modelling practice in the context of mechanistic effect models for risk assessment of plant protection products. EFSA J 12:92. doi: 10.2903/j.efsa.2014.3589CrossRefGoogle Scholar
  52. EFSA (2015) Scientific opinion on the effect assessment for pesticides on sediment organisms in edge-of-field surface water. EFSA J 13:145. doi: 10.2903/j.efsa.2015.4176CrossRefGoogle Scholar
  53. Egeler P, Gilberg D, Fink G, Duis K (2010) Chronic toxicity of ivermectin to the benthic invertebrates Chironomus riparius and Lumbriculus variegatus. J Soils Sediments 10:368–376. doi: 10.1007/s11368-010-0197-3CrossRefGoogle Scholar
  54. EMEA (2006) Guideline on the environmental risk assessment of medicinal products for human use EMEA/CHMP/SWP/4447/00. European Medicines Agency, LondonGoogle Scholar
  55. EPA (1996a) Ecological effects test guidelines OPPTS 850.1740. Whole sediment acute toxicity invertebrates, marine. U.S. Environmental Protection Agency, Washington, DCGoogle Scholar
  56. EPA (1996b) Ecological effects test guidelines: OPPTS 850.1735: whole sediment acute toxicity invertebrates, freshwater. U.S. Environmental Protection Agency, Washington, DCGoogle Scholar
  57. EPA U (1997) Ambient water quality criteria for tributyltin – draft. EPA, Washington, DCGoogle Scholar
  58. European Commission (2003a) Technical Guidance Document (TGD) in support of commission directive 93/67/EEC on risk assessment for new notified substances, Commission Regulation (EC) No 1488/94 on risk assessment for existing substances and Directive 98/8/EC of the European parliament and the council concerning the placing of biocidal products on the market vol Edition 2. EUR 20418 EN/2. European Commission Joint Research Centre, IspraGoogle Scholar
  59. European Commission (2003b) Technical Guidance Document on risk assessment in support of Commission Directive 93/67/EEC, Commission Directive 98/8/EC, Commission Regulation (EC) No 1488/94, Commission Directive 93/67/EEC. European Commission, IspraGoogle Scholar
  60. European Commission (2005) Common Implementation Strategy for the Water Framework Directive. Environmental Quality Standards (EQS) Substance Data Sheet Tributyltin compounds. European Commission, IspraGoogle Scholar
  61. European Commission (2011a) Common implementation strategy for the Water Framework Directive (2000/60/EC). Guidance Document No. 27. Technical Guidance Document for deriving Environmental Quality Standards, Technical Report- 2011-055Google Scholar
  62. European Commission (2011b) Technical guidance document for deriving environmental quality standards vol Draft version 5.0 (29 January 2010). European Commission Joint Research Centre, Ispra. doi: 10.2779/43816CrossRefGoogle Scholar
  63. Faber D, Bruns E (2015) Future challenges in sediment toxicity testing for the risk assessment of plant protection products. Poster. Paper presented at the SETAC Europe 25th Annual Meeting, 3–7 May 2015, Barcelona SpainGoogle Scholar
  64. Feijtel T et al (1997) Development of a geography-referenced regional exposure assessment tool for European rivers - great-er contribution to great-er #1. Chemosphere 34:2351–2373. doi: 10.1016/S0045-6535(97)00048-9CrossRefGoogle Scholar
  65. Fenchel TM (1978) The ecology of micro-and meiobenthos. Annu Rev Ecol Syst 9:99–121. doi: 10.2307/2096745CrossRefGoogle Scholar
  66. Focks A, Horst MT, Van de Berg E, Baveco H, Van den Brink PJ (2014) Integrating chemical fate and population-level effect models for pesticides on the landscape scale: new options for risk assessment. Ecol Model 280:102CrossRefGoogle Scholar
  67. FOCUS (2007) Landscape and mitigation factors in aquatic risk assessment. Volume 1. Extended summary and recommendations, volume 2 Detailed Technical Reviews. Report of the FOCUS working group on landscape and mitigation factors in ecological risk assessment. EC Document Reference SANCO/10422/2005Google Scholar
  68. Fojut T, Vasquez M, Poulsen A, Tjeerdema R (2013) Methods for deriving pesticide aquatic life criteria for sediments. In: Whitacre DM (ed) Reviews of environmental contamination and toxicology, vol 224. Springer, New York, NY, pp 97–175. doi: 10.1007/978-1-4614-5882-1_4CrossRefGoogle Scholar
  69. Forbes VE, Calow P (2013) Use of the ecosystem services concept in ecological risk assessment of chemicals. Integr Environ Assess Manag 9:269–275. doi: 10.1002/ieam.1368CrossRefGoogle Scholar
  70. Forbes VE et al (2011) Adding value to ecological risk assessment with population modeling. Hum Ecol Risk Assess 17:287–299. doi: 10.1080/10807039.2011.552391CrossRefGoogle Scholar
  71. Galic N, Hommen U, Baveco JM, Van den Brink PJ (2010) Potential application of population models in the European ecological risk assessment of chemicals II: Review of models and their potential to address environmental protection aims. Integr Environ Assess Manag 6:338–360. doi: 10.1002/ieam.68CrossRefGoogle Scholar
  72. Galic N, Hengeveld GM, Van den Brink PJ, Schmolke A, Thorbek P, Bruns E, Baveco HM (2013) Persistence of aquatic insects across managed landscapes: effects of landscape permeability on re-colonization and population recovery. PLoS One 8:e54584CrossRefGoogle Scholar
  73. Garric J et al (2007) Effects of the parasiticide ivermectin on the cladoceran Daphnia magna and the green alga Pseudokirchneriella subcapitata. Chemosphere 69:903–910. doi: 10.1016/j.chemosphere.2007.05.070CrossRefGoogle Scholar
  74. Gaskell PN, Brooks AC, Maltby L (2007) Variation in the bioaccumulation of a sediment-sorbed hydrophobic compound by benthic macroinvertebrates: patterns and mechanisms. Environ Sci Technol 41:1783–1789. doi: 10.1021/es061934bCrossRefGoogle Scholar
  75. Gebremariam S, Beutel M, Yonge D, Flury M, Harsh J (2012) Adsorption and desorption of chlorpyrifos to soils and sediments, vol 215, Reviews of environmental contamination and toxicology. Springer, New York, NY, pp 123–175. doi: 10.1007/978-1-4614-1463-6_3CrossRefGoogle Scholar
  76. Gérino M et al (2003) Macro-invertebrate functional groups in freshwater and marine sediments: a common mechanistic classification. Vie et milieu 53:221–231Google Scholar
  77. Giddings JM, Arts G, Hommen U (2013) The relative sensitivity of macrophyte and algal species to herbicides and fungicides: an analysis using species sensitivity distributions. Integr Environ Assess Manag 9:308–318. doi: 10.1002/ieam.1387CrossRefGoogle Scholar
  78. Giesy JP, Graney RL (1989) Recent developments in and intercomparisons of acute and chronic bioassays and bioindicators. Hydrobiologia 188–189:21–60. doi: 10.1007/bf00027770CrossRefGoogle Scholar
  79. Gobas F, McNeil EJ, Lovettdoust L, Haffner GD (1991) Bioconcentration of chlorinated aromatic hydrocarbons in aquatic macrophytes. Environ Sci Technol 25:924–929. doi: 10.1021/es00017a015CrossRefGoogle Scholar
  80. Gray JS (1981) The ecology of marine sediments: an introduction to the structure and function of benthic communities. Cambridge University Press, CambridgeGoogle Scholar
  81. Green AS, Chandler TG, Piegorsch WW (1996) Life-stage-specific toxicity of sediment-associated chlorpyrifos to a marine, infaunal copepod. Environ Toxicol Chem 15:1182–1188. doi: 10.1002/etc.5620150725CrossRefGoogle Scholar
  82. Groothuis FA, Heringa MB, Nicol B, Hermens JLM, Blaauboer BJ, Kramer NI (2015) Dose metric considerations in in vitro assays to improve quantitative in vitro–in vivo dose extrapolations. Toxicology 332:30–40. doi: 10.1016/j.tox.2013.08.012CrossRefGoogle Scholar
  83. Guillén D, Ginebreda A, Farré M, Darbra RM, Petrovic M, Gros M, Barceló D (2012) Prioritization of chemicals in the aquatic environment based on risk assessment: analytical, modeling and regulatory perspective. Sci Total Environ 440:236–252. doi: 10.1016/j.scitotenv.2012.06.064CrossRefGoogle Scholar
  84. Hall LW, Scott MC, Killen WD, Unger MA (2000) A probabilistic ecological risk assessment of tributyltin in surface waters of the Chesapeake Bay watershed. Hum Ecol Risk Assess 6:141–179. doi: 10.1080/10807030091124482CrossRefGoogle Scholar
  85. Hallare A, Seiler T-B, Hollert H (2011) The versatile, changing, and advancing roles of fish in sediment toxicity assessment—a review. J Soils Sediments 11:141–173. doi: 10.1007/s11368-010-0302-7CrossRefGoogle Scholar
  86. Halley BA, Jacob TA, Lu AYH (1989) The environmental impact of the use of ivermectin: environmental effects and fate. Chemosphere 18:1543–1563. doi: 10.1016/0045-6535(89)90045-3CrossRefGoogle Scholar
  87. Harwood AD, You J, Lydy MJ (2009) Temperature as a toxicity identification evaluation tool for pyrethroid insecticides: toxicokinetic confirmation. Environ Toxicol Chem 28:1051–1058. doi: 10.1897/08-291.1CrossRefGoogle Scholar
  88. Hecht SA, Gunnarsson JS, Boese BL, Lamberson JO, Schaffner C, Giger W, Jepson PC (2004) Influences of sedimentary organic matter quality on the bioaccumulation of 4-nonylphenol by estuarine amphipods. Environ Toxicol Chem 23:865–873. doi: 10.1897/03-220CrossRefGoogle Scholar
  89. Heine S, Schmitt W, Schäffer A, Görlitz G, Buresová H, Arts G, Preuss TG (2015) Mechanistic modelling of toxicokinetic processes within Myriophyllum spicatum. Chemosphere 120:292–298. doi: 10.1016/j.chemosphere.2014.07.065CrossRefGoogle Scholar
  90. Hendriks AJ (1995) Modelling equilibrium concentrations of microcontaminants in organisms of the Rhine delta: can average field residues in the aquatic food chain be predicted from laboratory accumulation? Aquat Toxicol 31:1–25. doi: 10.1016/0166-445X(94)00052-RCrossRefGoogle Scholar
  91. Hintzen EP, Lydy MJ, Belden JB (2009) Occurrence and potential toxicity of pyrethroids and other insecticides in bed sediments of urban streams in central Texas. Environ Pollut 157:110–116. doi: 10.1016/j.envpol.2008.07.023CrossRefGoogle Scholar
  92. Hollert H, Keiter S, König N, Rudolf M, Ulrich M, Braunbeck T (2003) A new sediment contact assay to assess particle-bound pollutants using zebrafish (Danio rerio) embryos. J Soils Sediments 3:197–207. doi: 10.1065/jss2003.09.085CrossRefGoogle Scholar
  93. Hommen U, Baveco JM, Galic N, Van den Brink PJ (2010) Potential application of ecological models in the European environmental risk assessment of chemicals I: Review of protection goals in EU directives and regulations. Integr Environ Assess Manag 6:325–337. doi: 10.1002/ieam.69CrossRefGoogle Scholar
  94. Hooftman RN, Van de Guchte K, Roghair CJ (1993) Development of ecotoxicological test systems to assess contaminated sediments. Joint report no. 1: Acute and (sub)chronic tests with the model compound chlorpyrifos. IMW-R 91/111; RIVM-719102022; RIZA-93.090X. RIVM, BilthovenGoogle Scholar
  95. Houtman CJ et al (2006) Estrogenic and dioxin-like compounds in sediment from Zierikzee harbour identified with CALUX assay-directed fractionation combined with one and two dimensional gas chromatography analyses. Chemosphere 65:2244–2252. doi: 10.1016/j.chemosphere.2006.05.043CrossRefGoogle Scholar
  96. Hyde K, Jones EBG, Leaño E, Pointing S, Poonyth A, Vrijmoed LP (1998) Role of fungi in marine ecosystems. Biodivers Conserv 7:1147–1161. doi: 10.1023/a:1008823515157CrossRefGoogle Scholar
  97. IPCS (1999) Concise international chemical assessment documents, No. 13, Triphenyltin compounds. World Health Organization, GenevaGoogle Scholar
  98. ISO (2010) ISO/DIS 16191 Water quality—Determination of the toxic effect of sediment and soil on the growth behaviour of Myriophyllum aquaticum. International Organization for Standardization, GenevaGoogle Scholar
  99. Jager T, Albert C, Preuss TG, Ashauer R (2011) General unified threshold model of survival - a toxicokinetic-toxicodynamic framework for ecotoxicology. Environ Sci Technol 45:2529–2540. doi: 10.1021/es103092aCrossRefGoogle Scholar
  100. Jager T, Martin BT, Zimmer EI (2013) DEBkiss or the quest for the simplest generic model of animal life history. J Theor Biol 328:9–18. doi: 10.1016/j.jtbi.2013.03.011CrossRefGoogle Scholar
  101. Janssen EML, Croteau M-N, Luoma SN, Luthy RG (2009) Measurement and modeling of polychlorinated biphenyl bioaccumulation from sediment for the marine polychaete Neanthes arenaceodentata and response to sorbent amendment. Environ Sci Technol 44:2857–2863. doi: 10.1021/es901632eCrossRefGoogle Scholar
  102. Jantunen APK, Tuikka A, Akkanen J, Kukkonen JVK (2008) Bioaccumulation of atrazine and chlorpyrifos to Lumbriculus variegatus from lake sediments. Ecotoxicol Environ Saf 71:860–868. doi: 10.1016/j.ecoenv.2008.01.025CrossRefGoogle Scholar
  103. Jensen HF, Holmer M, Dahllöf I (2004) Effects of tributyltin (TBT) on the seagrass Ruppia maritima. Mar Pollut Bull 49:564–573CrossRefGoogle Scholar
  104. Jha AN (2004) Genotoxicological studies in aquatic organisms: an overview. Mutat Res 552:1–17. doi: 10.1016/j.mrfmmm.2004.06.034CrossRefGoogle Scholar
  105. Kaag NHBM, Foekema EM, Scholten MCT, van Straalen NM (1997) Comparison of contaminant accumulation in three species of marine invertebrates with different feeding habits. Environ Toxicol Chem 16:837–842. doi: 10.1002/etc.5620160501CrossRefGoogle Scholar
  106. Karman CC (2000) The role of time in environmental risk assessment. Spill Sci Technol Bull 6:159–164. doi: 10.1016/S1353-2561(00)00071-2CrossRefGoogle Scholar
  107. Kilmartin J, Cazabon D, Smith P (1996) Investigations of the toxicity of ivermectin for salmonids. B Eur Assoc Fish Pat 17:107–112Google Scholar
  108. Koelmans AA, Van der Heijde A, Knijff LM, Aalderink RH (2001) Integrated modelling of eutrophication and organic contaminant fate and effects in aquatic ecosystems. A Review. Water Res 35:3517–3536. doi: 10.1016/S0043-1354(01)00095-1CrossRefGoogle Scholar
  109. Koelmans AA, Jonker MTO, Cornelissen G, Bucheli TD, Van Noort PCM, Gustafsson Ö (2006) Black carbon: the reverse of its dark side. Chemosphere 63:365–377CrossRefGoogle Scholar
  110. Koelmans AA, Kaag K, Sneekes A, Peeters ETHM (2009) Triple domain in situ sorption modeling of organochlorine pesticides, polychlorobiphenyls, polyaromatic hydrocarbons, polychlorinated dibenzo-p-dioxins, and polychlorinated dibenzofurans in aquatic sediments. Environ Sci Technol 43:8847–8853. doi: 10.1021/es9021188CrossRefGoogle Scholar
  111. Koelmans AA, Poot A, Lange HJD, Velzeboer I, Harmsen J, van Noort PCM (2010) Estimation of in situ sediment-to-water fluxes of polycyclic aromatic hydrocarbons, polychlorobiphenyls and polybrominated diphenylethers. Environ Sci Technol 44:3014–3020. doi: 10.1021/es903938zCrossRefGoogle Scholar
  112. Konstantinou I, Albanis T (2004) Worldwide occurrence and effects of antifouling paint booster biocides in the aquatic environment: a review. Environ Int 30:235–248CrossRefGoogle Scholar
  113. Krogh KA, Søeborg T, Brodin B, Halling-Sørensen B (2008) Sorption and mobility of ivermectin in different soils. J Environ Qual 37:2202–2211. doi: 10.2134/jeq2007.0592CrossRefGoogle Scholar
  114. Langston WJ, Pope ND (1995) Determinants of TBT adsorption and desorption in estuarine sediments. Mar Pollut Bull 31:32–43. doi: 10.1016/0025-326X(95)91269-MCrossRefGoogle Scholar
  115. Lee RF, Steinert S (2003) Use of the single cell gel electrophoresis/comet assay for detecting DNA damage in aquatic (marine and freshwater) animals. Mutat Res 544:43–64. doi: 10.1016/S1383-5742(03)00017-6CrossRefGoogle Scholar
  116. Legler J, Van den Brink CE, Brouwer A, Murk AJ, van der Saag PT, Vethaak AD, van der Burg B (1999) Development of a stably transfected estrogen receptor-mediated luciferase reporter gene assay in the human T47D breast cancer cell line. Toxicol Sci 48:55–66. doi: 10.1093/toxsci/48.1.55CrossRefGoogle Scholar
  117. Leppänen MT, Kukkonen JVK (1998) Relative importance of ingested sediment and pore water as bioaccumulation routes for pyrene to oligochaete (Lumbriculus variegatus, Müller). Environ Sci Technol 32:1503–1508. doi: 10.1021/es970941kCrossRefGoogle Scholar
  118. Levin LA et al (2001) The function of marine critical transition zones and the importance of sediment biodiversity. Ecosystems 4:430–451. doi: 10.1007/s10021-001-0021-4CrossRefGoogle Scholar
  119. Liebig M et al (2010) Environmental risk assessment of ivermectin: a case study. Integr Environ Assess Manag 6:567–587. doi: 10.1002/ieam.96CrossRefGoogle Scholar
  120. Lu X, Reible DD, Fleeger JW (2004) Relative importance of ingested sediment versus pore water as uptake routes for PAHs to the deposit-feeding Oligochaete Ilyodrilus templetoni. Arch Environ Contam Toxicol 47:207–214. doi: 10.1007/s00244-004-3053-xCrossRefGoogle Scholar
  121. Maltby L (2013) Ecosystem services and the protection, restoration, and management of ecosystems exposed to chemical stressors. Environ Toxicol Chem 32:974–983. doi: 10.1002/etc.2212CrossRefGoogle Scholar
  122. Maltby L, Blake N, Brock TCM, Van den Brink PJ (2005) Insecticide species sensitivity distributions: importance of test species selection and relevance to aquatic ecosystems. Environ Toxicol Chem 24:379–388. doi: 10.1897/04-025r.1CrossRefGoogle Scholar
  123. Maltby L, Brock TCM, van den Brink PJ (2009) Fungicide risk assessment for aquatic ecosystems: importance of interspecific variation, toxic mode of action, and exposure regime. Environ Sci Technol 43:7556–7563. doi: 10.1021/es901461cCrossRefGoogle Scholar
  124. Marinković M, Verweij RA, Nummerdor GA, Jonker MJ, Kraak MHS, Admiraal W (2011) Life cycle responses of the midge Chironomus riparius to compounds with different modes of action. Environ Sci Technol 45:1645–1651. doi: 10.1021/es102904yCrossRefGoogle Scholar
  125. Maund S et al (1997) Development and evaluation of triggers for sediment toxicity testing of pesticides with benthic macroinvertebrates. Environ Toxicol Chem 16:2590–2596. doi: 10.1002/etc.5620161222CrossRefGoogle Scholar
  126. McIntyre A (1969) Ecology of marine meiobenthos. Biol Rev 44:245–288CrossRefGoogle Scholar
  127. McLeod PB, van den Heuvel-Greve MJ, Luoma SN, Luthy RG (2007) Biological uptake of polychlorinated biphenyls by Macoma balthica from sediment amended with activated carbon. Environ Toxicol Chem 26:980–987. doi: 10.1897/06-278r1.1CrossRefGoogle Scholar
  128. McLeod PB, Luoma SN, Luthy RG (2008) Biodynamic modeling of PCB uptake by Macoma balthica and Corbicula fluminea from sediment amended with activated carbon. Environ Sci Technol 42:484–490. doi: 10.1021/es070139aCrossRefGoogle Scholar
  129. MEA (2005) Ecosystem and human well-being: synthesis. MEA, Washington, DCGoogle Scholar
  130. Meador JP, Rice CA (2001) Impaired growth in the polychaete Armandia brevis exposed to tributyltin in sediment. Mar Environ Res 51:113–129. doi: 10.1016/S0141-1136(00)00033-7CrossRefGoogle Scholar
  131. Meador JP, Krone CA, Dyer DW, Varanasi U (1997) Toxicity of sediment-associated tributyltin to infaunal invertebrates: species comparison and the role of organic carbon. Mar Environ Res 43:219–241. doi: 10.1016/0141-1136(96)00090-6CrossRefGoogle Scholar
  132. Menone ML, Miglioranza KSB, Iribarne O, Aizpún de Moreno JE, Moreno VJ (2004) The role of burrowing beds and burrows of the SW Atlantic intertidal crab Chasmagnathus granulata in trapping organochlorine pesticides. Mar Pollut Bull 48:240–247. doi: 10.1016/S0025-326X(03)00394-1CrossRefGoogle Scholar
  133. Moermond CT, Zwolsman JJ, Koelmans AA (2005) Black carbon and ecological factors affect in situ biota to sediment accumulation factors for hydrophobic organic compounds in flood plain lakes. Environ Sci Technol 39:3101–3109CrossRefGoogle Scholar
  134. Morrison HA, Gobas FAPC, Lazar R, Haffner GD (1996) Development and verification of a bioaccumulation model for organic contaminants in benthic invertebrates. Environ Sci Technol 30:3377–3384. doi: 10.1021/es960280bCrossRefGoogle Scholar
  135. Mulligan CN, Fukue M, Sato Y (2009) Sediments contamination and sustainable remediation. CRC Press, Boca Raton, FLCrossRefGoogle Scholar
  136. Murk AJ, Legler J, Denison MS, Giesy JP, van de Guchte C, Brouwer A (1996) Chemical-Activated Luciferase Gene Expression (CALUX): a novel in vitro bioassay for Ah receptor active compounds in sediments and pore water. Fundam Appl Toxicol 33:149–160. doi: 10.1006/faat.1996.0152CrossRefGoogle Scholar
  137. Nealson KH (1997) Sediment bacteria: who’s there, What are they doing, and What’s new? Annu Rev Earth Planet Sci 25:403–434. doi: 10.1146/annurev.earth.25.1.403CrossRefGoogle Scholar
  138. Nendza M (2002) Inventory of marine biotest methods for the evaluation of dredged material and sediments. Chemosphere 48:865–883CrossRefGoogle Scholar
  139. Nguyen TH, Goss K-U, Ball WP (2005) Polyparameter linear free energy relationships for estimating the equilibrium partition of organic compounds between water and the natural organic matter in soils and sediments. Environ Sci Technol 39:913–924. doi: 10.1021/es048839sCrossRefGoogle Scholar
  140. Nienstedt KM et al (2012) Development of a framework based on an ecosystem services approach for deriving specific protection goals for environmental risk assessment of pesticides. Sci Total Environ 415:31–38CrossRefGoogle Scholar
  141. OECD (2000a) Test No. 106: Adsorption -- desorption using a batch equilibrium method. OECD, ParisCrossRefGoogle Scholar
  142. OECD (2000b) Test No. 216: Soil microorganisms: nitrogen transformation test. OECD, ParisGoogle Scholar
  143. OECD (2002) Test No. 308: Aerobic and anaerobic transformation in aquatic sediment systems. OECD, ParisGoogle Scholar
  144. OECD (2004a) Test No. 218: Sediment-water Chironomid toxicity using spiked sediment. OECD, ParisGoogle Scholar
  145. OECD (2004b) Test No. 219: Sediment-water Chironomid toxicity using spiked water. OECD, ParisGoogle Scholar
  146. OECD (2007) Test No. 225: Sediment-water Lumbriculus toxicity test using spiked sediment. OECD, ParisCrossRefGoogle Scholar
  147. OECD (2010) Test No. 233: Sediment-water Chironomid life-cycle toxicity test using spiked water or spiked sediment. OECD, ParisCrossRefGoogle Scholar
  148. OECD (2014) Accepted OECD test guideline for water-sediment Myriophyllum spicatum toxicity test (Myrio 2-Phase), April 2014. OECD, Paris, http://www.oecd.org/env/ehs/testing/section2effectsonbioticsystems.htmGoogle Scholar
  149. Palmer MA et al (2000) Linkages between aquatic sediment biota and life above sediments as potential drivers of biodiversity and ecological processes. Bioscience 50:1062–1075. doi: 10.1641/0006-3568(2000)050[1062:lbasba]2.0.co;2CrossRefGoogle Scholar
  150. Park RA, Clough JS, Wellman MC (2008) AQUATOX: Modeling environmental fate and ecological effects in aquatic ecosystems. Ecol Model 213:1–15. doi: 10.1016/j.ecolmodel.2008.01.015CrossRefGoogle Scholar
  151. Pastorok RA, Akçakaya R, Regan H, Ferson S, Bartell SM (2003) Role of ecological modeling in risk assessment. Hum Ecol Risk Assess 9:939–972. doi: 10.1080/713610017CrossRefGoogle Scholar
  152. Pistocchi A, Sarigiannis DA, Vizcaino P (2010) Spatially explicit multimedia fate models for pollutants in Europe: state of the art and perspectives. Sci Total Environ 408:3817–3830. doi: 10.1016/j.scitotenv.2009.10.046CrossRefGoogle Scholar
  153. Poot A, Jonker MTO, Gillissen F, Koelmans AA (2014) Explaining PAH desorption from sediments using Rock Eval analysis. Environ Pollut 193:247–253. doi: 10.1016/j.envpol.2014.06.041CrossRefGoogle Scholar
  154. Posthuma L, Suter GWI, Traas TP (2002) Species-sensitivity distributions in ecotoxicology. CRC Press, Lewis Publishers, Boca Raton, FLGoogle Scholar
  155. Posthuma L, Eijsackers HJP, Koelmans AA, Vijver MG (2008) Ecological effects of diffuse mixed pollution are site-specific and require higher-tier risk assessment to improve site management decisions: a discussion paper. Sci Total Environ 406:503–517CrossRefGoogle Scholar
  156. Redman AD, Parkerton TF, Paumen ML, McGrath JA, den Haan K, Di Toro DM (2014) Extension and validation of the target lipid model for deriving predicted no-effect concentrations for soils and sediments. Environ Toxicol Chem 33:2679–2687. doi: 10.1002/etc.2737CrossRefGoogle Scholar
  157. Rico A, Van den Brink PJ (2015) Evaluating aquatic invertebrate vulnerability to insecticides based on intrinsic sensitivity, biological traits, and toxic mode of action. Environ Toxicol Chem 34:1907–1917. doi: 10.1002/etc.3008CrossRefGoogle Scholar
  158. Rico A et al (2014) Use, fate and ecological risks of antibiotics applied in tilapia cage farming in Thailand. Environ Pollut 191:8–16. doi: 10.1016/j.envpol.2014.04.002CrossRefGoogle Scholar
  159. Rico A, Van den Brink PJ, Gylstra R, Focks A, Brock TCM (2015 online). Developing ecological scenarios for the prospective aquatic risk assessment of pesticides. Integrated Environmental Assessment and Management doi:  10.1002/ieam.1718CrossRefGoogle Scholar
  160. Rubach MN et al (2011) Framework for traits-based assessment in ecotoxicology. Integr Environ Assess Manag 7:172–186. doi: 10.1002/ieam.105CrossRefGoogle Scholar
  161. Rykiel EJ Jr (1996) Testing ecological models: the meaning of validation. Ecol Model 90:229–244. doi: 10.1016/0304-3800(95)00152-2CrossRefGoogle Scholar
  162. Sanco (2002) Working document: guidance document on aquatic ecotoxicology, vol rev. 4 (Final). European Commission, Health and Consumer Protection Directorate General, IspraGoogle Scholar
  163. Sanderson H et al (2007) Assessment of the environmental fate and effects of ivermectin in aquatic mesocosms. Aquat Toxicol 85:229–240. doi: 10.1016/j.aquatox.2007.08.011CrossRefGoogle Scholar
  164. Scheffer M, Beets J (1994) Ecological models and the pitfalls of causality. In: Mortensen E, Jeppesen E, Søndergaard M, Nielsen LK (eds) Nutrient dynamics and biological structure in shallow freshwater and brackish lakes, vol 94, Developments in hydrobiology. Springer, Amsterdam, pp 115–124. doi: 10.1007/978-94-017-2460-9_10CrossRefGoogle Scholar
  165. Schmolke A, Thorbek P, Chapman P, Grimm V (2010) Ecological models and pesticide risk assessment: current modeling practice. Environ Toxicol Chem 29:1006–1012. doi: 10.1002/etc.120CrossRefGoogle Scholar
  166. Selck H et al (2012) Explaining differences between bioaccumulation measurements in laboratory and field data through use of a probabilistic modeling approach. Integr Environ Assess Manag 8:42–63. doi: 10.1002/ieam.217CrossRefGoogle Scholar
  167. Semple KT, Morriss AWJ, Paton GI (2003) Bioavailability of hydrophobic organic contaminants in soils: fundamental concepts and techniques for analysis. Eur J Soil Sci 54:809–818. doi: 10.1046/j.1351-0754.2003.0564.xCrossRefGoogle Scholar
  168. Seth R, Mackay D, Muncke J (1999) Estimating the organic carbon partition coefficient and its variability for hydrophobic chemicals. Environ Sci Technol 33:2390–2394. doi: 10.1021/es980893jCrossRefGoogle Scholar
  169. Sidney LA, Diepens NJ, Guo X, Koelmans AA (in prep) Trait-based modelling of bioaccumulation by freshwater benthic invertebratesGoogle Scholar
  170. Smit MGD, Kater BJ, Jak RG, van den Heuvel-Greve MJ (2006) Translating bioassay results to field population responses using a Leslie-matrix model for the marine amphipod Corophium volutator. Ecol Model 196:515–526CrossRefGoogle Scholar
  171. Solomon KR et al (2008) Extrapolation practice for ecological effect and exposure characterization of chemicals. Society of Environmental and Chemistry (SETAC) & CRC Press, Boca Raton, FLGoogle Scholar
  172. Stronkhorst J, van Hattum B, Bowmer T (1999) Bioaccumulation and toxicity of tributyltin to a burrowing heart urchin and an amphipod in spiked, silty marine sediments. Environ Toxicol Chem 18:2343–2351. doi: 10.1002/etc.5620181031CrossRefGoogle Scholar
  173. Telfer T, Baird D, McHenery J, Stone J, Sutherland I, Wislocki P (2006) Environmental effects of the anti-sea lice (Copepoda: Caligidae) therapeutant emamectin benzoate under commercial use conditions in the marine environment. Aquaculture 260:163–180CrossRefGoogle Scholar
  174. Thain JE, Davies IM, Rae GH, Allen YT (1997) Acute toxicity of ivermectin to the lugworm Arenicola marina. Aquaculture 159:47–52. doi: 10.1016/S0044-8486(97)00210-XCrossRefGoogle Scholar
  175. Thomann RV, Connolly JP, Parkerton TF (1992) An equilibrium model of organic chemical accumulation in aquatic food webs with sediment interaction. Environ Toxicol Chem 11:615–629. doi: 10.1002/etc.5620110505CrossRefGoogle Scholar
  176. Thomann RV, Mahony JD, Mueller R (1995) Steady state model of biota sediment accumulation factor for metals in 2 marine bivalves. Environ Toxicol Chem 14:1989–1998. doi: 10.1897/1552-8618(1995)14[1989:smobsa]2.0.co;2CrossRefGoogle Scholar
  177. Van Beelen P, Doelman P (1997) Significance and application of microbial toxicity tests in assessing ecotoxicological risks of contaminants in soil and sediment. Chemosphere 34:455–499CrossRefGoogle Scholar
  178. van Beusekom OC, Eljarrat E, Barceló D, Koelmans AA (2006) Dynamic modeling of food-chain accumulation of brominated flame retardants in fish from the Ebro River Basin, Spain. Environ Toxicol Chem 25:2553–2560. doi: 10.1897/05-409r.1CrossRefGoogle Scholar
  179. Van den Brink PJ, Baveco JM, Verboom J, Heimbach F (2007) An individual-based approach to model spatial population dynamics of invertebrates in aquatic ecosystems after pesticide contamination. Environ Toxicol Chem 26:2226–2236. doi: 10.1897/07-022r.1CrossRefGoogle Scholar
  180. Van der Ploeg MJC, Baveco JM, Van der Hout A, Bakker R, Rietjens IMCM, Van den Brink NW (2011) Effects of C60 nanoparticle exposure on earthworms (Lumbricus rubellus) and implications for population dynamics. Environ Pollut 159:198–203. doi: 10.1016/j.envpol.2010.09.003CrossRefGoogle Scholar
  181. van Noort PCM, Koelmans AA (2012) Nonequilibrium of organic compounds in sediment–water systems. Consequences for risk assessment and remediation measures. Environ Sci Technol 46:10900–10908. doi: 10.1021/es300630tCrossRefGoogle Scholar
  182. Van Vlaardingen P, Traas TP, Aldenberg T (2004) ETX2.0 Normal distribution based hazardous concentration and fraction affected. RVIM, BilthovenGoogle Scholar
  183. van Wijngaarden RPA, Maltby L, Brock TCM (2015) Acute tier-1 and tier-2 effect assessment approaches in the EFSA Aquatic Guidance Document: are they sufficiently protective for insecticides? Pest Manag Sci 71:1059–1067. doi: 10.1002/ps.3937CrossRefGoogle Scholar
  184. Vanier C, Planas D, Sylvestre M (2001) Equilibrium partition theory applied to PCBs in macrophytes. Environ Sci Technol 35:4830–4833. doi: 10.1021/es001519yCrossRefGoogle Scholar
  185. Vermeire TG et al (1997) European Union System for the Evaluation of Substances (EUSES). Principles and structure. Chemosphere 34:1823–1836. doi: 10.1016/S0045-6535(97)00017-9CrossRefGoogle Scholar
  186. VICH (2004) Environmental impact assessment for veterinary medicinal products—phase II. International cooperation on harmonisation of technical requirements for registration of veterinary products. VICH, LondonGoogle Scholar
  187. Wall DH (2004) Sustaining biodiversity and ecosystem services in soils and sediments. Island Press, Washington, DCGoogle Scholar
  188. Wall DF, Blackburn TH, Brussaard L, Hutchings P, Palmer MA, Snelgrove PV (1997) Linking biodiversity and ecosystem functioning of soils and sediments. Ambio 26:556–562Google Scholar
  189. Weisbrod AV, Woodburn KB, Koelmans AA, Parkerton TF, McElroy AE, Borgå K (2009) Evaluation of bioaccumulation using in vivo laboratory and field studies. Integr Environ Assess Manag 5:598–623. doi: 10.1897/ieam_2009-004.1CrossRefGoogle Scholar
  190. Weston DP, You J, Harwood AD, Lydy MJ (2009) Whole sediment toxicity identification evaluation tools for pyrethroid insecticides: III. Temperature manipulation. Environ Toxicol Chem 28:173–180. doi: 10.1897/08-143.1CrossRefGoogle Scholar

Copyright information

© Springer International Publishing 2016

Authors and Affiliations

  • Noël J. Diepens
    • 1
  • Albert A. Koelmans
    • 1
    • 2
  • Hans Baveco
    • 3
  • Paul J. van den Brink
    • 1
    • 3
  • Martine J. van den Heuvel-Greve
    • 2
  • Theo C. M. Brock
    • 3
  1. 1.Aquatic Ecology and Water Quality Management Group, Department of Environmental SciencesWageningen UniversityWageningenThe Netherlands
  2. 2.IMARES, Institute for Marine Resources & Ecosystem StudiesWageningen URIJmuidenThe Netherlands
  3. 3.Environmental Risk Assessment TeamAlterraWageningenThe Netherlands

Personalised recommendations