Advertisement

pp 1-41 | Cite as

Organometallic Approaches to [3.1.0] Bicycles in Process Chemistry

  • Alan M. HydeEmail author
  • Eric R. Ashley
Chapter
Part of the Topics in Organometallic Chemistry book series

Abstract

Within the field of process chemistry, all available methods of synthesis are typically considered for the preparation of complex targets. Early in development, speed and flexibility are paramount, but as larger quantities of clinical candidates are required later in development, a route is typically chosen based on process robustness, product quality, and its overall efficiency with respect to several metrics. In this chapter we will highlight the preparation of active pharmaceutical compounds and intermediates containing [3.1.0] bicycles for which stoichiometric main group or catalytic transition metals were utilized to construct C–C bonds. We will focus on four broad classes of reactions: Intermolecular metallocarbenoid cyclopropanation, Michael-initiated ring closures, intramolecular metallocarbenoid cyclopropanation, and those utilizing nucleophilic displacements. A comparative method assessment is presented to illustrate which targets are most amenable to a particular chemistry for obtaining high yields and controlling stereochemistry.

Keywords

Azabicyclo[3.1.0]hexane Bicyclo[3.1.0]hexane Cyclopropanation Process chemistry 

References

  1. 1.
    Kang P, Choo J, Jeong M, Kwon Y (2000). J Mol Struct 519:75Google Scholar
  2. 2.
    Talele TT (2016). J Med Chem 59:8712Google Scholar
  3. 3.
    Monn JA, Valli MJ, Massey SM, Wright RA, Salhoff CR, Johnson BG, Howe T, Alt CA, Rhodes GA, Robey RL, Griffey KR, Tizzano JP, Kallman MJ, Helton DR, Schoepp DD (1997). J Med Chem 40:528Google Scholar
  4. 4.
    Kobayashi T, Suemasa A, Igawa A, Ide S, Fukuda H, Abe H, Arisawa M, Minami M, Shuto S (2014). ACS Med Chem Lett 5:889Google Scholar
  5. 5.
    Jimeno C, Pericàs MA, Wessel HP, Alker A, Müller K (2011). ChemMedChem 6:1792Google Scholar
  6. 6.
    Bogen SL, Arasappan A, Bennett F, Chen K, Jao E, Liu Y-T, Lovey RG, Venkatraman S, Pan W, Parekh T, Pike RE, Ruan S, Liu R, Baroudy B, Agrawal S, Chase R, Ingravallo P, Pichardo J, Prongay A, Brisson J-M, Hsieh TY, Cheng K-C, Kemp SJ, Levy OE, Lim-Wilby M, Tamura SY, Saksena AK, Girijavallabhan V, Njoroge FG (2006). J Med Chem 49:2750Google Scholar
  7. 7.
    Jacobson KA, Ji X-d, Li A-H, Melman N, Siddiqui MA, Shin K-J, Marquez VE, Ravi RG (2000). J Med Chem 43:2196Google Scholar
  8. 8.
    Comin MJ, Agbaria R, Ben-Kasus T, Huleihel M, Liao C, Sun G, Nicklaus MC, Deschamps JR, Parrish DA, Marquez VE (2007). J Am Chem Soc 129:6216Google Scholar
  9. 9.
    Pallan PS, Marquez VE, Egli M (2012). Biochemist 51:2639Google Scholar
  10. 10.
    Yasuda N, Tan L, Yoshikawa N, Hartner FW (2005). J Synth Org Chem Jpn 63:1147Google Scholar
  11. 11.
    Krow GR, Cannon KC (2000). Org Prep Proced Int 32:103Google Scholar
  12. 12.
    Liebman JF, Greenberg A (1989). Chem Rev 89:1225Google Scholar
  13. 13.
    Wheeler SE, Houk KN, Schleyer PR, Allen WD (2009). J Am Chem Soc 131:2547Google Scholar
  14. 14.
    George P, Trachtman M, Bock CW, Brett AM (1976). Tetrahedron 32:317Google Scholar
  15. 15.
    Chang S-J, McNally D, Shary-Tehrany S, Sister Mary James H, Boyd RH (1970). J Am Chem Soc 92:3109Google Scholar
  16. 16.
    Maercker A, Roberts JD (1966). J Am Chem Soc 88:1742Google Scholar
  17. 17.
    Charette AB, Naud J (1998). Tetrahedron Lett 39:7259Google Scholar
  18. 18.
    Avilov DV, Malusare MG, Arslancan E, Dittmer DC (2004). Org Lett 6:2225Google Scholar
  19. 19.
    Schneider TF, Werz DB (2011). Org Lett 13:1848Google Scholar
  20. 20.
    Reissig H-U, Zimmer R (2003). Chem Rev 103:1151Google Scholar
  21. 21.
    Nonhebel DC (1993). Chem Soc Rev 22:347Google Scholar
  22. 22.
    Kaschel J, Schneider TF, Schirmer P, Maaß C, Stalke D, Werz DB (2013). Eur J Org Chem:4539Google Scholar
  23. 23.
    Friedrich EC, Holmstead RL (1971). J Org Chem 36:971Google Scholar
  24. 24.
    Banthorpe DV, Mann J, Poots I (1977). Phytochemistry 16:547Google Scholar
  25. 25.
    Doyle MP, Protopopova MN (1998). Tetrahedron 54:7919Google Scholar
  26. 26.
    Lebel H, Marcoux J-F, Molinaro C, Charette AB (2003). Chem Rev 103:977Google Scholar
  27. 27.
    Pellissier H (2008). Tetrahedron 64:7041Google Scholar
  28. 28.
    Bartoli G, Bencivenni G, Dalpozzo R (2014). Synthesis 46:979Google Scholar
  29. 29.
    DelMonte AJ, Dowdy ED, Watson DJ (2004) Organometallics in process chemistry. Springer, Berlin, p 97Google Scholar
  30. 30.
    Mamane V, Gress T, Krause H, Fürstner A (2004). J Am Chem Soc 126:8654Google Scholar
  31. 31.
    Luzung MR, Markham JP, Toste FD (2004). J Am Chem Soc 126:10858Google Scholar
  32. 32.
    Bohan PT, Toste FD (2017). J Am Chem Soc 139:11016Google Scholar
  33. 33.
    Trost BM, Breder A, O’Keefe BM, Rao M, Franz AW (2011). J Am Chem Soc 133:4766Google Scholar
  34. 34.
    Trost BM, Ryan MC, Rao M, Markovic TZ (2014). J Am Chem Soc 136:17422Google Scholar
  35. 35.
    Tsujihara T, Takenaka K, Onitsuka K, Hatanaka M, Sasai H (2009). J Am Chem Soc 131:3452Google Scholar
  36. 36.
    Deng H, Yang W-L, Tian F, Tang W, Deng W-P (2018). Org Lett 20:4121Google Scholar
  37. 37.
    Teng H-L, Luo Y, Nishiura M, Hou Z (2017). J Am Chem Soc 139:16506Google Scholar
  38. 38.
    Rayner PJ, O’Brien P, Horan RAJ (2013). J Am Chem Soc 135:8071Google Scholar
  39. 39.
    Pedroni J, Cramer N (2017). J Am Chem Soc 139:12398Google Scholar
  40. 40.
    Zhang Z-Z, Han Y-Q, Zhan B-B, Wang S, Shi B-F (2017). Angew Chem Int Ed 56:13145Google Scholar
  41. 41.
    Davies HML, Antoulinakis EG (2004). Org React 57:1Google Scholar
  42. 42.
    Simpson JH, Godfrey J, Fox R, Kotnis A, Kacsur D, Hamm J, Totelben M, Rosso V, Mueller R, Delaney E, Deshpande RP (2003). Tetrahedron Asymmetry 14:3569Google Scholar
  43. 43.
    Rathore KS, Katukojvala S (2014). Tetrahedron Lett 55:6370Google Scholar
  44. 44.
    Marcoux D, Azzi S, Charette AB (2009). J Am Chem Soc 131:6970Google Scholar
  45. 45.
    Feng L-W, Wang P, Wang L, Tang Y (2015). Sci Bull 60:210Google Scholar
  46. 46.
    Ge M, He J, Ya Lau, FW, Liang G–B, Lin S, Liu W, Walsh SP, Yang L (2007) US Patent 0265332Google Scholar
  47. 47.
    Merlic CA, Zechman AL (2003). Synthesis 2003:1137Google Scholar
  48. 48.
    Doyle MP, Dorow RL, Buhro WE, Griffin JH, Tamblyn WH, Trudell ML (1984). Organometallics 3:44Google Scholar
  49. 49.
    Evans DA, Woerpel KA, Hinman MM, Faul MM (1991). J Am Chem Soc 113:726Google Scholar
  50. 50.
    Waser M, Moher ED, Borders SSK, Hansen MM, Hoard DW, Laurila ME, LeTourneau ME, Miller RD, Phillips ML, Sullivan KA, Ward JA, Xie C, Bye CA, Leitner T, Herzog-Krimbacher B, Kordian M, Müllner M (2011). Org Process Res Dev 15:1266Google Scholar
  51. 51.
    Pilsl LKA, Ertl T, Reiser O (2017). Org Lett 19:2754Google Scholar
  52. 52.
    Wenkert E, Guo M, Pizzo F, Ramachandran K (1987). Helv Chim Acta 70:1429Google Scholar
  53. 53.
    Lehner V, Davies HML, Reiser O (2017). Org Lett 19:4722Google Scholar
  54. 54.
    Chartoire A, Comoy C, Fort Y (2008). Tetrahedron 64:10867Google Scholar
  55. 55.
    Uchida T, Katsuki T (2006). Synthesis:1715Google Scholar
  56. 56.
    Chen Y, Ruppel JV, Zhang XP (2007). J Am Chem Soc 129:12074Google Scholar
  57. 57.
    Dzik WI, Xu X, Zhang XP, Reek JNH, de Bruin B (2010). J Am Chem Soc 132:10891Google Scholar
  58. 58.
    Belof JL, Cioce CR, Xu X, Zhang XP, Space B, Woodcock HL (2011). Organometallics 30:2739Google Scholar
  59. 59.
    Wang G, James CA, Meanwell NA, Hamann LG, Belema M (2013). Tetrahedron Lett 54:6722Google Scholar
  60. 60.
    Ramirez A, Truc VC, Lawler M, Ye YK, Wang J, Wang C, Chen S, Laporte T, Liu N, Kolotuchin S, Jones S, Bordawekar S, Tummala S, Waltermire RE, Kronenthal D (2014). J Org Chem 79:6233Google Scholar
  61. 61.
    Savage SA, Jones GS, Kolotuchin S, Ramrattan SA, Vu T, Waltermire RE (2009). Org Process Res Dev 13:1169Google Scholar
  62. 62.
    Clark JD, Shah AS, Peterson JC, Patelis L, Kersten RJA, Heemskerk AH, Grogan M, Camden S (2002). Thermochim Acta 386:65Google Scholar
  63. 63.
    Clark JD, Shah AS, Peterson JC, Patelis L, Kersten RJA, Heemskerk AH (2002). Thermochim Acta 386:73Google Scholar
  64. 64.
    Clark JD, Shah AS, Peterson JC (2002). Thermochim Acta 392-393:177Google Scholar
  65. 65.
    Domínguez C, Ezquerra J, Prieto L, Espada M, Pedregal C (1997). Tetrahedron Asymmetry 8:511Google Scholar
  66. 66.
    Payne GB (1967). J Org Chem 32:3351Google Scholar
  67. 67.
    Zhang F, Moher ED, Zhang TY (2007). Tetrahedron Lett 48:3277Google Scholar
  68. 68.
    Aggarwal VK, Grange E (2006). Chem Eur J 12:568Google Scholar
  69. 69.
    Henry SS, Brady MD, Laird DLT, Ruble JC, Varie DL, Monn JA (2012). Org Lett 14:2662Google Scholar
  70. 70.
    Buono FG, Eriksson MC, Yang B-S, Kapadia SR, Lee H, Brazzillo J, Lorenz JC, Nummy L, Busacca CA, Yee N, Senanayake C (2014). Org Process Res Dev 18:1527Google Scholar
  71. 71.
    Agrawal KC, Srivastava S, Singh VS, Dikshit DK (2004). Ind J Chem 43B:873Google Scholar
  72. 72.
    Brighty KE, Castaldi MJ (1996). Synlett 1996:1097Google Scholar
  73. 73.
    Krishna PR, Sekhar ER, Mongin F (2008). Tetrahedron Lett 49:6768Google Scholar
  74. 74.
    Sirois LE, Xu J, Angelaud R, Lao D, Gosselin F (2018). Org Process Res Dev 22:728Google Scholar
  75. 75.
    Berliner MA, Dubant S, Makowski T, Ng K, Sitter B, Wager C, Zhang Y (2011). Org Process Res Dev 15:1052Google Scholar
  76. 76.
    Urata Y, Fujita M, Sugiura T, Ohizumi F, Yoshida N (1997) US Patent 5623078Google Scholar
  77. 77.
    Braish TF, Castaldi M, Chan S, Fox DE, Keltonic T, McGarry J, Hawkins JM, Norris T, Rose PR, Sieser JE, Sitter BJ, Watson Jr H (1996). Synlett:1100Google Scholar
  78. 78.
    Norris T, Braish TF, Butters M, DeVries KM, Hawkins JM, Massett SS, Rose PR, Santafianos D, Sklavounos C (2000). J Chem Soc Perkin Trans 1:1615Google Scholar
  79. 79.
    Ballini R, Fiorini D, Palmieri A (2003). Synlett:1704Google Scholar
  80. 80.
    Padwa A, Krumpe KE (1992). Tetrahedron 48:5385Google Scholar
  81. 81.
    Bio M, Javadi G, Song Z (2005). Synthesis 19Google Scholar
  82. 82.
    Wong A, Welch CJ, Kuethe JT, Vazquez E, Shaimi M, Henderson D, Davies IW, Hughes DL (2004). Org Biomol Chem 2:168Google Scholar
  83. 83.
    Wong HNC, Hon MY, Tse CW, Yip YC, Tanko J, Hudlicky T (1989). Chem Rev 89:165Google Scholar
  84. 84.
    Palucki M, Um JM, Yasuda N, Conlon DA, Tsay F-R, Hartner FW, Hsiao Y, Marcune B, Karady S, Hughes DL, Dormer PG, Reider PJ (2002). J Org Chem 67:5508Google Scholar
  85. 85.
    Conlon D, Jensen M, Palucki M, Yasuda N, Um J, Yang C, Hartner F, Tsay F, Hsiao Y, Pye P, Rivera N, Hughes D (2005). Chirality 17:S149Google Scholar
  86. 86.
    Grygorenko OO, Artamonov OS, Palamarchuk GV, Zubatyuk RI, Shishkinb OV, Komarov IV (2006). Tetrahedron Asymmetry 17:252Google Scholar
  87. 87.
    Mash EA, Nelson KA (1987). Tetrahedron 43:679Google Scholar
  88. 88.
    Estevan F, Lahuerta P, Lloret J, Perez-Prieto J, Werner H (2004). Organometallics 23:1369Google Scholar
  89. 89.
    Piqué C (1993) Dissertation, University of BaselGoogle Scholar
  90. 90.
    Alorati AD, Bio MM, Brands KMJ, Cleator E, Davies AJ, Wilson RD, Wise CS (2007). Org Process Res Dev 11:637Google Scholar
  91. 91.
    Hodgson DM, Chung YK, Paris J-M (2004). J Am Chem Soc 126:8664Google Scholar
  92. 92.
    Hodgson DM, Chung YK, Nuzzo I, Freixas GR, Kulikiewicz KK, Cleator E, Paris J-M (2007). J Am Chem Soc 129:4456Google Scholar
  93. 93.
    Yoshikawa N, Tan L, Yasuda N, Volante RP, Tillyer RD (2004). Tetrahedron Lett 45:7261Google Scholar
  94. 94.
    Tan L, Yasuda N, Yoshikawa N, Hartner FW, Eng KK, Leonard WR, Tsay F-R, Volante RP, Tillyer RD (2005). J Org Chem 70:8027Google Scholar
  95. 95.
    Hyde AM, Liu Z, Kosjek B, Tan L, Klapars A, Ashley ER, Zhong Y-L, Alvizo O, Agard NJ, Liu G, Gu X, Yasuda N, Limanto J, Huffman MA, Tschaen DM (2016). Org Lett 18:5888Google Scholar
  96. 96.
    Epstein JW, Brabander HJ, Fanshawe WJ, Hofmann CM, McKenzie TC, Safir SR, Osterberg AC, Cosulich DB, Lovell FM (1981). J Med Chem 24:481Google Scholar
  97. 97.
    Zhang M, Jovic F, Vickers T, Dyck B, Tamiya J, Grey J, Tran JA, Fleck BA, Pick R, Foster AC, Chen C (2008). Bioorg Med Chem Lett 18:3682Google Scholar
  98. 98.
    Xu F, Murry JA, Simmons B, Corley E, Fitch K, Karady S, Tschaen D (2006). Org Lett 8:3885Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Process Research and DevelopmentMRLRahwayUSA

Personalised recommendations