Conversion of Alcohols to Carboxylates Using Water and Base with H2 Liberation

  • Peng Hu
  • David MilsteinEmail author
Part of the Topics in Organometallic Chemistry book series (TOPORGAN, volume 63)


Production of carboxylic acids from alcohols is an important process for both industry and laboratory. Traditional methods usually require environmentally unfriendly oxidants and generate stoichiometric waste. Recently, methods using O2 as oxidant, oxidation processes applying stoichiometric hydrogen acceptors and acceptorless dehydrogenative coupling reactions to generate carboxylic acids/carboxylic acid salts have been developed. This chapter reviews the reported results on the generation of carboxylic acids/carboxylates by acceptorless dehydrogenative coupling of alcohols and water. The chapter is according to the types of catalysts used; reaction conditions, product yields, and mechanisms are also discussed.


Alcohols Carboxylic acids Catalysis Dehydrogenation Dihydrogen 


  1. 1.
    Tojo G, Fernandez M (2007) Oxidation of primary alcohols to carboxylic acids: a guide to current common practice. Springer, New YorkGoogle Scholar
  2. 2.
    Reid EM, Worthington H, Larchar AW (1939). J Am Chem Soc 61:99CrossRefGoogle Scholar
  3. 3.
    Franczyk TS, Moench WL (2003) US patent 6,646,160Google Scholar
  4. 4.
    Mallat T, Baiker A (2004). Chem Rev 104:3037CrossRefGoogle Scholar
  5. 5.
    Della Pina C, Falletta E, Rossi M (2012). Chem Soc Rev 41:350CrossRefGoogle Scholar
  6. 6.
    Rass HA, Essayem N, Besson M (2013). Green Chem 15:2240CrossRefGoogle Scholar
  7. 7.
    Ahmed MS, Mannel DS, Root TW, Stahl SS (2017). Org Process Res Dev 21:1388CrossRefGoogle Scholar
  8. 8.
    Han L, Xing P, Jiang B (2014). Org Lett 16:3428CrossRefGoogle Scholar
  9. 9.
    Jiang X, Zhang J, Ma S (2016). J Am Chem Soc 138:8344CrossRefGoogle Scholar
  10. 10.
    Zweifel T, Naubron J-V, Grützmacher H (2009). Angew Chem Int Ed 48:559CrossRefGoogle Scholar
  11. 11.
    Trincado M, Kühlein K, Grützmacher H (2011). Chem Eur J 17:11905CrossRefGoogle Scholar
  12. 12.
    Annen S, Zweifel T, Ricatto F, Grützmacher H (2010). ChemCatChem 2:1286CrossRefGoogle Scholar
  13. 13.
    Gianetti TL, Annen SP, Santiso-Quinones G, Reiher M, Driess M, Grützmacher H (2016). Angew Chem Int Ed 55:1854CrossRefGoogle Scholar
  14. 14.
    Gunanathan C, Milstein D (2011). Acc Chem Res 44:588CrossRefGoogle Scholar
  15. 15.
    Gunanathan C, Milstein D (2013). Science 341:1229712CrossRefGoogle Scholar
  16. 16.
    Gunanathan C, Milstein D (2014). Chem Rev 114:12024CrossRefGoogle Scholar
  17. 17.
    Trinicado M, Banerjee D, Grützmacher H (2014). Energy Environ Sci 7:2464CrossRefGoogle Scholar
  18. 18.
    Younus HA, Su W, Ahmad N, Chen S, Verpoort F (2015). Adv Synth Catal 357:283CrossRefGoogle Scholar
  19. 19.
    Huang F, Liu Z, Yu Z (2015). Angew Chem Int Ed 54:2CrossRefGoogle Scholar
  20. 20.
    Werkmeister S, Neumann J, Junge K, Beller M (2015). Chem Eur J 21:12226CrossRefGoogle Scholar
  21. 21.
    Alberico E, Nielsen M (2015). Chem Commun 51:6714CrossRefGoogle Scholar
  22. 22.
    Khusnutdinova JR, Milstein D (2016). Angew Chem Int Ed 55:1854CrossRefGoogle Scholar
  23. 23.
    Pandey P, Dutta I, Bera JK (2016). Proc Natl Acad Sci India Sect A Phys Sci 86:561–579CrossRefGoogle Scholar
  24. 24.
    Balaraman E, Khaskin E, Leitus G, Milstein D (2013). Nat Chem 5:122CrossRefGoogle Scholar
  25. 25.
    Li H, Hall MB (2014). J Am Chem Soc 136:383CrossRefGoogle Scholar
  26. 26.
    Hu P, Ben-David Y, Milstein D (2016). J Am Chem Soc 138:6143CrossRefGoogle Scholar
  27. 27.
    Gnanaprakasam B, Balaraman E, Ben-David Y, Milstein D (2011). Angew Chem Int Ed 50:12240CrossRefGoogle Scholar
  28. 28.
    Hu P, Diskin-Posner Y, Ben-David Y, Milstein D (2014). ACS Catal 4:2649CrossRefGoogle Scholar
  29. 29.
    Nielsen M, Alberico E, Baumann W, Drexler H-J, Junge H, Gladiali S, Beller M (2013). Nature 495:85CrossRefGoogle Scholar
  30. 30.
    Alberico E, Lennox AJJ, Vogt LK, Jiao H, Baumann W, Drexler H, Nielsen M, Spannenberg A, Checinski MP, Junge H, Beller M (2016). J Am Chem Soc 138:14890CrossRefGoogle Scholar
  31. 31.
    Rodríguez-Lugo RE, Trincado M, Vogt M, Tewes F, Santiso-Quinones G, Grützmacher H (2013). Nat Chem 5:342CrossRefGoogle Scholar
  32. 32.
    Brewster TP, Goldberg JM, Tran JCD, Heinekey M, Goldberg KI (2016). ACS Catal 6:6302CrossRefGoogle Scholar
  33. 33.
    Choi J-H, Heim LE, Ahrens M, Prechtl MHG (2014). Dalton Trans 43:17248CrossRefGoogle Scholar
  34. 34.
    Heim LE, Schlörer NE, Choi J, Prechtl MHG (2014). Nat Commun 5:3621CrossRefGoogle Scholar
  35. 35.
    Sponholz P, Mellmann D, Cordes C, Alsabeh PG, Li B, Li Y, Nielsen M, Junge H, Dixneuf P, Beller M (2014). ChemSusChem 7:2419CrossRefGoogle Scholar
  36. 36.
    Zhang L, Nguyen DH, Raffa G, Trivelli X, Capet F, Desset S, Paul S, Dumeignil F, Gauvin R (2016). ChemSusChem 9:1413CrossRefGoogle Scholar
  37. 37.
    Nguyen DH, Morin Y, Zhang L, Trivelli X, Capet F, Paul S, Desset S, Dumeignil F, Gauvin RM (2017). ChemCatChem 9:2652CrossRefGoogle Scholar
  38. 38.
    Alberico E, Sponholz P, Cordes C, Nielsen M, Drexler H-J, Baumann W, Junge H, Beller M (2013). Angew Chem Int Ed 52:14162CrossRefGoogle Scholar
  39. 39.
    Andérez-Fernández M, Vogt LK, Fischer S, Zhou W, Jiao H, Garbe M, Elangovan S, Junge K, Junge H, Ludwig R, Beller M (2017). Angew Chem Int Ed 56:559CrossRefGoogle Scholar
  40. 40.
    Malineni J, Keul H, Möller M (2015). Dalton Trans 44:17409CrossRefGoogle Scholar
  41. 41.
    Santilli C, Makarov IS, Fristrup P, Madsen R (2016). J Org Chem 81:9931CrossRefGoogle Scholar
  42. 42.
    Ventura-Espinosa D, Vicent C, Bayac M, Mata JA (2016). Cat Sci Technol 6:8024CrossRefGoogle Scholar
  43. 43.
    Wang X, Wang C, Liu Y, Xiao J (2016). Green Chem 18:4605CrossRefGoogle Scholar
  44. 44.
    Dahl EW, Louis-Goff T, Szymczak NK (2017). Chem Commun 53:2287CrossRefGoogle Scholar
  45. 45.
    Sarbajna A, Dutta I, Daw P, Dinda S, Rahaman SMW, Sarkar A, Bera JK (2017). ACS Catal 7:2786CrossRefGoogle Scholar
  46. 46.
    Dai Z, Luo Q, Meng X, Li R, Zhang J, Peng T (2017). J Organomet Chem 830:11CrossRefGoogle Scholar
  47. 47.
    Dai Z, Luo Q, Jiang H, Luo Q, Li H, Zhang J, Peng T (2017). Cat Sci Technol 7:2506CrossRefGoogle Scholar
  48. 48.
    Fujita K, Tamura R, Tanaka Y, Yoshida M, Onoda M, Yamaguchi R (2017). ACS Catal 7:7226CrossRefGoogle Scholar
  49. 49.
    Sawama Y, Morita K, Yamada T, Nagata S, Yabe Y, Monguchi Y, Sajiki H (2014). Green Chem 16:3439CrossRefGoogle Scholar
  50. 50.
    Sawama Y, Morita K, Asai S, Kozawa M, Tadokoro S, Nakajima J, Monguchi Y, Sajikia H (2015). Adv Synth Catal 357:1205CrossRefGoogle Scholar
  51. 51.
    Ghalehshahi HG, Madsen R (2017). Chem Eur J 23:11920CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.School of ChemistrySun Yat-sen UniversityGuangzhouP. R. China
  2. 2.Department of Organic ChemistryWeizmann Institute of ScienceRehovotIsrael

Personalised recommendations