Advertisement

pp 1-16 | Cite as

Metal-Catalysed Hydrogenation of CO2 into Methanol

  • Maximilian Franz Hertrich
  • Matthias Beller
Chapter
Part of the Topics in Organometallic Chemistry book series

Abstract

The conversion of carbon dioxide into value-added chemicals is of growing importance for academic and industrial scientists. Regarding scale, the reduction of carbon dioxide to methanol is the most important reaction, not only for chemical products but also as a potential energy vector. Herein, we describe recent developments in carbon dioxide reduction to methanol focusing on the use of organometallic catalysts.

Keywords

Carbon dioxide Homogenous catalysis Methanol 

References

  1. 1.
    Schlögl R (2011) Chemistry’s role in regenerative energy. Angew Chem Int Ed 50:6424–6426.  https://doi.org/10.1002/anie.201103415CrossRefGoogle Scholar
  2. 2.
    Olah GA (2005) Beyond oil and gas: the methanol economy. Angew Chem Int Ed 44:2636–2639.  https://doi.org/10.1002/anie.200462121CrossRefGoogle Scholar
  3. 3.
    Olah GA, Goeppert A, Prakash GKS (2009) Chemical recycling of carbon dioxide to methanol and dimethyl ether: from greenhouse gas to renewable, environmentally carbon neutral fuels and synthetic hydrocarbons. J Org Chem 74:487–498.  https://doi.org/10.1021/jo801260fCrossRefGoogle Scholar
  4. 4.
    Sanz-Pérez ES, Murdock CR, Didas SA, Jones CW (2016) Direct capture of CO2 from ambient air. Chem Rev 116:11840–11876.  https://doi.org/10.1021/acs.chemrev.6b00173CrossRefGoogle Scholar
  5. 5.
    Boot-Handford ME et al (2014) Carbon capture and storage update. Energy Environ Sci 7:130–189.  https://doi.org/10.1039/C3EE42350FCrossRefGoogle Scholar
  6. 6.
    Offermanns H, Effenberger FX, Keim W, Plass L (2018) Solarthermie und CO2: methanol aus der Wüste. Chem Ing Tech 89:270–273.  https://doi.org/10.1002/cite.201600169CrossRefGoogle Scholar
  7. 7.
    Asif M, Gao X, Lv H, Xi X, Dong P (2018) Catalytic hydrogenation of CO2 from 600 MW supercritical coal power plant to produce methanol: a techno-economic analysis. Int J Hydrog Energy 43:2726–2741.  https://doi.org/10.1016/j.ijhydene.2017.12.086CrossRefGoogle Scholar
  8. 8.
    Goeppert A, Czaun M, Jones J-P, Surya Prakash GK, Olah GA (2014) Recycling of carbon dioxide to methanol and derived products – closing the loop. Chem Soc Rev 43:7995–8048.  https://doi.org/10.1039/C4CS00122BCrossRefGoogle Scholar
  9. 9.
    Ali KA, Abdullah AZ, Mohamed AR (2015) Recent development in catalytic technologies for methanol synthesis from renewable sources: a critical review. Renew Sust Energ Rev 44:508–518.  https://doi.org/10.1016/j.rser.2015.01.010CrossRefGoogle Scholar
  10. 10.
    Olah GA (2013) Towards oil independence through renewable methanol chemistry. Angew Chem Int Ed 52:104–107.  https://doi.org/10.1002/anie.201204995CrossRefGoogle Scholar
  11. 11.
    Artz J et al (2018) Sustainable conversion of carbon dioxide: an integrated review of catalysis and life cycle assessment. Chem Rev 118:434–504.  https://doi.org/10.1021/acs.chemrev.7b00435CrossRefGoogle Scholar
  12. 12.
    Graaf GH, Sijtsema PJJM, Stamhuis EJ, Joosten GEH (1986) Chemical equilibria in methanol synthesis. Chem Eng Sci 41:2883–2890.  https://doi.org/10.1016/0009-2509(86)80019-7CrossRefGoogle Scholar
  13. 13.
    Graaf GH, Winkelman JGM (2016) Chemical equilibria in methanol synthesis including the water–gas shift reaction: a critical reassessment. Ind Eng Chem Res 55:5854–5864.  https://doi.org/10.1021/acs.iecr.6b00815CrossRefGoogle Scholar
  14. 14.
    Graaf GH, Stamhuis EJ, Beenackers AACM (1988) Kinetics of low-pressure methanol synthesis. Chem Eng Sci 43:3185–3195.  https://doi.org/10.1016/0009-2509(88)85127-3CrossRefGoogle Scholar
  15. 15.
    Gaikwad R, Bansode A, Urakawa A (2016) High-pressure advantages in stoichiometric hydrogenation of carbon dioxide to methanol. J Catal 343:127–132.  https://doi.org/10.1016/j.jcat.2016.02.005CrossRefGoogle Scholar
  16. 16.
    Zachopoulos A, Heracleous E (2017) Overcoming the equilibrium barriers of CO2 hydrogenation to methanol via water sorption: a thermodynamic analysis. J CO2 Util 21:360–367.  https://doi.org/10.1016/j.jcou.2017.06.007CrossRefGoogle Scholar
  17. 17.
    Stangeland K, Li H, Yu Z (2018) Thermodynamic analysis of chemical and phase equilibria in CO2 hydrogenation to methanol, dimethyl ether, and higher alcohols. Ind Eng Chem Res 57:4081–4094.  https://doi.org/10.1021/acs.iecr.7b04866CrossRefGoogle Scholar
  18. 18.
    Li Y-N, Ma R, He L-N, Diao Z-F (2014) Homogeneous hydrogenation of carbon dioxide to methanol. Cat Sci Technol 4:1498–1512.  https://doi.org/10.1039/C3CY00564JCrossRefGoogle Scholar
  19. 19.
    Ge H, Chen X, Yang X (2017) Hydrogenation of carbon dioxide to methanol catalyzed by iron, cobalt, and manganese cyclopentadienone complexes: mechanistic insights and computational design. Chem Eur J 23:8850–8856.  https://doi.org/10.1002/chem.201701200CrossRefGoogle Scholar
  20. 20.
    Mittasch A, Pier M, Winkler K (1923) Ausführung organischer Katalysen. Germany Patent DE415686, 24.07.1923Google Scholar
  21. 21.
    Alvarez A et al (2017) Challenges in the greener production of Formates/formic acid, methanol, and DME by heterogeneously catalyzed CO2 hydrogenation processes. Chem Rev 117:9804–9838.  https://doi.org/10.1021/acs.chemrev.6b00816CrossRefGoogle Scholar
  22. 22.
    Behrens M et al (2012) The active site of methanol synthesis over Cu/ZnO/Al2O3 industrial catalysts. Science 336:893–897.  https://doi.org/10.1126/science.1219831CrossRefGoogle Scholar
  23. 23.
    Słoczyński J, Grabowski R, Kozłowska A, Olszewski P, Lachowska M, Skrzypek J, Stoch J (2003) Effect of Mg and Mn oxide additions on structural and adsorptive properties of Cu/ZnO/ZrO2 catalysts for the methanol synthesis from CO2. Appl Catal A 249:129–138.  https://doi.org/10.1016/S0926-860X(03)00191-1CrossRefGoogle Scholar
  24. 24.
    Słoczyński J, Grabowski R, Olszewski P, Kozłowska A, Stoch J, Lachowska M, Skrzypek J (2006) Effect of metal oxide additives on the activity and stability of Cu/ZnO/ZrO2 catalysts in the synthesis of methanol from CO2 and H2. Appl Catal A 310:127–137.  https://doi.org/10.1016/j.apcata.2006.05.035CrossRefGoogle Scholar
  25. 25.
    Fujitani T, Saito M, Kanai Y, Watanabe T, Nakamura J, Uchijima T (1995) Development of an active Ga2O3 supported palladium catalyst for the synthesis of methanol from carbon dioxide and hydrogen. Appl Catal A 125:L199–L202.  https://doi.org/10.1016/0926-860X(95)00049-6CrossRefGoogle Scholar
  26. 26.
    Liang X-L, Dong X, Lin G-D, Zhang H-B (2009) Carbon nanotube-supported Pd–ZnO catalyst for hydrogenation of CO2 to methanol. Appl Catal B 88:315–322.  https://doi.org/10.1016/j.apcatb.2008.11.018CrossRefGoogle Scholar
  27. 27.
    Bahruji H et al (2016) Pd/ZnO catalysts for direct CO2 hydrogenation to methanol. J Catal 343:133–146.  https://doi.org/10.1016/j.jcat.2016.03.017CrossRefGoogle Scholar
  28. 28.
    Malik AS, Zaman SF, Al-Zahrani AA, Daous MA, Driss H, Petrov LA (2018) Development of highly selective PdZn/CeO2 and Ca-doped PdZn/CeO2 catalysts for methanol synthesis from CO2 hydrogenation. Appl Catal A 560:42–53.  https://doi.org/10.1016/j.apcata.2018.04.036CrossRefGoogle Scholar
  29. 29.
    Shao C, Fan L, Fujimoto K, Iwasawa Y (1995) Selective methanol synthesis from CO2/H2 on new SiO2-supported PtW and PtCr bimetallic catalysts. Appl Catal A 128:L1–L6.  https://doi.org/10.1016/0926-860X(95)00109-3CrossRefGoogle Scholar
  30. 30.
    Khan MU et al (2016) Pt3Co octapods as superior catalysts of CO2 hydrogenation. Angew Chem Int Ed 55:9548–9552.  https://doi.org/10.1002/anie.201602512CrossRefGoogle Scholar
  31. 31.
    Bai S, Shao Q, Feng Y, Bu L, Huang X (2017) Highly efficient carbon dioxide hydrogenation to methanol catalyzed by zigzag platinum-cobalt nanowires. Small 13.  https://doi.org/10.1002/smll.201604311Google Scholar
  32. 32.
    Studt F et al (2014) Discovery of a Ni-Ga catalyst for carbon dioxide reduction to methanol. Nat Chem 6:320–324.  https://doi.org/10.1038/nchem.1873CrossRefGoogle Scholar
  33. 33.
    Hengne AM et al (2018) Ni–Sn-supported ZrO2 catalysts modified by indium for selective CO2 hydrogenation to methanol. ACS Omega 3:3688–3701.  https://doi.org/10.1021/acsomega.8b00211CrossRefGoogle Scholar
  34. 34.
    Rodriguez JA, Liu P, Stacchiola DJ, Senanayake SD, White MG, Chen JG (2015) Hydrogenation of CO2 to methanol: importance of metal–oxide and metal–carbide interfaces in the activation of CO2. ACS Catal 5:6696–6706.  https://doi.org/10.1021/acscatal.5b01755CrossRefGoogle Scholar
  35. 35.
    Dang S, Yang H, Gao P, Wang H, Li X, Wei W, Sun Y (2018) A review of research progress on heterogeneous catalysts for methanol synthesis from carbon dioxide hydrogenation. Catal Today.  https://doi.org/10.1016/j.cattod.2018.04.021
  36. 36.
    Van-Dal ÉS, Bouallou C (2013) Design and simulation of a methanol production plant from CO2 hydrogenation. J Clean Prod 57:38–45.  https://doi.org/10.1016/j.jclepro.2013.06.008CrossRefGoogle Scholar
  37. 37.
  38. 38.
  39. 39.
    Alberico E, Nielsen M (2015) Towards a methanol economy based on homogeneous catalysis: methanol to H2 and CO2 to methanol. Chem Commun 51:6714–6725.  https://doi.org/10.1039/C4CC09471ACrossRefGoogle Scholar
  40. 40.
    Kothandaraman J, Goeppert A, Czaun M, Olah GA, Prakash GKS (2016) Conversion of CO2 from air into methanol using a polyamine and a homogeneous ruthenium catalyst. J Am Chem Soc 138:778–781.  https://doi.org/10.1021/jacs.5b12354CrossRefGoogle Scholar
  41. 41.
    Sun Z, Talreja N, Tao H, Texter J, Muhler M, Strunk J, Chen J (2018) Catalysis of carbon dioxide photoreduction on nanosheets: fundamentals and challenges. Angew Chem Int Ed Engl 57:2–20.  https://doi.org/10.1002/anie.201710509CrossRefGoogle Scholar
  42. 42.
    Wang L, Yi Y, Guo H, Tu X (2018) Atmospheric pressure and room temperature synthesis of methanol through plasma-catalytic hydrogenation of CO2. ACS Catal 8:90–100.  https://doi.org/10.1021/acscatal.7b02733CrossRefGoogle Scholar
  43. 43.
    Tominaga K-i, Sasaki Y, Kawai M, Watanabe T, Saito M (1993) Ruthenium complex catalysed hydrogenation of carbon dioxide to carbon monoxide, methanol and methane. J Chem Soc Chem Commun:629–631.  https://doi.org/10.1039/C39930000629
  44. 44.
    Tominaga K-i, Sasaki Y, Watanabe T, Saito M (1995) Homogeneous hydrogenation of carbon dioxide to methanol catalyzed by ruthenium cluster anions in the presence of halide anions. Bull Chem Soc Jpn 68:2837–2842.  https://doi.org/10.1246/bcsj.68.2837CrossRefGoogle Scholar
  45. 45.
    Du XL, Jiang Z, Su DS, Wang JQ (2016) Research progress on the indirect hydrogenation of carbon dioxide to methanol. ChemSusChem 9:322–332.  https://doi.org/10.1002/cssc.201501013CrossRefGoogle Scholar
  46. 46.
    Balaraman E, Gnanaprakasam B, Shimon LJW, Milstein D (2010) Direct hydrogenation of amides to alcohols and amines under mild conditions. J Am Chem Soc 132:16756–16758.  https://doi.org/10.1021/ja1080019CrossRefGoogle Scholar
  47. 47.
    Balaraman E, Ben-David Y, Milstein D (2011) Unprecedented catalytic hydrogenation of urea derivatives to amines and methanol. Angew Chem 123:11906–11909.  https://doi.org/10.1002/ange.201106612CrossRefGoogle Scholar
  48. 48.
    Balaraman E, Gunanathan C, Zhang J, Shimon LJW, Milstein D (2011) Efficient hydrogenation of organic carbonates, carbamates and formates indicates alternative routes to methanol based on CO2 and CO. Nat Chem 3:609.  https://doi.org/10.1038/nchem.1089CrossRefGoogle Scholar
  49. 49.
    Huff CA, Sanford MS (2011) Cascade catalysis for the homogeneous hydrogenation of CO2 to methanol. J Am Chem Soc 133:18122–18125.  https://doi.org/10.1021/ja208760jCrossRefGoogle Scholar
  50. 50.
    Han Z, Rong L, Wu J, Zhang L, Wang Z, Ding K (2012) Catalytic hydrogenation of cyclic carbonates: a practical approach from CO2 and epoxides to methanol and diols. Angew Chem Int Ed 51:13041–13045.  https://doi.org/10.1002/anie.201207781CrossRefGoogle Scholar
  51. 51.
    Dub PA, Gordon JC (2017) Metal–ligand bifunctional catalysis: the “accepted” mechanism, the issue of concertedness, and the function of the ligand in catalytic cycles involving hydrogen atoms. ACS Catal 7:6635–6655.  https://doi.org/10.1021/acscatal.7b01791CrossRefGoogle Scholar
  52. 52.
    Khusnutdinova JR, Garg JA, Milstein D (2015) Combining low-pressure CO2 capture and hydrogenation to form methanol. ACS Catal 5:2416–2422.  https://doi.org/10.1021/acscatal.5b00194CrossRefGoogle Scholar
  53. 53.
    Wesselbaum S, vom Stein T, Klankermayer J, Leitner W (2012) Hydrogenation of carbon dioxide to methanol by using a homogeneous ruthenium–phosphine catalyst. Angew Chem 124:7617–7620.  https://doi.org/10.1002/ange.201202320CrossRefGoogle Scholar
  54. 54.
    Wesselbaum S et al (2015) Hydrogenation of carbon dioxide to methanol using a homogeneous ruthenium-Triphos catalyst: from mechanistic investigations to multiphase catalysis. Chem Sci 6:693–704.  https://doi.org/10.1039/C4SC02087ACrossRefGoogle Scholar
  55. 55.
    Rezayee NM, Huff CA, Sanford MS (2015) Tandem amine and ruthenium-catalyzed hydrogenation of CO2 to methanol. J Am Chem Soc 137:1028–1031.  https://doi.org/10.1021/ja511329mCrossRefGoogle Scholar
  56. 56.
    Kar S, Kothandaraman J, Goeppert A, Prakash GKS (2018) Advances in catalytic homogeneous hydrogenation of carbon dioxide to methanol. J CO2 Util 23:212–218.  https://doi.org/10.1016/j.jcou.2017.10.023CrossRefGoogle Scholar
  57. 57.
    Zhang L, Han Z, Zhao X, Wang Z, Ding K (2015) Highly efficient ruthenium-catalyzed N-formylation of amines with H2 and CO2. Angew Chem 127:6284–6287.  https://doi.org/10.1002/ange.201500939CrossRefGoogle Scholar
  58. 58.
    Kar S, Sen R, Goeppert A, Prakash GKS (2018) Integrative CO2 capture and hydrogenation to methanol with reusable catalyst and amine: toward a carbon neutral methanol economy. J Am Chem Soc 140:1580–1583.  https://doi.org/10.1021/jacs.7b12183CrossRefGoogle Scholar
  59. 59.
    Sordakis K, Tsurusaki A, Iguchi M, Kawanami H, Himeda Y, Laurenczy G (2016) Carbon dioxide to methanol: the aqueous catalytic way at room temperature. Chem Eur J 22:15605–15608.  https://doi.org/10.1002/chem.201603407CrossRefGoogle Scholar
  60. 60.
    Everett M, Wass DF (2017) Highly productive CO2 hydrogenation to methanol - a tandem catalytic approach via amide intermediates. Chem Commun 53:9502–9504.  https://doi.org/10.1039/C7CC04613HCrossRefGoogle Scholar
  61. 61.
    Sordakis K, Tsurusaki A, Iguchi M, Kawanami H, Himeda Y, Laurenczy G (2017) Aqueous phase homogeneous formic acid disproportionation into methanol. Green Chem 19:2371–2378.  https://doi.org/10.1039/C6GC03359HCrossRefGoogle Scholar
  62. 62.
    Schneidewind J, Adam R, Baumann W, Jackstell R, Beller M (2017) Low-temperature hydrogenation of carbon dioxide to methanol with a homogeneous cobalt catalyst. Angew Chem Int Ed Engl 56:1890–1893.  https://doi.org/10.1002/anie.201609077CrossRefGoogle Scholar
  63. 63.
    Schieweck BG, Klankermayer J (2017) Tailor-made molecular cobalt catalyst system for the selective transformation of carbon dioxide to dialkoxymethane ethers. Angew Chem Int Ed 56:10854–10857.  https://doi.org/10.1002/anie.201702905CrossRefGoogle Scholar
  64. 64.
    Kar S, Goeppert A, Kothandaraman J, Prakash GKS (2017) Manganese-catalyzed sequential hydrogenation of CO2 to methanol via formamide. ACS Catal 7:6347–6351.  https://doi.org/10.1021/acscatal.7b02066CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.LIKATRostockGermany

Personalised recommendations