pp 1-61 | Cite as

Mannich Base Ligands as Versatile Platforms for SMMs

Chapter
Part of the Topics in Organometallic Chemistry book series

Abstract

Aminophenol Mannich base derivatives are versatile and flexible ligands for preparing a wide variety of homo- and heterometallic discrete coordination compounds, ranging from mononuclear to hexanuclear, which exhibit aesthetically pleasant structures with intricate topologies. These ligands are particularly adapted to obtain 3d/4f systems, where invariably the amino fragment is coordinated to the transition metal ion and the phenolate oxygen atoms bridge transition metal and lanthanide ions. Their coordination spheres are completed by donor atoms belonging either to methoxy and aldehyde groups of the Mannich base ligands or to terminal and bridging ancillary ligands. Moreover, robust 3d-4f dinuclear units can be assembled with either bridging ligands or complexes acting as bridging ligands to afford heterometallic complexes with increased nuclearity. The complexes containing one or two paramagnetic ions often exhibit appealing magnetic properties, alone or combined with other physical properties, that essentially arise from large local magnetic anisotropy and magnetic exchange coupling of the metal ions. This chapter provides an overview of recent results on single-molecule magnets (SMMs) based on aminophenol Mannich base ligands that illustrate the scope, state of the art and fruitful dynamism of this field of research.

Keywords

3d-4f Aminophenol Complexes Coordination compounds Lanthanides Luminescence Magnetic properties Mannich Mannich ligands Single-molecule magnets (SMMs) Slow relaxation 

Notes

Acknowledgements

I would like to express my most sincere gratitude and deep appreciation to all my collaborators, colleagues and students. Their names appear in the reference list. I am also very grateful to Ministerio de Economía y Competitividad (MINECO) of Spain for Project CTQ2014-56312-P and EU Feder Fund, the Junta de Andalucía (FQM-195 and the Project of excellence P11-FQM-7756) and the University of Granada for financial support.

References

  1. 1.
    Gatteschi D, Sessoli R, Villain J (2006) Molecular nanomagnets. Oxford University Press, OxfordCrossRefGoogle Scholar
  2. 2.
    Bartolomé J, Luis F, Fernández JF (2014) Molecular magnets: physics and applications. Springer-Verlag, Berlin, HeidelbergCrossRefGoogle Scholar
  3. 3.
    Gao S (2015) Molecular nanomagnets and related phenomena. Structure and bonding, vol 164. Springer-Verlag, Berlin, HeidelbergGoogle Scholar
  4. 4.
    Cornia A, Mannini M (2015) Single-molecule magnets on surfaces. Structure and bonding, vol 164. Springer-Verlag, Berlin, Heidelberg, pp 293–330Google Scholar
  5. 5.
    Moreno Pineda E, Komeda T, Katoh K, Yamashita M, Ruben M (2016) Surface confinement of TbPc2-SMMs: structural, electronic and magnetic properties. Dalton Trans 45:18417–18433CrossRefPubMedGoogle Scholar
  6. 6.
    Bogani L, Wernsdorfer W (2008) Molecular spintronics using single-molecule magnets. Nat Mater 7:179–186ADSCrossRefPubMedGoogle Scholar
  7. 7.
    Prezioso M, Riminucci A, Graziosi P, Bergenti I, Rakshit R, Cecchini R, Vianelli A, Borgatti F, Haag N, Willis M, Drew AJ, Gillin WP, Dediu VA (2013) A single-device universal logic gate based on a magnetically enhanced memristor. Adv Mater 25:534–538CrossRefPubMedGoogle Scholar
  8. 8.
    Vincent R, Klyatskaya S, Ruben M, Wernsdorfer W, Balestro F (2012) Electronic read-out of a single nuclear spin using a molecular spin transistor. Nature 488:357–360ADSCrossRefPubMedGoogle Scholar
  9. 9.
    Ganzhorn M, Klyatskaya S, Ruben M, Wernsdorfer W (2013) Strong spin–phonon coupling between a single-molecule magnet and a carbon nanotube nanoelectromechanical system. Nat Nanotechnol 8:165–169ADSCrossRefPubMedGoogle Scholar
  10. 10.
    Jenkins M, Hümmer T, Martínez-Pérez MJ, García-Ripoll J, Zueco D, Luis F (2013) Coupling single-molecule magnets to quantum circuits. New J Phys 15:095007CrossRefGoogle Scholar
  11. 11.
    Mannini M, Pineider F, Danieli C, Totti F, Sorace L, Sainctavit P, Arrio MA, Otero E, Joly L, Cezar JC, Cornia A, Sessoli R (2010) Quantum tunnelling of the magnetization in a monolayer of oriented single-molecule magnets. Nature 468:417–421ADSCrossRefPubMedGoogle Scholar
  12. 12.
    Thiele S, Balestro F, Ballou R, Klyatskaya S, Ruben M, Wernsdorfer W (2014) Electrically driven nuclear spin resonance in single-molecule magnets. Science 344:1135–1138ADSCrossRefPubMedGoogle Scholar
  13. 13.
    Sanvito S (2011) Molecular spintronics. Chem Soc Rev 40:3336–3355CrossRefPubMedGoogle Scholar
  14. 14.
    Katoh K, Isshiki H, Komeda T, Yamashita M (2012) Molecular spintronics based on single-molecule magnets composed of multiple-decker phthalocyaninato terbium(III) complex. Chem Asian J 7:1154–1169CrossRefPubMedGoogle Scholar
  15. 15.
    Jiang SD, Goß K, Cervetti C, Bogani L (2012) An introduction to molecular spintronics. Sci China Chem 55:867–882CrossRefGoogle Scholar
  16. 16.
    Lumetti S, Candini A, Godfrin C, Balestro F, Wernsdorfer W, Klyatskaya S, Ruben M, Affronte M (2016) Single-molecule devices with graphene electrodes. Dalton Trans 45:16570–16574CrossRefPubMedGoogle Scholar
  17. 17.
    Cornia A, Seneor P (2017) Spintronics: the molecular way. Nat Mater 16:505–506ADSCrossRefPubMedGoogle Scholar
  18. 18.
    Rocha AR, García-Suárez VM, Bailey SW, Lambert CJ, Ferrerand J, Sanvito S (2005) Towards molecular spintronics. Nat Mater 4:335–339ADSCrossRefPubMedGoogle Scholar
  19. 19.
    Affronte M (2009) Molecular nanomagnets for information technologies. J Mater Chem 19:1731–1737CrossRefGoogle Scholar
  20. 20.
    Sessoli R, Boulon ME, Caneschi A, Mannini M, Poggini L, Wilhelm F, Rogalev A (2015) Strong magneto-chiral dichroism in a paramagnetic molecular helix observed by hard X-rays. Nat Phys 11:69–74CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Leuenberger MN, Loss D (2001) Quantum computing in molecular magnets. Nature 410:789–793ADSCrossRefPubMedGoogle Scholar
  22. 22.
    Ardavan A, Rival O, Morton JJL, Blundell SJ, Tyryshkin AM, Timco GA, Winpenny RPA (2007) Will spin-relaxation times in molecular magnets permit quantum information processing? Phys Rev Lett 98:057201ADSCrossRefPubMedGoogle Scholar
  23. 23.
    Stamp PCE, Gaita-Ariño A (2009) Spin-based quantum computers made by chemistry: hows and whys. J Mater Chem 19:1718–1730CrossRefGoogle Scholar
  24. 24.
    Martínez-Pérez MJ, Cardona-Serra S, Schlegel C, Moro F, Alonso PJ, Prima-García H, Clemente-Juan JM, Evangelisti M, Gaita-Ariño A, Sesé J, Van Slageren J, Coronado E, Luis F (2012) Gd-based single-ion magnets with tunable magnetic anisotropy: molecular design of spin qubits. Phys Rev Lett 108:247213ADSCrossRefPubMedGoogle Scholar
  25. 25.
    Aromí G, Brechin GEK (2006) Synthesis of 3d metallic single-molecule magnets. Structure and bonding, vol 122, pp 1–67Google Scholar
  26. 26.
    Bagai R, Christou G (2009) The Drosophila of single-molecule magnetism. Chem Soc Rev 38:1011CrossRefPubMedGoogle Scholar
  27. 27.
    Brechin EK (ed) (2010) “Molecular Magnets”, themed issue. Dalton TransGoogle Scholar
  28. 28.
    Murrie M (2010) Cobalt (II) single-molecule magnets. Chem Soc Rev 39:1986–1995CrossRefPubMedGoogle Scholar
  29. 29.
    Neese F, Pantazis DA (2011) What is not required to make a single molecule magnet. Faraday Discuss 148:229–238ADSCrossRefPubMedGoogle Scholar
  30. 30.
    Waldmann O (2007) A criterion for the anisotropy barrier in single-molecule magnets. Inorg Chem 46:10035–10037CrossRefPubMedGoogle Scholar
  31. 31.
    Milios CJ, Vinslava A, Wernsdorfer W, Moggach S, Parsons S, Perlepes SP, Christou G, Brechin EK (2007) A record anisotropy barrier for a single-molecule magnet. J Am Chem Soc 129:2754–2755CrossRefPubMedGoogle Scholar
  32. 32.
    Inglis R, Taylor SM, Jones LF, Papaefstathiou GS, Perlepes SP, Datta S, Hill S, Wernsdorfer W, Brechin EK (2009) Dalton Trans:9157–9168Google Scholar
  33. 33.
    Yoshihara D, Karasawa S, Koga N (2008) Cyclic single-molecule magnet in heterospin system. J Am Chem Soc 130:10460–10461CrossRefPubMedGoogle Scholar
  34. 34.
    Tasiopoulos AJ, Vinslava A, Wernsdorfer W, Abboud KA, Christou G (2004) Giant single-molecule magnets: a {Mn84} torus and its supramolecular nanotubes. Angew Chem Int Ed 43:2117–2121CrossRefGoogle Scholar
  35. 35.
    Ako AM, Hewitt IJ, Mereacre V, Clerac R, Wernsdorfer W, Anson CE, Powell AK (2006) A ferromagnetically coupled Mn19 aggregate with a record S = 83/2 ground spin state. Angew Chem Int Ed 45:4926–4929CrossRefGoogle Scholar
  36. 36.
    Frost JM, Harriman KLM, Murugesu M (2016) The rise of 3-d single-ion magnets in molecular magnetism: towards materials from molecules? Chem Sci 7:2470–2491CrossRefPubMedGoogle Scholar
  37. 37.
    Bar AK, Pichon C, Sutter J-P (2016) Magnetic anisotropy in two- to eight-coordinated transition−metal complexes: recent developments in molecular magnetism. Coord Chem Rev 308:346–380CrossRefGoogle Scholar
  38. 38.
    Craig GA, Murrie M (2015) 3d single-ion magnets. Chem Soc Rev 44:2135–2147CrossRefPubMedGoogle Scholar
  39. 39.
    Gómez-Coca S, Aravena D, Morales R, Ruiz E (2015) Large magnetic anisotropy in mononuclear metal complexes. Coord Chem Rev 289–290:379–392CrossRefGoogle Scholar
  40. 40.
    Zadrozny JM, Xiao DJ, Atanasov M, Long GJ, Grandjean F, Neese F, Long JR (2013) Magnetic blocking in a linear iron(I) complex. Nat Chem 5:577–581CrossRefPubMedGoogle Scholar
  41. 41.
    Layfield RA, Murugesu M (eds) (2015) Lanthanides and actinides in molecular magnetism. Wiley-VCH, WeinheimGoogle Scholar
  42. 42.
    Rinehart JD, Long JR (2011) Exploiting single-ion anisotropy in the design of f-element single-molecule magnets. Chem Sci 2:2078–2085CrossRefGoogle Scholar
  43. 43.
    Guo YN, Xu GF, Guo Y, Tang J (2011) Dalton Trans 40:9953–9963CrossRefPubMedGoogle Scholar
  44. 44.
    Sorace L, Benelli C, Gatteschi D (2011) Lanthanides in molecular magnetism: old tools in a new field. Chem Soc Rev 40:3092–3104CrossRefPubMedGoogle Scholar
  45. 45.
    Luzon J, Sessoli R (2012) Dalton Trans 41:13556–13567CrossRefPubMedGoogle Scholar
  46. 46.
    Clemente-Juan JM, Coronado E, Gaita-Ariño A (2012) Magnetic polyoxometalates: from molecular magnetism to molecular spintronics and quantum computing. Chem Soc Rev 41:7464–7478CrossRefPubMedGoogle Scholar
  47. 47.
    Woodruff DN, Winpenny REP, Layfield RA (2013) Lanthanide single-molecule magnets. Chem Rev 113:5110–5148CrossRefPubMedGoogle Scholar
  48. 48.
    Zhang P, Guo Y, Tang J (2013) Recent advances in dysprosium-based single molecule magnets: structural overview and synthetic strategies. Coord Chem Rev 257:1728–1763CrossRefGoogle Scholar
  49. 49.
    Habib F, Murugesu M (2013) Lessons learned from dinuclear lanthanide nano-magnets. Chem Soc Rev 42:3278–3288CrossRefPubMedGoogle Scholar
  50. 50.
    Layfield RA (2014) Organometallic single-molecule magnets. Organometallics 33:1084–1099CrossRefGoogle Scholar
  51. 51.
    Harriman KLM, Murugesu M (2016) An organolanthanide building block approach to single-molecule magnets. Acc Chem Res 49:1158–1167CrossRefPubMedGoogle Scholar
  52. 52.
    Wang BW, Gao S (2012) In: Atwood DA (ed) The rare earth elements, fundamental and applications. Wiley, Hoboken, pp 153–160Google Scholar
  53. 53.
    Winpenny REP (1998) The structures and magnetic properties of complexes containing 3d- and 4f-metals. Chem Soc Rev 27:447–452CrossRefGoogle Scholar
  54. 54.
    Sakamoto M, Manseki K, Okawa H (2001) d–f Heteronuclear complexes: synthesis, structures and physicochemical aspects. Coord Chem Rev 219:379–414CrossRefGoogle Scholar
  55. 55.
    Huang Y-G, Jiang F-L, Hong M-C (2009) Magnetic lanthanide–transition-metal organic–inorganic hybrid materials: from discrete clusters to extended frameworks. Coord Chem Rev 253:2814–2834CrossRefGoogle Scholar
  56. 56.
    Benelli C, Gatteschi D (2002) Magnetism of lanthanides in molecular materials with transition-metal ions and organic radicals. Chem Rev 102:2369–2388CrossRefPubMedGoogle Scholar
  57. 57.
    Sessoli R, Powell AK (2009) Strategies towards single molecule magnets based on lanthanide ions. Coord Chem Rev 253:2328–2341CrossRefGoogle Scholar
  58. 58.
    Andruh M, Costes JP, Diaz C, Gao S (2009) 3d-4f combined chemistry: synthetic strategies and magnetic properties. Inorg Chem 48:3342–3359CrossRefPubMedGoogle Scholar
  59. 59.
    Brechin EK (ed) (2010) “Molecular magnets” themed issue. Dalton Trans 39:4653–5040Google Scholar
  60. 60.
    Sharples JW, Collison D (2014) The coordination chemistry and magnetism of some 3d–4f and 4f amino-polyalcohol compounds. Coord Chem Rev 260:1–20CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Zheng Y-Z, Zhou G-J, Zheng Z, Winpenny REP (2014) Chem Soc Rev 43:1462–1475CrossRefPubMedGoogle Scholar
  62. 62.
    Rosado L, Sañudo EC (2015) Heterometallic 3d–4f single-molecule magnets. Dalton Trans 44:8771–8780CrossRefGoogle Scholar
  63. 63.
    Chow CY, Trivedi ER, Pecoraro V, Zaleski CM (2015) Heterometallic mixed 3d-4f metallacrowns: structural versatility, luminescence, and molecular magnetism, comments. Inorg Chem 35:214–253Google Scholar
  64. 64.
    Liu K, Shi W, Cheng P (2015) Toward heterometallic single-molecule magnets: synthetic strategy, structures and properties of 3d–4f discrete complexes. Coord Chem Rev 289–290:74–122CrossRefGoogle Scholar
  65. 65.
    Polyzou CD, Efthymiou CG, Escuer A, Cunha-Silva L, Papatriantafyllopoulou C, Perlepes SP (2013) In search of 3d/4f-metal single-molecule magnets: nickel(II)/lanthanide(III) coordination clusters. Pure Appl Chem 85:315–327CrossRefGoogle Scholar
  66. 66.
    Vignesh KR, Langley SK, Murray KS, Rajaraman G (2017) Quenching the quantum tunneling of magnetization in heterometallic octanuclear {TMIII4DyIII4} (TM = Co and Cr) single-molecule magnets by modification of the bridging ligands and enhancing the magnetic exchange coupling. Chem Eur J 23:1654–1666CrossRefPubMedGoogle Scholar
  67. 67.
    Langley SK, Wielechowski DP, Moubaraki B, Murray KS (2016) Enhancing the magnetic blocking temperature and magnetic coercivity of {CrIII2LnIII2} single-molecule magnets via bridging ligand modification. Chem Commun 52:10976–10979CrossRefGoogle Scholar
  68. 68.
    Gupta T, Beg MF, Rajaraman G (2016) Role of single-ion anisotropy and magnetic exchange interactions in suppressing zero-field tunnelling in {3d-4f} single molecule magnets. Inorg Chem 55:11201–11215CrossRefPubMedGoogle Scholar
  69. 69.
    Singh SK, Beg MF, Rajaraman G (2016) Role of magnetic exchange interactions in the magnetization relaxation of {3d–4f} single-molecule magnets: a theoretical perspective. Chem Eur J 22:672–680CrossRefPubMedGoogle Scholar
  70. 70.
    Li X-L, Min F-Y, Wang C, Lin S-Y, Liu Z, Tang J (2015) Utilizing 3d-4f magnetic interaction to slow the magnetic relaxation of heterometallic complexes. Inorg Chem 54:4337–4344CrossRefPubMedGoogle Scholar
  71. 71.
    Langley SK, Le C, Ungur L, Moubaraki B, Abrahams BF, Chibotaru LF, Murray KS (2014) Heterometallic 3d-4f single-molecule magnets: ligand and metal ion influences on the magnetic relaxation. Inorg Chem 53:8970–8978CrossRefGoogle Scholar
  72. 72.
    Langley SK, Wielechowski DP, Vieru V, Chilton NF, Moubaraki B, Abrahams BF, Chibotaru LF, Murray KS (2013) A {CrIII2DyIII2} single-molecule magnet: enhancing the blocking temperature through 3d magnetic exchange. Angew Chem Int Ed 52:12014–12019CrossRefGoogle Scholar
  73. 73.
    Liu J-L, Wu J-Y, Chen Y-C, Mereacre V, Powell AK, Ungur L, Chibotaru LF, Chen X-M, Tong M-L (2014) A heterometallic FeII–DyIII single-molecule magnet with a record anisotropy barrier. Angew Chem Int Ed 53:12966–12970CrossRefGoogle Scholar
  74. 74.
    Rinehart JD, Fang M, Evans WJ, Long JR (2011) Strong exchange and magnetic blocking in N23−-radical-bridged lanthanide complexes. Nat Chem 3:538–542CrossRefPubMedGoogle Scholar
  75. 75.
    Rinehart JD, Fang M, Evans WJ, Long JR (2011) A N23−-radical-bridged terbium complex exhibiting magnetic hysteresis at 14 K. J Am Chem Soc 133:14236–14239CrossRefPubMedGoogle Scholar
  76. 76.
    Demir S, Gonzalez MI, Darago L, Evans WJ, Long JR (2017) Giant coercivity and high magnetic blocking temperatures for N23− radical-bridged dilanthanide complexes upon ligand dissociation. Nat Commun 8:2144.  https://doi.org/10.1038/s41467-017-01553-wADSCrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Ding YS, Chilton NF, Winpenny RE, Zheng YZ (2016) On approaching the limit of molecular magnetic anisotropy: a near-perfect pentagonal bipyramidal dysprosium(III) single-molecule magnet. Angew Chem Int Ed Engl 55:16071–16074CrossRefPubMedGoogle Scholar
  78. 78.
    Chen Y, Liu J, Ungur L, Liu J, Li Q, Wang L, Ni Z, Chibotaru LF, Chen X, Tong ML (2016) Symmetry-supported magnetic blocking at 20 K in pentagonal bipyramidal Dy(III) single-ion magnets. J Am Chem Soc 138:2829–2837CrossRefPubMedGoogle Scholar
  79. 79.
    Gupta SK, Rajeshkumar T, Rajaraman G, Murugavel R (2016) An air-stable Dy(III) single-ion magnet with high anisotropy barrier and blocking temperature. Chem Sci 7:5181–5191CrossRefGoogle Scholar
  80. 80.
    Liu J, Chen Y, Jia J, Liu J, Vieru V, Ungur L, Chibotaru LF, Lan Y, Wernsdorfer W, Gao S, Chen X, Tong M (2016) A stable pentagonal bipyramidal Dy(III) single-ion magnet with a record magnetization reversal barrier over 1,000 K. J Am Chem Soc 138:5441–5450CrossRefPubMedGoogle Scholar
  81. 81.
    Zhong ZQ, Mansikkamäki A, Ungur L, Jia JH, Chibotaru LF, Han JB, Wernsdorfer W, Chen XM, Tong ML (2017) Dynamic magnetic and optical insight into a high performance pentagonal bipyramidal DyIII single-ion magnet. Chem Eur J 23:1–9CrossRefGoogle Scholar
  82. 82.
    Goodwin CAP, Ortu F, Reta D, Chilton NF, Mills DP (2017) Molecular magnetic hysteresis at 60 K in dysprosocenium. Nature 548:439–442ADSCrossRefPubMedGoogle Scholar
  83. 83.
    Guo S, Day BM, Chen Y-C, Tong M-L, Mansikkamäki A, Layfield RA (2017) A dysprosium metallocene single-molecule magnet functioning at the axial limit. Angew Chem Int Ed 56:11445–11449CrossRefGoogle Scholar
  84. 84.
    Bünzli J-CG (2014) Lanthanide coordination chemistry: from old concepts to coordination polymers. J Coord Chem 67:3706–3733CrossRefGoogle Scholar
  85. 85.
    Bünzli J-CG (2010) Lanthanide luminescence for biomedical analyses and imaging. Chem Rev 11:2729–2755CrossRefGoogle Scholar
  86. 86.
    Eliseeva SV, Bünzli JC (2010) Lanthanide luminescence for functional materials and bio-sciences. Chem Soc Rev 39:189–227CrossRefPubMedGoogle Scholar
  87. 87.
    Faulkner S, Pope SJA, Burton-Pye BP (2005) Lanthanide complexes for luminescence imaging applications. Appl Spectrosc Rev 40:1ADSCrossRefGoogle Scholar
  88. 88.
    Liu S (2004) The role of coordination chemistry in the development of target specific radiopharmaceuticals. Chem Soc Rev 33:445CrossRefPubMedGoogle Scholar
  89. 89.
    Amoroso AJ, Pope SJ (2015) Using lanthanide ions in molecular bioimaging. Chem Soc Rev 44:4723–4742CrossRefPubMedGoogle Scholar
  90. 90.
    Andruh M (2015) The exceptionally rich coordination chemistry generated by Schiff-base ligands derived from o-vanillin. Dalton Trans 44:16633–16653CrossRefPubMedGoogle Scholar
  91. 91.
    Ruiz J, Mota AJ, Rodríguez-Diéguez A, Titos S, Herrera JM, Ruiz E, Cremades E, Costes JP, Colacio E (2012) Field and dilution effects on the slow relaxation of a luminescent DyO9 low-symmetry single-ion magnet. Chem Commun 48:7916–7918CrossRefGoogle Scholar
  92. 92.
    Tang J, Hewitt I, Madhu NT, Chastanet G, Wernsdorfer W, Anson CE, Benelli C, Sessoli R, Powell AK (2006) Dysprosium triangles showing single-molecule magnet behavior of thermally excited spin states. Angew Chem Int Ed 45:1729–1733CrossRefGoogle Scholar
  93. 93.
    Luzon J, Bernot K, Hewitt I, Anson CE, Powell AK, Sessoli R (2008) Spin chirality in a molecular dysprosium triangle: the archetype of the noncollinear ising model. Phys Rev Lett 100:247205–247204ADSCrossRefPubMedGoogle Scholar
  94. 94.
    Chibotaru LF, Ungur L, Soncini A (2008) The origin of nonmagnetic kramers doublets in the ground state of dysprosium triangles: evidence for a toroidal magnetic moment. Angew Chem Int Ed 47:4126–4129CrossRefGoogle Scholar
  95. 95.
    Hewitt IJ, Tang J, Madhu NT, Anson CE, Lan Y, Luzon J, Etienne M, Sessoli R, Powell AK (2010) Coupling Dy3 triangles enhances their slow magnetic relaxation. Angew Chem Int Ed 49:6352–6356CrossRefGoogle Scholar
  96. 96.
    Chibotaru LF, Ungur L, Soncini A (2012) Coupling Dy3 triangles to maximize the toroidal moment. Angew Chem Int Ed 51:12767–12771CrossRefGoogle Scholar
  97. 97.
    Wang Y, Shi W, Li H, Song Y, Fang L, Lan Y, Powell AK, Wernsdorfer W, Ungur L, Chibotaru L, Shen M, Cheng P (2012) A single-molecule magnet assembly exhibiting a dielectric transition at 470 K. Chem Sci 3:3366–3370CrossRefGoogle Scholar
  98. 98.
    Lin S, Zhao L, Guo Y, Zhang P, Guo Y, Tang J (2012) Two new Dy3 triangles with trinuclear circular helicates and their single-molecule magnet behavior. Inorg Chem 51:10522–10528CrossRefPubMedGoogle Scholar
  99. 99.
    Lin S, Guo Y, Guo Y, Zhao L, Zhang P, Ke H, Tang J (2012) Macrocyclic ligand encapsulating dysprosium triangles: axial ligands perturbed magnetic dynamics. Chem Commun 48:6924–6926CrossRefGoogle Scholar
  100. 100.
    Xue S, Chen X, Zhao L, Guo Y, Tang J (2012) Two bulky-decorated triangular dysprosium aggregates conserving vortex-spin structure. Inorg Chem 51:13264–13270CrossRefPubMedGoogle Scholar
  101. 101.
    Hänninen MM, Mota AJ, Aravena D, Ruiz E, Sillanpää R, Camón A, Evangelisti M, Colacio E (2014) Two C3-symmetric Dy3III complexes with triple di-μ-methoxo-μ-phenoxo bridges, magnetic ground state, and single-molecule magnetic behavior. Chem Eur J 20:8410–8420CrossRefPubMedGoogle Scholar
  102. 102.
    Grindell R, Vieru V, Pugh T, Chibotaru LF, Layfield RA (2016) Magnetic frustration in a hexaazatrinaphthylene-bridged trimetallic dysprosium single-molecule magnet. Dalton Trans 45:16556–16560CrossRefPubMedGoogle Scholar
  103. 103.
    Díaz-Ortega IF, Herrera JM, Gupta T, Rajaraman G, Nojiri H, Colacio E (2017) Design of a family of Ln3 triangles with the HAT ligand (1,4,5,8,9,12-hexaazatriphenylene): single-molecule magnetism. Inorg Chem 15:5594–5610CrossRefGoogle Scholar
  104. 104.
    Novitchi G, Pilet G, Ungur L, Moshchalkov VV, Wernsdorfer W, Chibotaru LF, Luneau D, Powell AK (2012) Heterometallic CuII/DyIII 1D chiral polymers: chirogenesis and exchange coupling of toroidal moments in trinuclear Dy3 single molecule magnets. Chem Sci 3:1169–1176CrossRefGoogle Scholar
  105. 105.
    Zhang L, Zhang P, Zhao L, Wu J, Guo M, Tang J (2016) Single-molecule magnet behavior in an octanuclear dysprosium(III) aggregate inherited from helical triangular Dy3 SMM-building blocks. Dalton Trans 45:10556–10562CrossRefPubMedGoogle Scholar
  106. 106.
    Gysler M, Hallak FE, Ungur L, Marx R, Hakl M, Neugebauer P, Rechkemmer Y, Lan Y, Sheikin I, Orlita M, Anson CE, Powell AK, Sessoli R, Chibotaru LF, Van Slageren J (2016) Multitechnique investigation of Dy3 – implications for coupled lanthanide clusters. Chem Sci 7:4347–4354CrossRefGoogle Scholar
  107. 107.
    Goura J, Colacio E, Herrera JM, Suturina EA, Kuprov I, Lan Y, Wernsdorfer W, Chandrasekhar V (2017) Heterometallic Zn3 Ln3 ensembles containing (μ6 -CO3) ligand and triangular disposition of Ln3+ ions: analysis of single-molecule toroic (SMT) and single-molecule magnet (SMM) behavior. Chemistry 23:16621–16636CrossRefPubMedGoogle Scholar
  108. 108.
    Das C, Vaidya S, Gupta T, Frost JM, Righi M, Brechin EK, Affronte M, Rajaraman G, Shanmugam M (2015) Single-molecule magnetism, enhanced magnetocaloric effect, and toroidal magnetic moments in a family of Ln4 squares. Chem Eur J 21:15639–15650CrossRefPubMedGoogle Scholar
  109. 109.
    Guo P, Liu J, Zhang Z, Ungur L, Chibotaru LF, Leng J, Guo F, Tong M (2012) The first {Dy4} single-molecule magnet with a toroidal magnetic moment in the ground state. Inorg Chem 51:1233–1235CrossRefPubMedGoogle Scholar
  110. 110.
    Biswas SD, Gupta T, Singh SK, Pissas M, Rajaraman G, Chandrasekhar V (2016) Observation of slow relaxation and single-molecule toroidal behavior in a family of butterfly-shaped Ln4 complexes. Chem Eur J 22:18532–18550CrossRefPubMedGoogle Scholar
  111. 111.
    Li X, Wu J, Tang J, Le Guennic B, Shi W, Cheng P (2016) A planar triangular Dy3 + Dy3 single-molecule magnet with a toroidal magnetic moment. Chem Commun 52:9570–9573CrossRefGoogle Scholar
  112. 112.
    Ungur L, Langley SK, Hooper TN, Moubaraki B, Brechin EK, Murray KS, Chibotaru LF (2012) Net toroidal magnetic moment in the ground state of a {Dy6}-triethanolamine ring. J Am Chem Soc 134:18554–18557CrossRefPubMedGoogle Scholar
  113. 113.
    Ungur L, Lin S, Tang J, Chibotaru LF (2014) Single-molecule toroics in Ising-type lanthanide molecular clusters. Chem Soc Rev 43:6894–6905CrossRefPubMedGoogle Scholar
  114. 114.
    Wang G, Weia Y, Wu K (2016) Goblet-shaped pentanuclear lanthanide clusters assembled with a cyclen derivative ligand exhibiting slow magnetic relaxation. Dalton Trans 45:12734–12738CrossRefPubMedGoogle Scholar
  115. 115.
    Colacio E, Ruiz-Sanchez J, White FJ, Brechin EK (2011) Strategy for the rational design of asymmetric triply bridged dinuclear 3d-4f single-molecule magnets. Inorg Chem 50:7268CrossRefPubMedGoogle Scholar
  116. 116.
    Colacio E, Ruiz J, Mota AJ, Palacios MA, Cremades E, Ruiz E, White FJ, Brechin EK (2012) Family of carboxylate- and nitrate-diphenoxo triply bridged dinuclear NiIILnIII complexes (Ln = Eu, Gd, Tb, Ho, Er, Y): synthesis, experimental and theoretical magneto-structural studies, and single-molecule magnet behavior. Inorg Chem 51:5857–5868CrossRefPubMedGoogle Scholar
  117. 117.
    Palacios MA, Titos-Padilla S, Ruiz J, Herrera JM, Pope SJ, Brechin EK, Colacio E (2014) Bifunctional Zn(II)Ln(III) dinuclear complexes combining field induced SMM behavior and luminescence: enhanced NIR lanthanide emission by 9-anthracene carboxylate bridging ligands. Inorg Chem 53:1465–1474CrossRefPubMedGoogle Scholar
  118. 118.
    Colacio E, Ruiz J, Mota AJ, Palacios MA, Ruiz E, Cremades E, Hänninen MM, Sillanpää R, Brechin EK (2012) CoIILnIII dinuclear complexes (LnIII = Gd, Tb, Dy, Ho and Er) as platforms for 1,5-dicyanamide-bridged tetranuclear CoII2LnIII2 complexes: a magneto-structural and theoretical study. C R Chim 15:878–888CrossRefGoogle Scholar
  119. 119.
    Zabala-Lekuona A, Cepeda J, Oyarzabal I, Rodríguez-Diéguez A, García JA, Seco JM, Colacio E (2017) Rational design of triple-bridged dinuclear ZnIILnIII-based complexes: a structural, magnetic and luminescence study. CrystEngComm 19:256–264CrossRefGoogle Scholar
  120. 120.
    Oyarzabal I, Artetxe B, Rodríguez-Diéguez A, García JA, Seco JM, Colacio E (2016) A family of acetato-diphenoxo triply bridged dimetallic ZnIILnIII complexes: SMM behavior and luminescent properties. Dalton Trans 45:9712CrossRefPubMedGoogle Scholar
  121. 121.
    Xie Q-W, Wu S-Q, Shi W-B, Liu C-M, Cuia AL, Kou H-Z (2014) Heterodinuclear MII–LnIII single molecule magnets constructed from exchange-coupled single ion magnets. Dalton Trans 43:11309–11316CrossRefPubMedGoogle Scholar
  122. 122.
    Bender M, Comba P, Demeshko S, Großhauser M, Müller D, Wadepohl H (2015) Theoretically predicted and experimentally observed relaxation pathways of two heterodinuclear 3d-4f complexes. Z Anorg Allg Chem 641(12–13):2291–2299CrossRefGoogle Scholar
  123. 123.
    Comba P, Enders M, Großhauser M, Hiller M, Müller D, Wadepohla H (2017) Solution and solid state structures and magnetism of a series of linear trinuclear compounds with a hexacoordinate LnIII and two terminal NiII centers. Dalton Trans 46:138–149CrossRefGoogle Scholar
  124. 124.
    Oyarzabal I, Ruiz J, Seco JM, Evangelisti M, Camón A, Ruiz E, Aravena D, Colacio E (2014) Rational electrostatic design of easy-axis magnetic anisotropy in a ZnII-DyIII-ZnII single-molecule magnet with a high energy barrier. Chem Eur J 20:14262–14269CrossRefPubMedGoogle Scholar
  125. 125.
    Oyarzabal I, Ruiz J, Ruiz E, Aravena D, Seco JM, Colacio E (2015) Increasing the effective energy barrier promoted by the change of a counteranion in a Zn–Dy–Zn SMM: slow relaxation via the second excited state. Chem Commun 51:12353–12356CrossRefGoogle Scholar
  126. 126.
    Oyarzabal I, Rodríguez-Diéguez A, Barquín M, Seco JM, Colacio E (2017) The effect of the disposition of coordinated oxygen atoms on the magnitude of the energy barrier for magnetization reversal in a family of linear trinuclear Zn–Dy–Zn complexes with a square-antiprism DyO8 coordination sphere. Dalton Trans 46:4278–4286CrossRefPubMedGoogle Scholar
  127. 127.
    Upadhyay A, Singh SK, Das C, Mondol R, Langley SK, Murray KS, Rajaraman G, Shanmugam M (2014) Enhancing the effective energy barrier of a Dy(III) SMM using a bridged diamagnetic Zn(II) ion. Chem Commun 50:8838–8841CrossRefGoogle Scholar
  128. 128.
    Liu J-L, Chen Y-C, Zheng Y-Z, Lin W-Q, Ungur L, Wernsdorfer W, Chibotaru LF, Tong M-L (2013) Switching the anisotropy barrier of a single-ion magnet by symmetry change from quasi-D5h to quasi-Oh. Chem Sci 4:3310–3316CrossRefGoogle Scholar
  129. 129.
    Titos-Padilla S, Ruiz J, Herrera JM, Brechin EK, Wersndorfer W, Lloret F, Colacio E (2013) Dilution-triggered SMM behavior under zero field in a luminescent Zn2Dy2 tetranuclear complex incorporating carbonato-bridging ligands derived from atmospheric CO2 fixation. Inorg Chem 52:9620–9626CrossRefPubMedGoogle Scholar
  130. 130.
    Watanabe A, Yamashita A, Nakano M, Yamamura T, Kajiwara T (2011) Multi-path magnetic relaxation of mono-dysprosium(III) single-molecule magnet with extremely high barrier. Chem Eur J 17:7428–7432CrossRefPubMedGoogle Scholar
  131. 131.
    Ungur L, Chibotaru LF (2015) Computational modeling of magnetic properties of lanthanide compounds. In: Layfield RA, Murugesu M (eds) Lanthanides and actinides in molecular magnetism. Wiley-VCH, Weinheim, pp 153–184Google Scholar
  132. 132.
    Aquilante F, Autschbach J, Carlson RK, Chibotaru LF, Delcey MG, De Vico L, Fdez Galván I, Ferré N, Frutos LM, Gagliardi L, Garavelli M, Giussani A, Hoyer CE, Li Manni G, Lischka H, Ma D, Malmqvist PÅ, Müller T, Nenov A, Olivucci M, Pedersen TB, Peng D, Plasser F, Pritchard B, Reiher M, Rivalta I, Schapiro I, Segarra-Martí J, Stenrup M, Truhlar DG, Ungur L, Valentini A, Vancoillie S, Veryazov V, Vysotskiy VP, Weingart O, Zapata F, Lindh R (2016) Molcas 8: new capabilities for multiconfigurational quantum chemical calculations across the periodic table. J Comput Chem 37:506–541CrossRefPubMedGoogle Scholar
  133. 133.
    Aquilante F, De Vico L, Ferre N, Ghigo G, Malmqvist PA, Neogrady P, Pedersen TB, Pitonak M, Reiher M, Roos BO, Serrano-Andres L, Urban M, Veryazov V, Lindh R (2010) MOLCAS 7: the next generation. J Comput Chem 31:224–247CrossRefPubMedGoogle Scholar
  134. 134.
    Duncan JA (2009) MOLCAS 7.2. J Am Chem Soc 131:2416–2416CrossRefPubMedGoogle Scholar
  135. 135.
    Veryazov V, Widmark PO, Serrano-Andres L, Lindh R, Roos BO (2004) 2MOLCAS as a development platform for quantum chemistry software. Int J Quantum Chem 100:626–635CrossRefGoogle Scholar
  136. 136.
    Karlstrom G, Lindh R, Malmqvist PA, Roos BO, Ryde U, Veryazov V, Widmark PO, Cossi M, Schimmelpfennig B, Neogrady P, Seijo L (2003) MOLCAS: a program package for computational chemistry. Comput Mater Sci 28:222–239CrossRefGoogle Scholar
  137. 137.
    Guo Y-N, Ungur L, Granroth GE, Powell AK, Wu C, Nagler SE, Tang J, Chibotaru LF, Cui D (2014) An NCN-pincer ligand dysprosium single-ion magnet showing magnetic relaxation via the second excited state. Sci Rep 4:5471CrossRefPubMedPubMedCentralGoogle Scholar
  138. 138.
    Singh SK, Gupta T, Shanmugam M, Rajaraman G (2014) Unprecedented magnetic relaxation via the fourth excited state in low-coordinate lanthanide single-ion magnets: a theoretical perspective. Chem Commun 50:15513–15516CrossRefGoogle Scholar
  139. 139.
    Abtab SMT, Maity M, Bhattacharya K, Carolina Sañudo E, Chaudhury M (2012) Syntheses, structures, and magnetic properties of a family of tetranuclear hydroxido-bridged NiII2LnIII2 (Ln = La, Gd, Tb, and Dy) complexes: display of slow magnetic relaxation by the zinc(II) − dysprosium(III) analogue. Inorg Chem 51:10211–10221CrossRefPubMedGoogle Scholar
  140. 140.
    Abtab SMT, Majee MC, Maity M, Titiš J, Boča R, Chaudhury M (2014) Tetranuclear hetero-metal [CoII2LnIII2] (Ln = Gd, Tb, Dy, Ho, La) complexes involving carboxylato bridges in a rare μ4 − η2:η2 mode: synthesis, crystal structures, and magnetic properties. Inorg Chem 53:1295–1306CrossRefPubMedGoogle Scholar
  141. 141.
    Ruiz J, Lorusso G, Evangelisti M, Brechin EK, Pope SJ, Colacio E (2014) Closely-related Zn(II)2Ln(III)2 complexes (Ln(III) = Gd, Yb) with either magnetic refrigerant or luminescent single-molecule magnet properties. Inorg Chem 53:3586–3594CrossRefPubMedGoogle Scholar
  142. 142.
    Maity M, Majee MC, Kundu S, Samanta SK, Carolina Sañudo E, Ghosh S, Chaudhury M (2015) Pentanuclear 3d–4f heterometal complexes of MII3LnIII2 (M = Ni, Cu, Zn and Ln = Nd, Gd, Tb) combinations: syntheses, structures, magnetism, and photoluminescence properties. Inorg Chem 54:9715–9726CrossRefPubMedGoogle Scholar
  143. 143.
    Goura J, Rogez G, Rivière E, Chandrasekhar V (2014) Hexanuclear, heterometallic, Ni3Ln3 complexes possessing O-capped homo- and heterometallic structural subunits: SMM behavior of the dysprosium analogue. Inorg Chem 53:7815–7823CrossRefPubMedGoogle Scholar
  144. 144.
    Goura J, Chakraborty A, Walsh JPS, Tuna F, Chandrasekhar V (2015) Hexanuclear 3d-4f neutral CoII2LnIII4 clusters: synthesis, structure, and magnetism. Cryst Growth Des 15:3157–3165CrossRefGoogle Scholar
  145. 145.
    Colacio E, Ruiz J, Ruiz E, Cremades E, Krzystek J, Carretta S, Cano J, Guidi T, Wernsdorfer W, Brechin EK (2013) Slow magnetic relaxation in a Co(II)-Y(III) single-ion magnet with positive axial zero-field splitting. Angew Chem Int Ed 52:9130–9134CrossRefGoogle Scholar
  146. 146.
    Palacios MA, Nehrkorn J, Suturina E, Ruiz E, Gómez-Coca S, Holldack K, Schnegg A, Krzystek J, Moreno JM, Colacio E (2017) Analysis of magnetic anisotropy and the role of magnetic dilution in triggering single-molecule magnet (SMM) behavior in a family of CoIIYIII dinuclear complexes with easy-plane anisotropy. Chemistry 23:11649–11661CrossRefPubMedGoogle Scholar
  147. 147.
    Palacios MA, Mota AJ, Ruiz J, Hänninen MM, Sillanpää R, Colacio E (2012) Diphenoxo-bridged NiIILnIII dinuclear complexes as platforms for heterotrimetallic (LnIIINiII)2RuIII systems with a high-magnetic-moment ground state: synthesis, structure, and magnetic properties. Inorg Chem 51:7010–7012CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Department of Inorganic ChemistryUniversity of GranadaGranadaSpain

Personalised recommendations