Advertisement

Persistent Organic Pollutants and Concern Over the Link with Insulin Resistance Related Metabolic Diseases

  • Sara MostafalouEmail author
Part of the Reviews of Environmental Contamination and Toxicology book series (RECT, volume 238)

Abstract

Persistent organic pollutants (POPs) are mostly halogenated compounds tending to persist in the environment, enter into the food chain, and accumulate in fat mass of mammals due to their high lipophilicity. They include some organochlorine pesticides, polychlorinated biphenyls, brominated flame retardants and polycyclic aromatic hydrocarbons. Some of these chemicals were widely used in the past so that their residues can be detected in the human body, though their usage has been banned for years. POPs have been shown to perturb the health of biological systems in different ways evidenced by carcinogenicity and disrupting effects on endocrine, immune, and reproductive systems. There are many epidemiologic and experimental studies on the association of exposure to POPs with insulin resistance and related metabolic disorders like obesity, diabetes, and metabolic syndrome. Inflammation as a known mechanism accompanying insulin resistance has also been shown to arise in insulin target tissues exposed to POPs. This review addresses the breast milk concentration of POPs in different regions of the world, synthesizes the current information on the association of POPs with insulin resistance related metabolic disorders, and discusses the inflammation as an involved mechanism. Considering high prevalence of insulin resistance related metabolic diseases and their relation with POPs, much need is felt regarding international and regional programs to not only limit their production and usage but eliminate these persistent pollutants from the environment.

Keywords

Persistent organic pollutant Insulin resistance Obesity Diabetes Metabolic syndrome Inflammation 

Abbreviations

AhR

Aryl hydrocarbon receptor

BFR

Brominated flame retardants

BMI

Body mass index

CARDIA

Coronary Artery Risk Development in Young Adults

CHL

Chlordane

COX

Cyclooxygenase

CRP

C-reactive protein

DDE

p,p′-dichlorodiphenyltrichloroethane

DDT

Dichlorodiphenyltrichloroethane

HCB

Hexachlorobenzene

HCH

Hexachlorocyclohexane

HOMA

Homeostatic model assessment

HpCDD

Heptachlorodibenzo-p-dioxin

IL-6

Interleukin 6

IR

Insulin resistance

NF-κB

Nuclear factor kappa-light-chain-enhancer of activated B cells

OCDD

Octachlorodibenzo-p-dioxin

OCP

Organochlorine pesticide

PAH

Polycyclic aromatic hydrocarbons

PBB

Polybrominated biphenyls

PBDE

Polybrominated diphenyl ethers

PCB

Polychlorinated biphenyls

PCDD

Polychlorodibenzo-p-dioxin

PCDF

Polychlorodibenzofuran

PFNA

Perfluorononanoic acid

PIVUS

Prospective Investigation of the Vasculature in Uppsala Seniors

POP

Persistent organic pollutants

TBT

Tributyltin

TCDD

Tetrachlorodibenzo-p-dioxin

TNF-α

Tumor necrosis factor alpha

Notes

Acknowledgment

Thank to the Research Council of Ardabil University of Medical Sciences.

Conflict of Interests

There is no conflict of interest.

References

  1. Arrebola JP et al (2013) Adipose tissue concentrations of persistent organic pollutants and prevalence of type 2 diabetes in adults from Southern Spain. Environ Res 122:31–37. doi: 10.1016/j.envres.2012.12.001CrossRefGoogle Scholar
  2. Arsenescu V, Arsenescu RI, King V, Swanson H, Cassis LA (2008) Polychlorinated biphenyl-77 induces adipocyte differentiation and proinflammatory adipokines and promotes obesity and atherosclerosis. Environ Health Perspect 116:761–768. doi: 10.1289/ehp.10554CrossRefGoogle Scholar
  3. Azeredo A et al (2008) DDT and its metabolites in breast milk from the Madeira River basin in the Amazon, Brazil. Chemosphere 73:S246–S251. doi: 10.1016/j.chemosphere.2007.04.090CrossRefGoogle Scholar
  4. Bake MA, Linnika Z, Sudmalis P, Kocan A, Jursa S, Pike A, Ruce M (2007) Assessment of the exposure of breast milk to persistent organic pollutants in Latvia. Int J Hyg Environ Health 210:483–489. doi: 10.1016/j.ijheh.2007.01.016CrossRefGoogle Scholar
  5. Baker NA et al (2013) Coplanar polychlorinated biphenyls impair glucose homeostasis in lean C57BL/6 mice and mitigate beneficial effects of weight loss on glucose homeostasis in obese mice. Environ Health Perspect 121:105–110. doi: 10.1289/ehp.1205421CrossRefGoogle Scholar
  6. Behrooz RD, Sari AE, Bahramifar N, Ghasempouri SM (2009) Organochlorine pesticide and polychlorinated biphenyl residues in human milk from the Southern Coast of Caspian Sea, Iran. Chemosphere 74:931–937. doi: 10.1016/j.chemosphere.2008.10.014CrossRefGoogle Scholar
  7. Bi X et al (2006) Polybrominated diphenyl ethers in South China maternal and fetal blood and breast milk. Environ Pollut 144:1024–1030. doi: 10.1016/j.envpol.2005.12.056CrossRefGoogle Scholar
  8. Bordajandi LR, Abad E, González MJ (2008) Occurrence of PCBs, PCDD/Fs, PBDEs and DDTs in Spanish breast milk: enantiomeric fraction of chiral PCBs. Chemosphere 70:567–575. doi: 10.1016/j.chemosphere.2007.07.019CrossRefGoogle Scholar
  9. Bouwman H, Sereda B, Meinhardt HM (2006) Simultaneous presence of DDT and pyrethroid residues in human breast milk from a malaria endemic area in South Africa. Environ Pollut 144:902–917. doi: 10.1016/j.envpol.2006.02.002CrossRefGoogle Scholar
  10. Bouwman H, Kylin H, Sereda B, Bornman R (2012) High levels of DDT in breast milk: intake, risk, lactation duration, and involvement of gender. Environ Pollut 170:63–70. doi: 10.1016/j.envpol.2012.06.009CrossRefGoogle Scholar
  11. Chao HR, Wang SL, Lee CC, Yu HY, Lu YK, Papke O (2004) Level of polychlorinated dibenzo-p-dioxins, dibenzofurans and biphenyls (PCDD/Fs, PCBs) in human milk and the input to infant body burden. Food Chem Toxicol 42:1299–1308. doi: 10.1016/j.fct.2004.03.008CrossRefGoogle Scholar
  12. Chao HR, Wang SL, Su PH, Yu HY, Yu ST, Papke O (2005) Levels of polychlorinated dibenzo-p-dioxins and dibenzofurans in primipara breast milk from Taiwan: estimation of dioxins and furans intake for breastfed infants. J Hazard Mater 121:1–10. doi: 10.1016/j.jhazmat.2004.09.021CrossRefGoogle Scholar
  13. Chao HR, Wang SL, Lin TC, Chung XH (2006) Levels of organochlorine pesticides in human milk from central Taiwan. Chemosphere 62:1774–1785. doi: 10.1016/j.chemosphere.2005.07.036CrossRefGoogle Scholar
  14. Chao HR, Wang SL, Lee WJ, Wang YF, Päpke O (2007) Levels of polybrominated diphenyl ethers (PBDEs) in breast milk from central Taiwan and their relation to infant birth outcome and maternal menstruation effects. Environ Int 33:239–245. doi: 10.1016/j.envint.2006.09.013CrossRefGoogle Scholar
  15. Choi W, Eum SY, Lee YW, Hennig B, Robertson LW, Toborek M (2003) PCB 104-induced proinflammatory reactions in human vascular endothelial cells: relationship to cancer metastasis and atherogenesis. Toxicol Sci 75:47–56. doi: 10.1093/toxsci/kfg149CrossRefGoogle Scholar
  16. Cok I, Mazmanci B, Mazmanci MA, Turgut C, Henkelmann B, Schramm KW (2012) Analysis of human milk to assess exposure to PAHs, PCBs and organochlorine pesticides in the vicinity Mediterranean city Mersin, Turkey. Environ Int 40:63–69. doi: 10.1016/j.envint.2011.11.012CrossRefGoogle Scholar
  17. Colles A et al (2008) Fourth WHO-coordinated survey of human milk for persistent organic pollutants (POPs): Belgian results. Chemosphere 73:907–914. doi: 10.1016/j.chemosphere.2008.07.002CrossRefGoogle Scholar
  18. Croes K et al (2012) Persistent organic pollutants (POPs) in human milk: a biomonitoring study in rural areas of Flanders (Belgium). Chemosphere 89:988–994. doi: 10.1016/j.chemosphere.2012.06.058CrossRefGoogle Scholar
  19. Dali-Youcef N, Mecili M, Ricci R, Andres E (2013) Metabolic inflammation: connecting obesity and insulin resistance. Ann Med 45:242–253. doi: 10.3109/07853890.2012.705015CrossRefGoogle Scholar
  20. Darnerud PO et al (2011) Levels of brominated flame retardants and other persistent organic pollutants in breast milk samples from Limpopo Province, South Africa. Sci Total Environ 409:4048–4053. doi: 10.1016/j.scitotenv.2011.05.054CrossRefGoogle Scholar
  21. de Luca C, Olefsky JM (2008) Inflammation and insulin resistance. FEBS Lett 582:97–105. doi: 10.1016/j.febslet.2007.11.057CrossRefGoogle Scholar
  22. Devanathan G et al (2009) Persistent organochlorines in human breast milk from major metropolitan cities in India. Environ Pollut 157:148–154. doi: 10.1016/j.envpol.2008.07.011CrossRefGoogle Scholar
  23. Dirinck E et al (2011) Obesity and persistent organic pollutants: possible obesogenic effect of organochlorine pesticides and polychlorinated biphenyls. Obesity (Silver Spring) 19:709–714. doi: 10.1038/oby.2010.133CrossRefGoogle Scholar
  24. Dirinck EL, Dirtu AC, Govindan M, Covaci A, Van Gaal LF, Jorens PG (2014) Exposure to persistent organic pollutants: relationship with abnormal glucose metabolism and visceral adiposity. Diabetes Care 37:1951–1958. doi: 10.2337/dc13-2329CrossRefGoogle Scholar
  25. Eggesbo M et al (2009) Levels of hexachlorobenzene (HCB) in breast milk in relation to birth weight in a Norwegian cohort. Environ Res 109:559–566. doi: 10.1016/j.envres.2009.04.001CrossRefGoogle Scholar
  26. Ennaceur S, Gandoura N, Driss MR (2008) Distribution of polychlorinated biphenyls and organochlorine pesticides in human breast milk from various locations in Tunisia: levels of contamination, influencing factors, and infant risk assessment. Environ Res 108:86–93. doi: 10.1016/j.envres.2008.05.005CrossRefGoogle Scholar
  27. Erdogrul O, Covaci A, Kurtul N, Schepens P (2004) Levels of organohalogenated persistent pollutants in human milk from Kahramanmaras region, Turkey. Environ Int 30:659–666. doi: 10.1016/j.envint.2003.12.004CrossRefGoogle Scholar
  28. Eslami B et al (2006) Large-scale evaluation of the current level of polybrominated diphenyl ethers (PBDEs) in breast milk from 13 regions of Japan. Chemosphere 63:554–561. doi: 10.1016/j.chemosphere.2005.09.067CrossRefGoogle Scholar
  29. Faerch K, Hojlund K, Vind BF, Vaag A, Dalgard C, Nielsen F, Grandjean P (2012) Increased serum concentrations of persistent organic pollutants among prediabetic individuals: potential role of altered substrate oxidation patterns. J Clin Endocrinol Metab 97:E1705–E1713. doi: 10.1210/jc.2012-1342CrossRefGoogle Scholar
  30. Fang X, Gao G, Xue H, Zhang X, Wang H (2012) In vitro and in vivo studies of the toxic effects of perfluorononanoic acid on rat hepatocytes and Kupffer cells. Environ Toxicol Pharmacol 34:484–494. doi: 10.1016/j.etap.2012.06.011CrossRefGoogle Scholar
  31. Fujii Y, Ito Y, Harada KH, Hitomi T, Koizumi A, Haraguchi K (2012) Comparative survey of levels of chlorinated cyclodiene pesticides in breast milk from some cities of China, Korea and Japan. Chemosphere 89:452–457. doi: 10.1016/j.chemosphere.2012.05.098CrossRefGoogle Scholar
  32. Gebremichael S, Birhanu T, Tessema DA (2013) Analysis of organochlorine pesticide residues in human and cow’s milk in the towns of Asendabo, Serbo and Jimma in South-Western Ethiopia. Chemosphere 90:1652–1657. doi: 10.1016/j.chemosphere.2012.09.008CrossRefGoogle Scholar
  33. Gray SL, Shaw AC, Gagne AX, Chan HM (2013) Chronic exposure to PCBs (Aroclor 1254) exacerbates obesity-induced insulin resistance and hyperinsulinemia in mice. J Toxicol Environ Health A 76:701–715. doi: 10.1080/15287394.2013.796503CrossRefGoogle Scholar
  34. Guerranti C, Palmieri M, Mariottini M, Focardi SE (2011) Persistent organic pollutants in human milk from central Italy: levels and time trends. ISRN Toxicol 2011:107514. doi: 10.5402/2011/107514CrossRefGoogle Scholar
  35. Halldorsson T (2012) Dietary exposures to persistent organic pollutants and fetal growth. In: Preedy VR (ed) Handbook of growth and growth monitoring in health and disease. Springer, New York, NY, pp 2559–2578. doi: 10.1007/978-1-4419-1795-9_152CrossRefGoogle Scholar
  36. Haraguchi K et al (2009) Levels and regional trends of persistent organochlorines and polybrominated diphenyl ethers in Asian breast milk demonstrate POPs signatures unique to individual countries. Environ Int 35:1072–1079. doi: 10.1016/j.envint.2009.06.003CrossRefGoogle Scholar
  37. Harden FA, Toms LML, Symons R, Fürst P, Berry Y, Müller JF (2007) Evaluation of dioxin-like chemicals in pooled human milk samples collected in Australia. Chemosphere 67:S325–S333. doi: 10.1016/j.chemosphere.2006.05.126CrossRefGoogle Scholar
  38. Hassine SB, Ameur WB, Gandoura N, Driss MR (2012) Determination of chlorinated pesticides, polychlorinated biphenyls, and polybrominated diphenyl ethers in human milk from Bizerte (Tunisia) in 2010. Chemosphere 89:369–377. doi: 10.1016/j.chemosphere.2012.05.035CrossRefGoogle Scholar
  39. Hedley AJ et al (2010) Residues of persistent organic pollutants (POPs) in human milk in Hong Kong. Chemosphere 79:259–265. doi: 10.1016/j.chemosphere.2010.01.047CrossRefGoogle Scholar
  40. Hennig B, Meerarani P, Slim R, Toborek M, Daugherty A, Silverstone AE, Robertson LW (2002) Proinflammatory properties of coplanar PCBs: in vitro and in vivo evidence. Toxicol Appl Pharmacol 181:174–183, S0041008X02994081 [pii]CrossRefGoogle Scholar
  41. Howell G 3rd, Mangum L (2011) Exposure to bioaccumulative organochlorine compounds alters adipogenesis, fatty acid uptake, and adipokine production in NIH3T3-L1 cells. Toxicol In Vitro 25:394–402. doi: 10.1016/j.tiv.2010.10.015CrossRefGoogle Scholar
  42. Hui LL et al (2008) DDT levels in human milk in Hong Kong, 2001-02. Chemosphere 73:50–55. doi: 10.1016/j.chemosphere.2008.05.045CrossRefGoogle Scholar
  43. Ibrahim MM et al (2011) Chronic consumption of farmed salmon containing persistent organic pollutants causes insulin resistance and obesity in mice. PLoS One 6:e25170. doi: 10.1371/journal.pone.0025170CrossRefGoogle Scholar
  44. Imbeault P et al (2012) Dysregulation of cytokine response in Canadian First Nations communities: is there an association with persistent organic pollutant levels? PLoS One 7:e39931. doi: 10.1371/journal.pone.0039931CrossRefGoogle Scholar
  45. Ingelido AM et al (2007) Polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) in milk from Italian women living in Rome and Venice. Chemosphere 67:S301–S306. doi: 10.1016/j.chemosphere.2006.05.111CrossRefGoogle Scholar
  46. Jaraczewska K, Lulek J, Covaci A, Voorspoels S, Kaluba-Skotarczak A, Drews K, Schepens P (2006) Distribution of polychlorinated biphenyls, organochlorine pesticides and polybrominated diphenyl ethers in human umbilical cord serum, maternal serum and milk from Wielkopolska region, Poland. Sci Total Environ 372:20–31. doi: 10.1016/j.scitotenv.2006.03.030CrossRefGoogle Scholar
  47. Jurjanz S, Rychen G, Feidt C (2008) Dairy livestock exposure to persistent organic pollutants and their transfer to milk: a review. In: Faye B, Sinyavskiy Y (eds) Impact of pollution on animal products, NATO science for peace and security series. Series C: environmental security. Springer, Netherlands, pp 63–83. doi: 10.1007/978-1-4020-8359-4_7CrossRefGoogle Scholar
  48. Kazda R, Hajšlová J, Poustka J, Čajka T (2004) Determination of polybrominated diphenyl ethers in human milk samples in the Czech Republic: comparative study of negative chemical ionisation mass spectrometry and time-of-flight high-resolution mass spectrometry. Anal Chim Acta 520:237–243. doi: 10.1016/j.aca.2004.04.069CrossRefGoogle Scholar
  49. Kim KS, Hong NS, Jacobs DR Jr, Lee DH (2012a) Interaction between persistent organic pollutants and c-reactive protein in estimating insulin resistance among non-diabetic adults. J Prev Med Public Health 45:62–69. doi: 10.3961/jpmph.2012.45.2.62CrossRefGoogle Scholar
  50. Kim MJ et al (2012b) Inflammatory pathway genes belong to major targets of persistent organic pollutants in adipose cells. Environ Health Perspect 120:508–514. doi: 10.1289/ehp.1104282CrossRefGoogle Scholar
  51. Kumar A, Dayal P, Shukla G, Singh G, Joseph PE (2006) DDT and HCH residue load in mother’s breast milk: a survey of lactating mother’s from remote villages in Agra region. Environ Int 32:248–251. doi: 10.1016/j.envint.2005.08.019CrossRefGoogle Scholar
  52. Kunisue T, Someya M, Kayama F, Jin Y, Tanabe S (2004) Persistent organochlorines in human breast milk collected from primiparae in Dalian and Shenyang, China. Environ Pollut 131:381–392. doi: 10.1016/j.envpol.2004.03.008CrossRefGoogle Scholar
  53. Kunisue T et al (2006) Contamination status of persistent organochlorines in human breast milk from Japan: recent levels and temporal trend. Chemosphere 64:1601–1608. doi: 10.1016/j.chemosphere.2005.11.010CrossRefGoogle Scholar
  54. Kwon O et al (2002) Expression of cyclooxygenase-2 and pro-inflammatory cytokines induced by 2,2′,4,4′,5,5′-hexachlorobiphenyl (PCB 153) in human mast cells requires NF-kappa B activation. Biol Pharm Bull 25:1165–1168. doi: 10.1248/bpb.25.1165CrossRefGoogle Scholar
  55. Lee DH (2012) Persistent organic pollutants and obesity-related metabolic dysfunction: focusing on type 2 diabetes. Epidemiol Health 34:e2012002. doi: 10.4178/epih/e2012002CrossRefGoogle Scholar
  56. Lee DH, Jacobs DR, Porta M (2006a) Could low‐level background exposure to persistent organic pollutants contribute to the social burden of type 2 diabetes? J Epidemiol Community Health 60:1006–1008. doi: 10.1136/jech.2006.053389CrossRefGoogle Scholar
  57. Lee DH, Lee IK, Song K, Steffes M, Toscano W, Baker BA, Jacobs DR Jr (2006b) A strong dose-response relation between serum concentrations of persistent organic pollutants and diabetes: results from the National Health and Examination Survey 1999-2002. Diabetes Care 29:1638–1644. doi: 10.2337/dc06-0543CrossRefGoogle Scholar
  58. Lee DH, Lee IK, Jin SH, Steffes M, Jacobs DR Jr (2007a) Association between serum concentrations of persistent organic pollutants and insulin resistance among nondiabetic adults: results from the National Health and Nutrition Examination Survey 1999-2002. Diabetes Care 30:622–628. doi: 10.2337/dc06-2190CrossRefGoogle Scholar
  59. Lee DH, Lee IK, Porta M, Steffes M, Jacobs DR Jr (2007b) Relationship between serum concentrations of persistent organic pollutants and the prevalence of metabolic syndrome among non-diabetic adults: results from the National Health and Nutrition Examination Survey 1999-2002. Diabetologia 50:1841–1851. doi: 10.1007/s00125-007-0755-4CrossRefGoogle Scholar
  60. Lee DH, Steffes MW, Sjodin A, Jones RS, Needham LL, Jacobs DR Jr (2010) Low dose of some persistent organic pollutants predicts type 2 diabetes: a nested case-control study. Environ Health Perspect 118:1235–1242. doi: 10.1289/ehp.0901480CrossRefGoogle Scholar
  61. Lee DH, Steffes MW, Sjodin A, Jones RS, Needham LL, Jacobs DR Jr (2011) Low dose organochlorine pesticides and polychlorinated biphenyls predict obesity, dyslipidemia, and insulin resistance among people free of diabetes. PLoS One 6:e15977. doi: 10.1371/journal.pone.0015977CrossRefGoogle Scholar
  62. Lee DH, Lind L, Jacobs DR Jr, Salihovic S, van Bavel B, Lind PM (2012) Associations of persistent organic pollutants with abdominal obesity in the elderly: the Prospective Investigation of the Vasculature in Uppsala Seniors (PIVUS) study. Environ Int 40:170–178. doi: 10.1016/j.envint.2011.07.010CrossRefGoogle Scholar
  63. Leng J-H, Kayama F, Wang P-Y, Nakamura M, Nakata T, Wang Y (2009) Levels of persistent organic pollutants in human milk in two Chinese coastal cities, Tianjin and Yantai: influence of fish consumption. Chemosphere 75:634–639. doi: 10.1016/j.chemosphere.2009.01.008CrossRefGoogle Scholar
  64. Li J, Yu H, Zhao Y, Zhang G, Wu Y (2008) Levels of polybrominated diphenyl ethers (PBDEs) in breast milk from Beijing, China. Chemosphere 73:182–186. doi: 10.1016/j.chemosphere.2008.05.019CrossRefGoogle Scholar
  65. Li J et al (2009) A national survey of polychlorinated dioxins, furans (PCDD/Fs) and dioxin-like polychlorinated biphenyls (dl-PCBs) in human milk in China. Chemosphere 75:1236–1242. doi: 10.1016/j.chemosphere.2009.01.073CrossRefGoogle Scholar
  66. Lignell S, Aune M, Darnerud PO, Cnattingius S, Glynn A (2009) Persistent organochlorine and organobromine compounds in mother’s milk from Sweden 1996-2006: compound-specific temporal trends. Environ Res 109:760–767. doi: 10.1016/j.envres.2009.04.011CrossRefGoogle Scholar
  67. Lim JS, Lee DH, Jacobs DR Jr (2008) Association of brominated flame retardants with diabetes and metabolic syndrome in the U.S. population, 2003-2004. Diabetes Care 31:1802–1807. doi: 10.2337/dc08-0850CrossRefGoogle Scholar
  68. Minh NH et al (2004) Persistent organochlorine residues in human breast milk from Hanoi and Hochiminh City, Vietnam: contamination, accumulation kinetics and risk assessment for infants. Environ Pollut 129:431–441. doi: 10.1016/j.envpol.2003.11.012CrossRefGoogle Scholar
  69. Mishra K, Sharma RC (2011) Assessment of organochlorine pesticides in human milk and risk exposure to infants from North-East India. Sci Total Environ 409:4939–4949. doi: 10.1016/j.scitotenv.2011.07.038CrossRefGoogle Scholar
  70. Mostafalou S, Abdollahi M (2012) The role of environmental pollution of pesticides in human diabetes. Int J Pharmacol 8:139–140. doi:103923/ijp.2012.139.140CrossRefGoogle Scholar
  71. Mostafalou S, Abdollahi M (2013) Pesticides and human chronic diseases: evidences, mechanisms, and perspectives. Toxicol Appl Pharmacol 268:157–177. doi: 10.1016/j.taap.2013.01.025CrossRefGoogle Scholar
  72. Mostafalou S, Eghbal MA, Nili-Ahmadabadi A, Baeeri M, Abdollahi M (2012) Biochemical evidence on the potential role of organophosphates in hepatic glucose metabolism toward insulin resistance through inflammatory signaling and free radical pathways. Toxicol Ind Health 28:840–851. doi: 10.1177/0748233711425073CrossRefGoogle Scholar
  73. Mueller JF, Harden F, Toms LM, Symons R, Furst P (2008) Persistent organochlorine pesticides in human milk samples from Australia. Chemosphere 70:712–720. doi: 10.1016/j.chemosphere.2007.06.037CrossRefGoogle Scholar
  74. Ngwa E, Kengne A-P, Tiedeu-Atogho B, Mofo-Mato E-P, Sobngwi E (2015) Persistent organic pollutants as risk factors for type 2 diabetes. Diabetol Metab Syndr 7:1–15. doi: 10.1186/s13098-015-0031-6CrossRefGoogle Scholar
  75. Ntow WJ, Tagoe LM, Drechsel P, Kelderman P, Gijzen HJ, Nyarko E (2008) Accumulation of persistent organochlorine contaminants in milk and serum of farmers from Ghana. Environ Res 106:17–26. doi: 10.1016/j.envres.2007.05.020CrossRefGoogle Scholar
  76. Nyska A, Jokinen MP, Brix AE et al (2004) Exocrine pancreatic pathology in female Harlan Sprague-Dawley rats after chronic treatment with 2,3,7,8-tetrachlorodibenzo-p-dioxin and dioxin-like compounds. Environ Health Perspect 112:903–909, PMCID: PMC1242020CrossRefGoogle Scholar
  77. Odegaard JI, Chawla A (2013) Pleiotropic actions of insulin resistance and inflammation in metabolic homeostasis. Science 339:172–177. doi: 10.1126/science.1230721CrossRefGoogle Scholar
  78. Pal S, Blais JM, Robidoux MA, Haman F, Krummel E, Seabert TA, Imbeault P (2013) The association of type 2 diabetes and insulin resistance/secretion with persistent organic pollutants in two First Nations communities in northern Ontario. Diabetes Metab J 39:497–504. doi: 10.1016/j.diabet.2013.01.006CrossRefGoogle Scholar
  79. Park SK, Son HK, Lee SK, Kang JH, Chang YS, Jacobs DR, Lee DH (2010) Relationship between serum concentrations of organochlorine pesticides and metabolic syndrome among non-diabetic adults. J Prev Med Public Health 43:1–8. doi: 10.3961/jpmph.2010.43.1.1CrossRefGoogle Scholar
  80. Park MH et al (2014) Age-related inflammation and insulin resistance: a review of their intricate interdependency. Arch Pharm Res 37:1507–1514. doi: 10.1007/s12272-014-0474-6CrossRefGoogle Scholar
  81. Persky V et al (2011) Associations of polychlorinated biphenyl exposure and endogenous hormones with diabetes in post-menopausal women previously employed at a capacitor manufacturing plant. Environ Res 111:817–824. doi: 10.1016/j.envres.2011.05.012CrossRefGoogle Scholar
  82. Persky V et al (2012) Polychlorinated biphenyl exposure, diabetes and endogenous hormones: a cross-sectional study in men previously employed at a capacitor manufacturing plant. Environ Health 11:57. doi: 10.1186/1476-069X-11-57CrossRefGoogle Scholar
  83. Polder A, Gabrielsen GW, Odland JO, Savinova TN, Tkachev A, Loken KB, Skaare JU (2008a) Spatial and temporal changes of chlorinated pesticides, PCBs, dioxins (PCDDs/PCDFs) and brominated flame retardants in human breast milk from Northern Russia. Sci Total Environ 391:41–54. doi: 10.1016/j.scitotenv.2007.10.045CrossRefGoogle Scholar
  84. Polder A, Thomsen C, Lindstrom G, Loken KB, Skaare JU (2008b) Levels and temporal trends of chlorinated pesticides, polychlorinated biphenyls and brominated flame retardants in individual human breast milk samples from Northern and Southern Norway. Chemosphere 73:14–23. doi: 10.1016/j.chemosphere.2008.06.002CrossRefGoogle Scholar
  85. Polder A, Skaare JU, Skjerve E, Loken KB, Eggesbo M (2009) Levels of chlorinated pesticides and polychlorinated biphenyls in Norwegian breast milk (2002-2006), and factors that may predict the level of contamination. Sci Total Environ 407:4584–4590. doi: 10.1016/j.scitotenv.2009.04.032CrossRefGoogle Scholar
  86. Raab U, Preiss U, Albrecht M, Shahin N, Parlar H, Fromme H (2008) Concentrations of polybrominated diphenyl ethers, organochlorine compounds and nitro musks in mother’s milk from Germany (Bavaria). Chemosphere 72:87–94. doi: 10.1016/j.chemosphere.2008.01.053CrossRefGoogle Scholar
  87. Rignell-Hydbom A, Rylander L, Hagmar L (2007) Exposure to persistent organochlorine pollutants and type 2 diabetes mellitus. Hum Exp Toxicol 26:447–452. doi: 10.1177/0960327107076886CrossRefGoogle Scholar
  88. Ritter L, Solomon KR, Forget J, Stemeroff M, O’Leary C (2007) Persistent organic pollutants. United Nations Environment ProgrammeGoogle Scholar
  89. Ruzzin J (2012) Public health concern behind the exposure to persistent organic pollutants and the risk of metabolic diseases. BMC Public Health 12:1–8. doi: 10.1186/1471-2458-12-298CrossRefGoogle Scholar
  90. Ruzzin J et al (2010) Persistent organic pollutant exposure leads to insulin resistance syndrome. Environ Health Perspect 118:465–471. doi: 10.1289/ehp.0901321CrossRefGoogle Scholar
  91. Schuhmacher M, Kiviranta H, Vartiainen T, Domingo JL (2007) Concentrations of polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) in milk of women from Catalonia, Spain. Chemosphere 67:S295–S300. doi: 10.1016/j.chemosphere.2006.05.110CrossRefGoogle Scholar
  92. Schuhmacher M, Kiviranta H, Ruokojärvi P, Nadal M, Domingo JL (2009) Concentrations of PCDD/Fs, PCBs and PBDEs in breast milk of women from Catalonia, Spain: a follow-up study. Environ Int 35:607–613. doi: 10.1016/j.envint.2008.12.003CrossRefGoogle Scholar
  93. She J, Holden A, Sharp M, Tanner M, Williams-Derry C, Hooper K (2007) Polybrominated diphenyl ethers (PBDEs) and polychlorinated biphenyls (PCBs) in breast milk from the Pacific Northwest. Chemosphere 67:S307–S317. doi: 10.1016/j.chemosphere.2006.05.154CrossRefGoogle Scholar
  94. Someya M et al (2010) Persistent organic pollutants in breast milk of mothers residing around an open dumping site in Kolkata, India: specific dioxin-like PCB levels and fish as a potential source. Environ Int 36:27–35. doi: 10.1016/j.envint.2009.09.003CrossRefGoogle Scholar
  95. Subramanian A, Ohtake M, Kunisue T, Tanabe S (2007) High levels of organochlorines in mothers’ milk from Chennai (Madras) city, India. Chemosphere 68:928–939. doi: 10.1016/j.chemosphere.2007.01.041CrossRefGoogle Scholar
  96. Sudaryanto A, Kunisue T, Kajiwara N, Iwata H, Adibroto TA, Hartono P, Tanabe S (2006) Specific accumulation of organochlorines in human breast milk from Indonesia: levels, distribution, accumulation kinetics and infant health risk. Environ Pollut 139:107–117. doi: 10.1016/j.envpol.2005.04.028CrossRefGoogle Scholar
  97. Sudaryanto A, Kajiwara N, Takahashi S, Muawanah, Tanabe S (2008) Geographical distribution and accumulation features of PBDEs in human breast milk from Indonesia. Environ Pollut 151:130–138. doi: 10.1016/j.envpol.2007.02.016CrossRefGoogle Scholar
  98. Sun SJ et al (2005) Persistent organic pollutants in human milk in women from urban and rural areas in northern China. Environ Res 99:285–293. doi: 10.1016/j.envres.2005.05.007CrossRefGoogle Scholar
  99. Szyrwińska K, Lulek J (2007) Exposure to specific polychlorinated biphenyls and some chlorinated pesticides via breast milk in Poland. Chemosphere 66:1895–1903. doi: 10.1016/j.chemosphere.2006.08.010CrossRefGoogle Scholar
  100. Tillett T (2010) Chew on this: persistent organic pollutants may promote insulin resistance syndrome. Environ Health Perspect 118:A173. doi: 10.1289/ehp.118-a173bCrossRefGoogle Scholar
  101. Todaka T et al (2010) Relationship between the concentrations of polychlorinated dibenzo-p-dioxins, polychlorinated dibenzofurans, and polychlorinated biphenyls in maternal blood and those in breast milk. Chemosphere 78:185–192. doi: 10.1016/j.chemosphere.2009.09.047CrossRefGoogle Scholar
  102. Toms LM, Harden FA, Symons RK, Burniston D, Furst P, Muller JF (2007) Polybrominated diphenyl ethers (PBDEs) in human milk from Australia. Chemosphere 68:797–803. doi: 10.1016/j.chemosphere.2007.02.059CrossRefGoogle Scholar
  103. Toms LM, Hearn L, Kennedy K, Harden F, Bartkow M, Temme C, Mueller JF (2009) Concentrations of polybrominated diphenyl ethers (PBDEs) in matched samples of human milk, dust and indoor air. Environ Int 35:864–869. doi: 10.1016/j.envint.2009.03.001CrossRefGoogle Scholar
  104. Tsang HL, Wu S, Leung CK, Tao S, Wong MH (2011) Body burden of POPs of Hong Kong residents, based on human milk, maternal and cord serum. Environ Int 37:142–151. doi: 10.1016/j.envint.2010.08.010CrossRefGoogle Scholar
  105. Turyk M, Anderson HA, Knobeloch L, Imm P, Persky VW (2009) Prevalence of diabetes and body burdens of polychlorinated biphenyls, polybrominated diphenyl ethers, and p, p′-diphenyldichloroethene in Great Lakes sport fish consumers. Chemosphere 75:674–679. doi: 10.1016/j.chemosphere.2008.12.035CrossRefGoogle Scholar
  106. Uemura H et al (2009) Prevalence of metabolic syndrome associated with body burden levels of dioxin and related compounds among Japan’s general population. Environ Health Perspect 117:568–573. doi: 10.1289/ehp.0800012CrossRefGoogle Scholar
  107. Wahlang B et al (2013) Polychlorinated biphenyl 153 is a diet-dependent obesogen that worsens nonalcoholic fatty liver disease in male C57BL6/J mice. J Nutr Biochem 24:1587–1595. doi: 10.1016/j.jnutbio.2013.01.009CrossRefGoogle Scholar
  108. Wang YF et al (2008) Associations of polybrominated diphenyl ethers (PBDEs) in breast milk and dietary habits and demographic factors in Taiwan. Food Chem Toxicol 46:1925–1932. doi: 10.1016/j.fct.2008.01.032CrossRefGoogle Scholar
  109. Wang C, Xu S, Lv Z, Li Y, Wang Y, Chen T (2010a) Exposure to persistent organic pollutants as potential risk factors for developing diabetes. Sci China Chem 53:980–994. doi: 10.1007/s11426-010-0157-1CrossRefGoogle Scholar
  110. Wang J, Lv X, Du Y (2010b) Inflammatory response and insulin signaling alteration induced by PCB77. J Environ Sci (China) 22:1086–1090CrossRefGoogle Scholar
  111. Wieser V, Moschen AR, Tilg H (2013) Inflammation, cytokines and insulin resistance: a clinical perspective. Arch Immunol Ther Exp (Warsz) 61:119–125. doi: 10.1007/s00005-012-0210-1CrossRefGoogle Scholar
  112. Zhao G, Xu Y, Li W, Han G, Ling B (2007) PCBs and OCPs in human milk and selected foods from Luqiao and Pingqiao in Zhejiang, China. Sci Total Environ 378:281–292. doi: 10.1016/j.scitotenv.2007.03.008CrossRefGoogle Scholar
  113. Zhou P et al (2011) National survey of the levels of persistent organochlorine pesticides in the breast milk of mothers in China. Environ Pollut 159:524–531. doi: 10.1016/j.envpol.2010.10.014CrossRefGoogle Scholar
  114. Zietz BP, Hoopmann M, Funcke M, Huppmann R, Suchenwirth R, Gierden E (2008) Long-term biomonitoring of polychlorinated biphenyls and organochlorine pesticides in human milk from mothers living in northern Germany. Int J Hyg Environ Health 211:624–638. doi: 10.1016/j.ijheh.2008.04.001CrossRefGoogle Scholar

Copyright information

© Springer International Publishing 2016

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-NonCommercial 2.5 International License (http://creativecommons.org/licenses/by-nc/2.5/), which permits any noncommercial use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

Authors and Affiliations

  1. 1.Department of Pharmacology and Toxicology, School of PharmacyArdabil University of Medical SciencesArdabilIran

Personalised recommendations